生态环境学报 ›› 2022, Vol. 31 ›› Issue (11): 2206-2215.DOI: 10.16258/j.cnki.1674-5906.2022.11.012
谢邵文1,2,3(), 郭晓淞1, 杨芬5, 黄强1, 陈曼佳3, 魏兴琥1, 刘承帅2,3,4,*(
)
收稿日期:
2022-05-12
出版日期:
2022-11-18
发布日期:
2022-12-22
通讯作者:
*刘承帅,男,研究员,研究方向为元素环境地球化学。E-mail: liuchengshuai@vip.gyig.ac.cn作者简介:
谢邵文(1990年生),男,讲师,研究方向为流域面源污染控制和重金属环境风险评价。E-mail: xiesw@fosu.edu.cn
基金资助:
XIE Shaowen1,2,3(), GUO Xiaosong1, YANG Fen5, HUANG Qiang1, CHEN Manjia3, WEI Xinghu1, LIU Chengshuai2,3,4,*(
)
Received:
2022-05-12
Online:
2022-11-18
Published:
2022-12-22
摘要:
城市公园土壤环境质量对城市绿色发展和居民健康均有重要影响。为了解广州市城市公园土壤中重金属含量、形态分布特征及其生态风险情况,以广州市核心城区典型城市公园表层土壤为对象,系统分析了土壤中Pb、Cd、Cr、Cu、Zn和Ni等6种重金属的含量;运用Tessier连续提取法分析重金属的可交换态(F1)、碳酸盐结合态(F2)、铁锰氧化态(F3)、有机态(F4)和残渣态(F5)等5种重金属形态的分布特征;同时运用次生相与原生相比值法(RSP)和风险评价编码法(RAC)对城市公园表层土壤重金属的生态风险进行了评估与讨论。结果表明,(1)广州市城市公园土壤中Pb、Cr、Cu、Zn、Ni和Cd的平均含量依次为64.71、58.55、37.59、131.04、23.16和0.54 mg·kg-1。运用单因子指数法分析重金属累积特征发现,城市公园土壤中Pb、Cr、Cu、Zn和Ni为轻污染,仅部分区域为中污染,而Cd为重污染。(2)重金属形态分析表明不同重金属的形态分布特征存在较大的差异,Pb、Cr、Cu、Zn和Ni以残渣态和铁锰氧化态为主,而Cd以可交换态和铁锰氧化态为主。重金属形态分布的异质性也在一定程度上反映了重金属的迁移特性及其潜在环境风险的差异。(3)次生相与原生相比值法和风险指数编码法计算结果均表明广州市城市公园表层土壤中Cd的生态风险显著高于其他重金属,生态风险强弱顺序为Cd>Zn>Cu>Pb>Ni>Cr;空间分布上,核心城区中部(天河区、白云区和黄埔区)Cd的生态风险相对较高。综上所述,广州市核心城区城市公园表层土壤的主要重金属污染物为Cd,其生态风险远高于其他重金属,在今后粤港澳大湾区城市绿色发展及土壤环境风险管控中应当引起重视。
中图分类号:
谢邵文, 郭晓淞, 杨芬, 黄强, 陈曼佳, 魏兴琥, 刘承帅. 广州市城市公园土壤重金属累积特征、形态分布及其生态风险[J]. 生态环境学报, 2022, 31(11): 2206-2215.
XIE Shaowen, GUO Xiaosong, YANG Fen, HUANG Qiang, CHEN Manjia, WEI Xinghu, LIU Chengshuai. Accumulation Characteristics, Geochemical Fractions Distribution and Ecological Risk of Heavy Metals in Soils of Urban Parks in Guangzhou, China[J]. Ecology and Environment, 2022, 31(11): 2206-2215.
评价指数范围 Assessment index | <1 | 1-2 | 2-3 | >3 |
---|---|---|---|---|
评价等级 Assessment grade | 零级 0 grade | 一级 1 grade | 二级 2 grade | 三级 3 grade |
污染等级 Pollution grade | 未超标 Clean | 轻污染 Slight pollution | 中污染 Medium pollution | 重污染 Heavy pollution |
表1 土壤重金属累积特征评价等级划分
Table 1 Classification of soil heavy metal accumulation characteristics
评价指数范围 Assessment index | <1 | 1-2 | 2-3 | >3 |
---|---|---|---|---|
评价等级 Assessment grade | 零级 0 grade | 一级 1 grade | 二级 2 grade | 三级 3 grade |
污染等级 Pollution grade | 未超标 Clean | 轻污染 Slight pollution | 中污染 Medium pollution | 重污染 Heavy pollution |
重金属 Heavy metal | 含量 Content/ (mg·kg-1) | 标准差 Standard deviation/ (mg·kg-1) | 平均值 Average value/ (mg·kg-1) | 变异系数 Coefficient of variation/ % | 背景值a Background value/ (mg·kg-1) |
---|---|---|---|---|---|
Pb | 43.29-107.19 | 19.24 | 64.71 | 29.73 | 36.0 |
Cd | 0.04-1.18 | 0.37 | 0.54 | 69.82 | 0.056 |
Cr | 22.48-106.40 | 25.22 | 58.55 | 43.0 | 50.5 |
Cu | 14.13-109.42 | 22.28 | 37.59 | 59.26 | 17.0 |
Zn | 48.67-217.58 | 48.27 | 131.04 | 36.83 | 47.3 |
Ni | 11.67-41.59 | 8.86 | 23.16 | 38.25 | 18.2 |
表2 广州市城市公园土壤重金属含量
Table 2 Heavy metal contents in soils of urban parks in Guangzhou city
重金属 Heavy metal | 含量 Content/ (mg·kg-1) | 标准差 Standard deviation/ (mg·kg-1) | 平均值 Average value/ (mg·kg-1) | 变异系数 Coefficient of variation/ % | 背景值a Background value/ (mg·kg-1) |
---|---|---|---|---|---|
Pb | 43.29-107.19 | 19.24 | 64.71 | 29.73 | 36.0 |
Cd | 0.04-1.18 | 0.37 | 0.54 | 69.82 | 0.056 |
Cr | 22.48-106.40 | 25.22 | 58.55 | 43.0 | 50.5 |
Cu | 14.13-109.42 | 22.28 | 37.59 | 59.26 | 17.0 |
Zn | 48.67-217.58 | 48.27 | 131.04 | 36.83 | 47.3 |
Ni | 11.67-41.59 | 8.86 | 23.16 | 38.25 | 18.2 |
重金属 Heavy metal | Pb | Cd | Cr | Cu | Zn | Ni |
---|---|---|---|---|---|---|
Pb | 1 | |||||
Cd | 0.533* | 1 | ||||
Cr | 0.098 | 0.300 | 1 | |||
Cu | 0.147 | 0.147 | 0.521* | 1 | ||
Zn | 0.662** | 0.505* | 0.389 | 0.500* | 1 | |
Ni | -0.192 | 0.013 | 0.621* | 0.247 | -0.276 | 1 |
表3 重金属相关系数
Table 3 Correlation coefficient of heavy metals
重金属 Heavy metal | Pb | Cd | Cr | Cu | Zn | Ni |
---|---|---|---|---|---|---|
Pb | 1 | |||||
Cd | 0.533* | 1 | ||||
Cr | 0.098 | 0.300 | 1 | |||
Cu | 0.147 | 0.147 | 0.521* | 1 | ||
Zn | 0.662** | 0.505* | 0.389 | 0.500* | 1 | |
Ni | -0.192 | 0.013 | 0.621* | 0.247 | -0.276 | 1 |
采样点 Sampling sites | 单因子评价指数 Single factor evaluation index | |||||
---|---|---|---|---|---|---|
Pb | Cd | Cr | Cu | Zn | Ni | |
G1 | 1.55 | 11.74 | 0.87 | 1.59 | 2.87 | 0.71 |
G2 | 2.98 | 18.47 | 1.20 | 1.93 | 4.60 | 1.06 |
G3 | 1.76 | 7.98 | 1.28 | 2.29 | 3.29 | 1.11 |
G4 | 1.89 | 7.16 | 1.33 | 2.08 | 2.78 | 1.15 |
G5 | 2.69 | 14.41 | 1.40 | 1.84 | 3.82 | 1.17 |
G6 | 1.45 | 5.55 | 0.98 | 1.88 | 3.88 | 0.64 |
G7 | 1.70 | 6.30 | 1.29 | 1.75 | 2.58 | 1.00 |
G8 | 1.89 | 7.58 | 1.32 | 6.44 | 4.03 | 1.20 |
G9 | 1.47 | 20.42 | 0.67 | 1.21 | 1.94 | 0.87 |
G10 | 1.44 | 16.35 | 2.06 | 3.23 | 2.78 | 2.29 |
G11 | 2.60 | 21.14 | 1.52 | 3.20 | 3.40 | 1.73 |
G12 | 1.20 | 7.56 | 1.07 | 1.74 | 2.13 | 1.42 |
G13 | 1.27 | 0.74 | 0.45 | 0.83 | 1.03 | 1.64 |
G14 | 1.97 | 3.81 | 0.49 | 1.59 | 1.99 | 0.75 |
G15 | 1.66 | 1.10 | 0.51 | 1.11 | 1.30 | 1.42 |
G16 | 1.23 | 3.13 | 2.11 | 2.68 | 1.92 | 2.18 |
表4 单因子评价指数评价结果
Table 4 Evaluation results of the single factor evaluation index
采样点 Sampling sites | 单因子评价指数 Single factor evaluation index | |||||
---|---|---|---|---|---|---|
Pb | Cd | Cr | Cu | Zn | Ni | |
G1 | 1.55 | 11.74 | 0.87 | 1.59 | 2.87 | 0.71 |
G2 | 2.98 | 18.47 | 1.20 | 1.93 | 4.60 | 1.06 |
G3 | 1.76 | 7.98 | 1.28 | 2.29 | 3.29 | 1.11 |
G4 | 1.89 | 7.16 | 1.33 | 2.08 | 2.78 | 1.15 |
G5 | 2.69 | 14.41 | 1.40 | 1.84 | 3.82 | 1.17 |
G6 | 1.45 | 5.55 | 0.98 | 1.88 | 3.88 | 0.64 |
G7 | 1.70 | 6.30 | 1.29 | 1.75 | 2.58 | 1.00 |
G8 | 1.89 | 7.58 | 1.32 | 6.44 | 4.03 | 1.20 |
G9 | 1.47 | 20.42 | 0.67 | 1.21 | 1.94 | 0.87 |
G10 | 1.44 | 16.35 | 2.06 | 3.23 | 2.78 | 2.29 |
G11 | 2.60 | 21.14 | 1.52 | 3.20 | 3.40 | 1.73 |
G12 | 1.20 | 7.56 | 1.07 | 1.74 | 2.13 | 1.42 |
G13 | 1.27 | 0.74 | 0.45 | 0.83 | 1.03 | 1.64 |
G14 | 1.97 | 3.81 | 0.49 | 1.59 | 1.99 | 0.75 |
G15 | 1.66 | 1.10 | 0.51 | 1.11 | 1.30 | 1.42 |
G16 | 1.23 | 3.13 | 2.11 | 2.68 | 1.92 | 2.18 |
采样点 Sampling sites | 次生相与原生相分布比值法 RSP | 风险评价编码法 RAC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Cd | Cr | Cu | Zn | Ni | Pb | Cd | Cr | Cu | Zn | Ni | |
G1 | 0.88 | 22.61 | 0.18 | 0.34 | 1.85 | 0.44 | 0.75% | 63.06% | 0.21% | 1.03% | 16.75% | 5.20% |
G2 | 0.96 | 11.69 | 0.20 | 0.39 | 1.63 | 0.51 | 0.19% | 55.58% | 0.17% | 1.92% | 9.08% | 2.20% |
G3 | 0.70 | 9.87 | 0.39 | 0.74 | 1.47 | 0.47 | 0.09% | 52.33% | 0.45% | 2.51% | 7.24% | 2.94% |
G4 | 0.71 | 9.63 | 0.30 | 0.65 | 1.30 | 0.39 | 0.37% | 54.50% | 0.35% | 1.82% | 9.90% | 4.34% |
G5 | 0.82 | 8.91 | 0.18 | 0.33 | 1.24 | 0.40 | 0.19% | 47.76% | 0.18% | 1.68% | 5.34% | 2.39% |
G6 | 1.21 | 12.04 | 0.20 | 0.27 | 1.97 | 0.60 | 1.04% | 59.46% | 0.38% | 1.36% | 17.35% | 5.78% |
G7 | 0.78 | 8.05 | 0.29 | 0.61 | 1.34 | 0.41 | 0.48% | 51.53% | 0.49% | 2.89% | 9.62% | 4.53% |
G8 | 0.69 | 8.52 | 0.31 | 1.38 | 1.98 | 0.45 | 0.09% | 53.67% | 0.38% | 19.70% | 14.51% | 6.62% |
G9 | 0.58 | 28.52 | 0.15 | 0.55 | 1.30 | 0.35 | 0.94% | 63.37% | 0.29% | 1.03% | 13.86% | 4.95% |
G10 | 0.87 | 4.37 | 0.10 | 0.34 | 0.53 | 0.22 | 0.01% | 28.80% | 0.03% | 0.14% | 1.00% | 0.64% |
G11 | 0.99 | 11.14 | 0.17 | 0.50 | 0.85 | 0.29 | 0.05% | 46.76% | 0.25% | 0.82% | 4.30% | 2.04% |
G12 | 0.80 | 4.66 | 0.09 | 0.35 | 0.51 | 0.59 | 0.03% | 34.89% | 0.35% | 0.17% | 2.60% | 1.62% |
G13 | 0.76 | 9.56 | 0.64 | 1.10 | 0.49 | 0.16 | 8.49% | 51.77% | 0.84% | 3.61% | 10.45% | 1.12% |
G14 | 0.70 | 10.42 | 0.38 | 1.09 | 0.90 | 0.60 | 5.97% | 20.25% | 0.69% | 1.51% | 7.51% | 2.48% |
G15 | 0.69 | 2.96 | 0.54 | 1.00 | 0.46 | 2.64 | 7.51% | 48.40% | 0.70% | 3.32% | 9.60% | 1.31% |
G16 | 0.65 | 1.94 | 0.09 | 0.15 | 0.13 | 0.11 | 0.35% | 26.35% | 0.10% | 0.49% | 1.03% | 1.19% |
标准差 Standard deviation | 0.80 | 10.31 | 0.26 | 0.61 | 1.12 | 0.54 | 1.66% | 47.40% | 0.36% | 2.75% | 8.76% | 3.09% |
平均值 Average value | 0.16 | 6.79 | 0.16 | 0.36 | 0.59 | 0.58 | 2.87% | 13.03% | 0.23% | 4.64% | 5.14% | 1.88% |
变异系数 Coefficient of variation | 19.45% | 65.87% | 60.91% | 58.34% | 52.29% | 107.21% | 172.89% | 27.48% | 62.03% | 168.69% | 58.64% | 60.78% |
表5 RSP和RAC评价结果
Table 5 Evaluation results of RSP and RAC
采样点 Sampling sites | 次生相与原生相分布比值法 RSP | 风险评价编码法 RAC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Cd | Cr | Cu | Zn | Ni | Pb | Cd | Cr | Cu | Zn | Ni | |
G1 | 0.88 | 22.61 | 0.18 | 0.34 | 1.85 | 0.44 | 0.75% | 63.06% | 0.21% | 1.03% | 16.75% | 5.20% |
G2 | 0.96 | 11.69 | 0.20 | 0.39 | 1.63 | 0.51 | 0.19% | 55.58% | 0.17% | 1.92% | 9.08% | 2.20% |
G3 | 0.70 | 9.87 | 0.39 | 0.74 | 1.47 | 0.47 | 0.09% | 52.33% | 0.45% | 2.51% | 7.24% | 2.94% |
G4 | 0.71 | 9.63 | 0.30 | 0.65 | 1.30 | 0.39 | 0.37% | 54.50% | 0.35% | 1.82% | 9.90% | 4.34% |
G5 | 0.82 | 8.91 | 0.18 | 0.33 | 1.24 | 0.40 | 0.19% | 47.76% | 0.18% | 1.68% | 5.34% | 2.39% |
G6 | 1.21 | 12.04 | 0.20 | 0.27 | 1.97 | 0.60 | 1.04% | 59.46% | 0.38% | 1.36% | 17.35% | 5.78% |
G7 | 0.78 | 8.05 | 0.29 | 0.61 | 1.34 | 0.41 | 0.48% | 51.53% | 0.49% | 2.89% | 9.62% | 4.53% |
G8 | 0.69 | 8.52 | 0.31 | 1.38 | 1.98 | 0.45 | 0.09% | 53.67% | 0.38% | 19.70% | 14.51% | 6.62% |
G9 | 0.58 | 28.52 | 0.15 | 0.55 | 1.30 | 0.35 | 0.94% | 63.37% | 0.29% | 1.03% | 13.86% | 4.95% |
G10 | 0.87 | 4.37 | 0.10 | 0.34 | 0.53 | 0.22 | 0.01% | 28.80% | 0.03% | 0.14% | 1.00% | 0.64% |
G11 | 0.99 | 11.14 | 0.17 | 0.50 | 0.85 | 0.29 | 0.05% | 46.76% | 0.25% | 0.82% | 4.30% | 2.04% |
G12 | 0.80 | 4.66 | 0.09 | 0.35 | 0.51 | 0.59 | 0.03% | 34.89% | 0.35% | 0.17% | 2.60% | 1.62% |
G13 | 0.76 | 9.56 | 0.64 | 1.10 | 0.49 | 0.16 | 8.49% | 51.77% | 0.84% | 3.61% | 10.45% | 1.12% |
G14 | 0.70 | 10.42 | 0.38 | 1.09 | 0.90 | 0.60 | 5.97% | 20.25% | 0.69% | 1.51% | 7.51% | 2.48% |
G15 | 0.69 | 2.96 | 0.54 | 1.00 | 0.46 | 2.64 | 7.51% | 48.40% | 0.70% | 3.32% | 9.60% | 1.31% |
G16 | 0.65 | 1.94 | 0.09 | 0.15 | 0.13 | 0.11 | 0.35% | 26.35% | 0.10% | 0.49% | 1.03% | 1.19% |
标准差 Standard deviation | 0.80 | 10.31 | 0.26 | 0.61 | 1.12 | 0.54 | 1.66% | 47.40% | 0.36% | 2.75% | 8.76% | 3.09% |
平均值 Average value | 0.16 | 6.79 | 0.16 | 0.36 | 0.59 | 0.58 | 2.87% | 13.03% | 0.23% | 4.64% | 5.14% | 1.88% |
变异系数 Coefficient of variation | 19.45% | 65.87% | 60.91% | 58.34% | 52.29% | 107.21% | 172.89% | 27.48% | 62.03% | 168.69% | 58.64% | 60.78% |
[1] |
GU Y G, GAO Y P, 2018. Bioaccessibilities and health implications of heavy metals in exposed-lawn soils from 28 urban parks in the megacity Guangzhou inferred from an in vitro physiologically-based extraction test[J]. Ecotoxicology and Environmental Safety, 148: 747-753.
DOI URL |
[2] |
JAIN C K, 2004. Metal fractionation study on bed sediments of river Yamuna, India[J]. Water Research, 38(3): 569-578.
PMID |
[3] |
LI X D, THORNTON I, 2001. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities[J]. Applied Geochemistry, 16(15): 1693-1706.
DOI URL |
[4] |
TESSIER A, CAMPBELL P G, BISSON M, 1979. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 51(7): 844-851.
DOI URL |
[5] |
XIE S W, YANG F, FENG H X, et al., 2019. Assessment of potential heavy metal contamination in the peri-urban agricultural soils of 31 provincial capital cities in China[J]. Environmental Management, 64(3): 366-380.
DOI PMID |
[6] | 柴世伟, 温琰茂, 张亚雷, 等, 2006. 广州市郊区农业土壤重金属污染评价分析[J]. 环境科学研究, 19(4): 138-142. |
CHAI S W, WEN Y M, ZHANG Y L, et al., 2006. Evaluation on the pollution of agricultural soil heavy metal in Guangzhou city[J]. Research of Environmental Sciences, 19(4): 138-142. | |
[7] | 陈丹青, 谢志宜, 张雅静, 等, 2016. 基于PCA/APCS和地统计学的广州市土壤重金属来源解析[J]. 生态环境学报, 25(6): 1014-1022. |
CHEN D Q, XIE Z Y, ZHANG Y J, et al., 2016. Source apportionment of soil heavy metals in Guangzhou based on the PCA/APCS model and geostatistics[J]. Ecology and Environmental Sciences, 25(6): 1014-1022. | |
[8] | 陈海珍, 龚春生, 李文立, 等, 2010. 广州市不同功能区土壤重金属污染特征及评价[J]. 环境与健康杂志, 27(8): 700-703. |
CHEN H Z, GONG C S, LI W L, et al., 2010. Characteristic and Evaluation of Soil Pollution by Heavy Metal in Different Functional Zones of Guangzhou[J]. Journal of Environment and Health, 27(8): 700-703. | |
[9] | 陈俊坚, 张会化, 刘鉴明, 等, 2011. 广东省区域地质背景下土壤表层重金属元素空间分布特征及其影响因子分析[J]. 生态环境学报, 20(4): 646-651. |
CHEN J J, ZHANG H H, LIU J M, et al., 2011. Spatial distributions and controlled factors of heavy metals in surface soils in Guangdong based on the regional geology[J]. Ecology and Environmental Sciences, 20(4): 646-651. | |
[10] | 陈晓燕, 范成五, 瞿飞, 等, 2017. 土壤重金属污染评价方法概述[J]. 浙江农业科学, 58(10): 1801-1804, 1810. |
CHEN X Y, FAN C W, QU F, et al., 2017. Overview of the evaluation methods of heavy metal pollution in soil[J]. Journal of Zhejiang Agricultural Science, 58(10): 1801-1804, 1810. | |
[11] | 陈思萱, 邹滨, 汤景文, 2015. 空间插值方法对土壤重金属污染格局识别的影响[J]. 测绘科学, 40(1): 63-67. |
CHEN S X, ZOU B, TANG J W, 2015. Effect of spatial interpolation method on the identification of soil heavy metal pollution pattern[J]. Science of Surveying and Mapping, 40(1): 63-67. | |
[12] | 邓晓霞, 米艳华, 黎其万, 等, 2016. 利用改进的BCR法和Tessier法提取稻田土壤中Pb、Cd的对比研究[J]. 江西农业学报, 28(9): 64-68. |
DENG X X, MI Y H, LI Q W, et al., 2016. Comparative study on extraction of Pb and Cd from paddy soils by modified BCR method and tessier method[J]. Acta Agriculturae Jiangxi, 28(9): 64-68. | |
[13] | 韩志轩, 王学求, 迟清华, 等, 2018. 珠江三角洲冲积平原土壤重金属元素含量和来源解析[J]. 中国环境科学, 38(9): 3455-3463. |
HAN Z X, WANG X Q, CHI Q H, et al., 2018. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region, south China[J]. Chinese Environmental Science, 38(9): 3455-3463. | |
[14] | 黄晓慧, 邹开敏, 2016. “一带一路” 战略背景下的粤港澳大湾区文商旅融合发展[J]. 华南师范大学学报(社会科学版), 48(4): 106-110, 192. |
HUANG X H, ZOU K M, 2016. A Study of the integration development of culture, commerce and Tourism under the background of “the Belt and Road” strategy in Guangdong-Hong Kong-Macao Big Bay Area[J]. Journal of South China Normal University (Social Science edition), 48(4): 106-110, 192. | |
[15] | 可华明, 杨清伟, 刘守江, 等, 2020. 嘉陵江亭子口水库沉积物重金属分布特征及风险评价[J]. 安全与环境学报, 20(6): 2389-2397. |
KE H M, YANG Q W, LIU S J, et al., 2020. Distribution of the heavy metal contaminants and the corresponding ecohazard risk assessment in the sediment of Tingzikou Reservoir of Jialing River[J]. Journal of Safety and Environment, 20(6): 2389-2397. | |
[16] | 刘光孟, 汪云甲, 张海荣, 等, 2011. 空间分析中几种插值方法的比较研究[J]. 地理信息世界, 9(3): 41-45. |
LIU G M, WANG Y J, ZHANG H R, et al., 2011. Comparative study of several interpolation methods on spatial analysis[J]. Geomatics World, 9(3): 41-45. | |
[17] | 刘申, 刘凤枝, 李晓华, 等, 2010. 天津公园土壤重金属污染评价及其空间分析[J]. 生态环境学报, 19(5): 1097-1102. |
LIU S, LIU F Z, LI X H, et al., 2010. Pollution assessment and spatial analysis on soil heavy metals of park in Tianjin[J]. Ecology and Environmental Sciences, 19(5): 1097-1102. | |
[18] | 刘玉燕, 刘浩峰, 2006. 城市土壤Pb污染特征及影响因素分析[J]. 干旱环境监测, 20(1): 8-11. |
LIU Y Y, LIU H F, 2006. Analysis of characteristics of lead pollution in urban soil and influence factors[J]. Arid Cnuironmentdal Monitoring, 20(1): 8-11. | |
[19] | 麻冰涓, 王海邻, 李小超, 等, 2015. 河南省武陟县大田土壤重金属形态分布及潜在生态风险评价[J]. 安全与环境学报, 15(4): 363-367. |
MA B J, WANG H L, LI X C, et al., 2015. Fractional distribution and ecological risk assessment of heavy metals in farmland soil, Wuzhi, Henan[J]. Journal of Safety and Environment, 15(4): 363-367. | |
[20] | 马宏宏, 余涛, 杨忠芳, 等, 2018. 典型区土壤重金属空间插值方法与污染评价[J]. 环境科学, 39(10): 4684-4693. |
MA H H, YU T, YANG Z F, et al., 2018. Spatial interpolation methods and pollution assessment of heavy metals of soil in typical areas[J]. Environmental Science, 39(10): 4684-4693. | |
[21] | 邵莉, 肖化云, 吴代赦, 等, 2012. 交通源重金属污染研究进展[J]. 地球与环境, 40(3): 445-459. |
SHAO L, XIAO H Y, WU D S, et al., 2012. Review on research on traffice-related heavy metals pollution[J]. Earth and the Environment, 40(3): 445-459. | |
[22] | 孙境蔚, 于瑞莲, 胡恭任, 等, 2017. 应用铅锶同位素示踪研究泉州某林地垂直剖面土壤中重金属污染及来源解析[J]. 环境科学, 38(4): 1566-1575. |
SUN J W, YU R L, HU G R, et al., 2017. Assessment of heavy metal pollution and tracing sources by Pb & Sr isotope in the soil profile of woodland in Quanzhou[J]. Environmental Science, 38(4): 1566-1575. | |
[23] | 孙瑞瑞, 陈华清, 李杜康, 2015. 基于土壤中铅化学形态的生态风险评价方法比较[J]. 安全与环境工程, 22(5): 47-51. |
SUN R R, CHEN H Q, LI D K, 2015. Comparison of ecological risk assessment methods based on the chemical forms of lead in soil[J]. Safety and Environmental Engineering, 22(5): 47-51. | |
[24] | 汪进, 韩智勇, 冯燕, 等, 2021. 成都市工业区绿地土壤重金属形态分布特征及生态风险评价[J]. 生态环境学报, 30(9): 1923-1932. |
WANG J, HAN Z Y, FENG Y, et al., 2021. Morphological distribution characteristics and ecological risk assessment of heavy metal in the green soil of industrial zone in Chengdu[J]. Ecology and Environmental Sciences, 30(9): 1923-1932. | |
[25] | 武晓娟, 陈雅丽, 马杰, 等, 2020. 长株潭典型污染区稻田剖面土壤重金属的累积及形态特征[J]. 环境科学研究, 35(8): 1913-1924. |
WU X J, CHEN Y L, MA J, et al., 2020. Accumulation and speciation characteristics of heavy metals in paddy soil profiles in typical polluted areas of Chang-Zhu-Tan Region[J]. Research of Environmental Sciences, 35(8): 1913-1924. | |
[26] | 吴新民, 李恋卿, 潘根兴, 等, 2003. 南京市不同功能城区土壤中重金属Cu、Zn、Pb和Cd的污染特征[J]. 环境科学, 24(3): 105-111. |
WU X M, LI L Q, PAN G X, et al., 2003. Soil pollution of Cu, Zn, Pb and Cd in different city zones of Nanjing[J]. Environmental Science, 24(3): 105-111. | |
[27] |
徐国良, 文雅, 蔡少燕, 等, 2019. 城市表层土壤对生态健康影响研究述评[J]. 地理研究, 38(12): 2941-2956.
DOI |
XU G L, WEN Y, CAI S Y, et al., 2019. Review for the effects of urban topsoil on the ecological health[J]. Geographical Research, 38(12): 2941-2956.
DOI |
|
[28] | 杨新明, 庄涛, 韩磊, 等, 2019. 小清河污灌区农田土壤重金属形态分析及风险评价[J]. 环境化学, 38(3): 644-652. |
YANG X M, ZHUANG T, HAN L, et al., 2019. Fraction distribution and ecological risk assessment of soil heavy metals in the farmland soil from the sewage irrigated area of Xiaoqing River[J]. Environmental Chemistry, 38(3): 644-652. | |
[29] | 姚文文, 陈文德, 黄钟宣, 等, 2021. 重庆市主城区土壤重金属形态特征及风险评价[J]. 西南农业学报, 34(1): 159-164. |
YAO W W, CHEN W D, HUANG Z X, et al., 2021. Speciation characteristics and risk assessment of heavy metals in soil in core zone of Chongqing[J]. Southwest China Journal of Agriculture Sciences, 34(1): 159-164. | |
[30] | 张淑香, 依艳丽, 刘孝义, 1999. 草河口地区土壤中重金属等元素含量的相互关系及其影响因素[J]. 土壤学报, 36(2): 253-260. |
ZHANG S X, YI Y L, LIU X Y, 1999. Study on correlation between some metal element contents in soils of Caohekou Area, Liaoning province and their affecting factors[J]. Acta Pedologica Sinica, 36(2): 253-260. | |
[31] | 中华人民共和国农业部, 2006. 土壤监测第1部分:土壤样品的采集、 处理及贮存: NY/T 1121.1-2006[S]. 北京: 中国农业出版社: 1-3. |
Ministry of Agriculture of the People’s Republic of China, 2006. Soil monitoring Part 1: Collection, processing and storage of soil samples: NY/T 1121.1-2006[S]. Beijing: Agriculture Press in China: 1-3. | |
[32] |
周春山, 罗利佳, 史晨怡, 等, 2017. 粤港澳大湾区经济发展时空演变特征及其影响因素[J]. 热带地理, 37(6): 802-813.
DOI |
ZHOU C S, LUO L J, SHI C Y, et al., 2017. Spatio-temporal evolutionary characteristics of the economic development in the Guangdong-Hong Kong-Macao Greater Bay Area and its influencing factors.[J]. Tropical Geography, 37(6): 802-813.
DOI |
|
[33] | 朱立安, 殷爱华, 林兰稳, 等, 2021. 佛山城市森林公园表层土壤重金属累积特征、影响因素及其评价[J]. 生态环境学报, 30(4): 849-856. |
ZHU L A, YIN A H, LIN L W, et al., 2021. Accumulation characteristics, influencing factors and evaluation of heavy metals in surface soil in urban forest park of Foshan[J]. Ecology and Environmental Sciences, 30(4): 849-856. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[3] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[4] | 张贝儿, 吴建强, 王敏, 熊丽君, 谭娟, 沈城, 黄波涛, 黄沈发. 耕地生态保育工程的土壤健康度评价方法初探[J]. 生态环境学报, 2023, 32(2): 388-396. |
[5] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[6] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[7] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[8] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[9] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[10] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[11] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[12] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[13] | 黄敏, 赵晓峰, 梁荣祥, 王鹏忠, 戴安然, 何晓曼. 3种螯合剂对Cd、Cu复合污染土壤淋洗修复的对比研究[J]. 生态环境学报, 2022, 31(6): 1244-1252. |
[14] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[15] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||