生态环境学报 ›› 2021, Vol. 30 ›› Issue (10): 1952-1960.DOI: 10.16258/j.cnki.1674-5906.2021.10.002
所属专题: 生物多样性专题汇编
张晓龙1,2(), 周继华2, 来利明2, 郑元润2,*(
)
收稿日期:
2021-05-20
出版日期:
2021-10-18
发布日期:
2021-12-21
通讯作者:
* 郑元润,研究员,博士研究生导师,主要从事植物生态适应方面研究。E-mail: zhengyr@ibcas.ac.cn作者简介:
张晓龙(1988年生),男,博士,主要从事植物生态适应方面研究。E-mail: zhangxiaolong@sxufe.edu.cn
基金资助:
ZHANG Xiaolong1,2(), ZHOU Jihua2, LAI Liming2, ZHENG Yuanrun2,*(
)
Received:
2021-05-20
Online:
2021-10-18
Published:
2021-12-21
摘要:
胡杨(Populus euphratica Oliv.)是荒漠河岸林的主要建群种之一,对维持荒漠河岸生态系统稳定和抑制荒漠化有着重要意义。为科学认识极端干旱荒漠河岸地带胡杨群落结构、多样性特征沿河岸距离的变化规律,选择黑河下游荒漠河岸地带自然分布的胡杨林作为观测样地,沿垂直河岸方向上设置9个采样点,分析沿河梯度上胡杨群落物种组成、结构、植物区系与多样性特征。结果表明:在沿河梯度上,共有物种7科9属9种,物种多样性低,胡杨在群落中占绝对优势(重要值为0.61—0.90),是群落优势建群种。植物区系贫乏,单种科和单种属占比高,具有明显温带属性,且与古地中海成分地理联系密切。随着沿河岸距离的增加,植物群落结构由乔-灌-草向乔-草类型过渡,植物群落盖度呈先上升后下降的显著变化趋势,在距河650 m处达到最大,为74.33%,灌木层盖度总体上低于乔木层和草本层。胡杨群落多样性指数偏低,Patrick指数、Simpson指数、Shannon-Wiener指数和Pielou指数最大值分别为7、0.66、1.31、0.81。α多样性指数随沿河岸距离的增加呈先上升后下降变化趋势,在距河650—800 m之间达到峰值,其中Pielou指数变化不显著。Cody指数在距河650—800 m和800—950 m之间出现较大值,而Sørensen指数较小,表明该区域β多样性最大,胡杨群落样地间异质性程度高。在黑河下游荒漠河地带,土壤水盐变化限制和调控着草本植物的生长和分布,对胡杨林群落多样性产生重要的影响。研究结果有助于认识该地区沿河胡杨群落结构特征及其多样性格局,也将为荒漠河岸胡杨林植物资源的管理和恢复提供科学参考。
中图分类号:
张晓龙, 周继华, 来利明, 郑元润. 黑河下游胡杨群落多样性沿河岸距离的变化特征[J]. 生态环境学报, 2021, 30(10): 1952-1960.
ZHANG Xiaolong, ZHOU Jihua, LAI Liming, ZHENG Yuanrun. Variation Characteristics of Populus euphratica Community Diversity Along the Downstream Riverbanks of the Heihe River[J]. Ecology and Environment, 2021, 30(10): 1952-1960.
样地 Site | 沿河距离 Distance/ m | 海拔 Altitude/ m | 土壤含水量 Soil moisture/ % | 土壤容重 Soil bulk density/ (g∙cm-3) | 土壤电导率 Soil electrical conductivity/ (mS∙cm-1) | 群落属性 Community characteristics | |||
---|---|---|---|---|---|---|---|---|---|
优势种 Dominant species | 群落结构 Structure | 群落盖度 Coverage/% | 重要值 Importance value | ||||||
S1 | 50 | 916 | 5.73±0.76bc | 1.41±0.04c | 0.36±0.03d | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 30.33±2.40c | 0.83 |
S2 | 200 | 917 | 5.04±0.75bc | 1.50±0.03b | 0.59±0.09cd | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 34.00±4.58bc | 0.81 |
S3 | 350 | 914 | 4.42±0.70bc | 1.50±0.04b | 0.37±0.02d | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 40.33±2.60bc | 0.82 |
S4 | 500 | 914 | 18.51±1.73a | 1.41±0.02c | 2.56±0.53a | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 46.67±2.91b | 0.80 |
S5 | 650 | 913 | 19.27±1.56a | 1.37±0.03c | 0.40±0.10d | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 74.33±6.96a | 0.61 |
S6 | 800 | 913 | 15.23±2.50a | 1.38±0.02c | 1.02±0.19c | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 68.67±8.17a | 0.65 |
S7 | 950 | 912 | 7.78±0.93b | 1.40±0.05c | 0.50±0.04cd | 胡杨 Populus euphratica | 乔-草 Tree-herb | 45.00±3.61b | 0.87 |
S8 | 1100 | 916 | 3.06±0.39c | 1.58±0.03a | 0.66±0.13cd | 胡杨 Populus euphratica | 乔-草 Tree-herb | 40.33±1.76bc | 0.91 |
S9 | 1250 | 915 | 2.32±0.26c | 1.62±0.04a | 1.98±0.44b | 胡杨 Populus euphratica | 乔-草 Tree-herb | 34.33±2.33bc | 0.90 |
表1 黑河下游荒漠河岸沿河胡杨林样地
Table 1 Populus euphratica forest sampling sites in the downstream desert riparian zone of the Heihe River
样地 Site | 沿河距离 Distance/ m | 海拔 Altitude/ m | 土壤含水量 Soil moisture/ % | 土壤容重 Soil bulk density/ (g∙cm-3) | 土壤电导率 Soil electrical conductivity/ (mS∙cm-1) | 群落属性 Community characteristics | |||
---|---|---|---|---|---|---|---|---|---|
优势种 Dominant species | 群落结构 Structure | 群落盖度 Coverage/% | 重要值 Importance value | ||||||
S1 | 50 | 916 | 5.73±0.76bc | 1.41±0.04c | 0.36±0.03d | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 30.33±2.40c | 0.83 |
S2 | 200 | 917 | 5.04±0.75bc | 1.50±0.03b | 0.59±0.09cd | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 34.00±4.58bc | 0.81 |
S3 | 350 | 914 | 4.42±0.70bc | 1.50±0.04b | 0.37±0.02d | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 40.33±2.60bc | 0.82 |
S4 | 500 | 914 | 18.51±1.73a | 1.41±0.02c | 2.56±0.53a | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 46.67±2.91b | 0.80 |
S5 | 650 | 913 | 19.27±1.56a | 1.37±0.03c | 0.40±0.10d | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 74.33±6.96a | 0.61 |
S6 | 800 | 913 | 15.23±2.50a | 1.38±0.02c | 1.02±0.19c | 胡杨 Populus euphratica | 乔-灌-草Tree-shrub-herb | 68.67±8.17a | 0.65 |
S7 | 950 | 912 | 7.78±0.93b | 1.40±0.05c | 0.50±0.04cd | 胡杨 Populus euphratica | 乔-草 Tree-herb | 45.00±3.61b | 0.87 |
S8 | 1100 | 916 | 3.06±0.39c | 1.58±0.03a | 0.66±0.13cd | 胡杨 Populus euphratica | 乔-草 Tree-herb | 40.33±1.76bc | 0.91 |
S9 | 1250 | 915 | 2.32±0.26c | 1.62±0.04a | 1.98±0.44b | 胡杨 Populus euphratica | 乔-草 Tree-herb | 34.33±2.33bc | 0.90 |
分布区类型 Areal-types | 科 Family | 比例 Ratio/% | 属 Genera | 比例 Ratio/% | 所有分布物种 All distributed species |
---|---|---|---|---|---|
世界广布 Cosmopolitan | 豆科 Leguminosae, 藜科 Chenopodiaceae, 菊科 Compositae | 42.8 | 槐属 Sophora | 11.1 | 苦豆子 S. alopecuroides, 胡杨 P. euphratica, 多枝柽柳 T. ramosissima, 驼蹄瓣 Z. fabago, 莴苣 L. sativa, 骆驼蓬 P. harmala, 瓣鳞花 F. pulverulenta, 甘草 G. uralensis, 沙蓬 A. squarrosum |
泛热带分布及其变型 Pantropic | 蒺藜科 Zygophyllaceae | 14.3 | — | — | |
北温带分布 N. Temp. | 杨柳科 Salicaceae | 14.3 | 杨属 Populus | 11.1 | |
旧世界温带 Old World Temp. | 柽柳科 Tamaricaceae | 14.3 | 柽柳属 Tamarix, 莴苣属 Lactuca | 22.2 | |
地中海区、西亚至中亚分布 Mediterranea, W. Asia to C. Asia | 瓣鳞花科 Frankeniaceae | 14.3 | 驼蹄瓣属 Zygophyllum, 骆驼蓬属 Peganum, 瓣鳞花属 Frankenia, 甘草属 Glycyrrhiza | 44.5 | |
中亚分布 C. Asia | — | — | 沙蓬属 Agriophyllum | 11.1 | |
总计 | 7 | 100 | 9 | 100 | 9 |
表2 研究区植物科、属分布区类型
Table 2 Types of families and genera of plants in the studied areas
分布区类型 Areal-types | 科 Family | 比例 Ratio/% | 属 Genera | 比例 Ratio/% | 所有分布物种 All distributed species |
---|---|---|---|---|---|
世界广布 Cosmopolitan | 豆科 Leguminosae, 藜科 Chenopodiaceae, 菊科 Compositae | 42.8 | 槐属 Sophora | 11.1 | 苦豆子 S. alopecuroides, 胡杨 P. euphratica, 多枝柽柳 T. ramosissima, 驼蹄瓣 Z. fabago, 莴苣 L. sativa, 骆驼蓬 P. harmala, 瓣鳞花 F. pulverulenta, 甘草 G. uralensis, 沙蓬 A. squarrosum |
泛热带分布及其变型 Pantropic | 蒺藜科 Zygophyllaceae | 14.3 | — | — | |
北温带分布 N. Temp. | 杨柳科 Salicaceae | 14.3 | 杨属 Populus | 11.1 | |
旧世界温带 Old World Temp. | 柽柳科 Tamaricaceae | 14.3 | 柽柳属 Tamarix, 莴苣属 Lactuca | 22.2 | |
地中海区、西亚至中亚分布 Mediterranea, W. Asia to C. Asia | 瓣鳞花科 Frankeniaceae | 14.3 | 驼蹄瓣属 Zygophyllum, 骆驼蓬属 Peganum, 瓣鳞花属 Frankenia, 甘草属 Glycyrrhiza | 44.5 | |
中亚分布 C. Asia | — | — | 沙蓬属 Agriophyllum | 11.1 | |
总计 | 7 | 100 | 9 | 100 | 9 |
群落特征 Community characteristics | 均值 Mean value | 标准误 SE | 最小值 Minimum | 最大值 Maximum | 自由度 Df | F值 F value | P值 P value |
---|---|---|---|---|---|---|---|
群落盖度 Community coverage | 46.00% | 3.11% | 25.00% | 87.00% | 8 | 12.00 | P<0.001 |
乔木层盖度 Tree layer coverage | 36.85% | 2.07% | 15.00% | 65.00% | 8 | 3.08 | P=0.023 |
灌木层盖度 Shrub layer coverage | 6.96% | 1.62% | 0.00 | 24.0% | 8 | 6.41 | P<0.001 |
草本层盖度 Herb layer coverage | 16.93% | 3.05% | 0.00 | 61.00% | 8 | 24.68 | P<0.001 |
Patrick指数 | 3.00 | 0.32 | 2 | 7 | 8 | 11.78 | P<0.001 |
Simpson指数 | 0.32 | 0.03 | 0.11 | 0.66 | 8 | 5.70 | P<0.001 |
Shannon-Wiener指数 | 0.62 | 0.06 | 0.25 | 1.31 | 8 | 7.05 | P<0.001 |
Pielou指数 | 0.53 | 0.03 | 0.23 | 0.81 | 8 | 2.19 | P=0.080 |
表3 不同沿河距离样地间群落盖度和多样性特征
Table 3 Community coverage and diversity characteristics at different distances along the river
群落特征 Community characteristics | 均值 Mean value | 标准误 SE | 最小值 Minimum | 最大值 Maximum | 自由度 Df | F值 F value | P值 P value |
---|---|---|---|---|---|---|---|
群落盖度 Community coverage | 46.00% | 3.11% | 25.00% | 87.00% | 8 | 12.00 | P<0.001 |
乔木层盖度 Tree layer coverage | 36.85% | 2.07% | 15.00% | 65.00% | 8 | 3.08 | P=0.023 |
灌木层盖度 Shrub layer coverage | 6.96% | 1.62% | 0.00 | 24.0% | 8 | 6.41 | P<0.001 |
草本层盖度 Herb layer coverage | 16.93% | 3.05% | 0.00 | 61.00% | 8 | 24.68 | P<0.001 |
Patrick指数 | 3.00 | 0.32 | 2 | 7 | 8 | 11.78 | P<0.001 |
Simpson指数 | 0.32 | 0.03 | 0.11 | 0.66 | 8 | 5.70 | P<0.001 |
Shannon-Wiener指数 | 0.62 | 0.06 | 0.25 | 1.31 | 8 | 7.05 | P<0.001 |
Pielou指数 | 0.53 | 0.03 | 0.23 | 0.81 | 8 | 2.19 | P=0.080 |
土壤属性 Soil properties | 群落盖度 Community coverage | 乔木层盖度 Tree layer coverage | 灌木层盖度 Shrub layer coverage | 草本层盖度 Herb layer coverage | Patrick 指数 | Simpson 指数 | Shannon- Wiener指数 | Pielou 指数 |
---|---|---|---|---|---|---|---|---|
土壤含水量 Soil water content | 0.671** | 0.517** | 0.547** | 0.665** | 0.746** | 0.676** | 0.730** | 0.313ns |
土壤容重 Soil bulk density | -0.528** | -0.351ns | -0.507** | -0.564** | -0.635** | -0.613** | -0.643** | -0.300ns |
土壤电导率 Soil electrical conductivity | -0.019ns | 0.103ns | -0.209ns | -0.162ns | 0.084ns | -0.146ns | -0.088ns | -0.274ns |
表4 水盐条件与群落属性之间的Pearson相关系数
Table 4 Pearson correlation coefficients between soil water-salt conditions and community characteristics
土壤属性 Soil properties | 群落盖度 Community coverage | 乔木层盖度 Tree layer coverage | 灌木层盖度 Shrub layer coverage | 草本层盖度 Herb layer coverage | Patrick 指数 | Simpson 指数 | Shannon- Wiener指数 | Pielou 指数 |
---|---|---|---|---|---|---|---|---|
土壤含水量 Soil water content | 0.671** | 0.517** | 0.547** | 0.665** | 0.746** | 0.676** | 0.730** | 0.313ns |
土壤容重 Soil bulk density | -0.528** | -0.351ns | -0.507** | -0.564** | -0.635** | -0.613** | -0.643** | -0.300ns |
土壤电导率 Soil electrical conductivity | -0.019ns | 0.103ns | -0.209ns | -0.162ns | 0.084ns | -0.146ns | -0.088ns | -0.274ns |
[1] |
DING J Y, ZHAO W W, DARYANTO S, et al., 2017. The spatial distribution and temporal variation of desert riparian forests and their influencing factors in the downstream Heihe River basin, China[J]. Hydrology and Earth System Sciences, 21(5):2405-2419.
DOI URL |
[2] |
FU A H, CHEN Y N, LI W H, 2014. Water use strategies of the desert riparian forest plant community in the lower reaches of Heihe River Basin, China[J]. Science China Earth Sciences, 57(6):1293-1305.
DOI URL |
[3] |
GASTON K J, 2000. Global patterns in biodiversity[J]. Nature, 405(6783):220-227.
DOI URL |
[4] | HAO X M, LI W H, HUANG X, et al., 2010. Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China[J]. Hydrological Processes, 24(2):178-186. |
[5] |
LI W, YU T F, LI X Y, et al., 2016. Sap flow characteristics and their response to environmental variables in a desert riparian forest along lower Heihe River Basin, Northwest China[J]. Environmental Monitoring and Assessment, DOI: 10.1007/s10661-016-5570-2.
DOI |
[6] |
MARTENS S N, BRESHEARS D D, MEYER C W, et al., 1997. Scales of above-ground and below-ground competition in a semi-arid woodland detected from spatial pattern[J]. Journal of Vegetation Science, 8(5):655-664.
DOI URL |
[7] |
MEYER K M, WARD D, WIEGAND K, et al., 2007. Multi-proxy evidence for competition between savanna woody species[J]. Perspectives in Plant Ecology Evolution and Systematics, 10(1):63-72.
DOI URL |
[8] |
MI X C, FENG G, HU Y B, et al., 2021. The global significance of biodiversity science in China: An overview[J]. National Science Review, DOI: 10.1093/nsr/nwab032/6147049.
DOI |
[9] |
RAHBEK C, BORREGAARD M K, COLWELL R K, et al., 2019. Humboldt's enigma: What causes global patterns of mountain biodiversity?[J]. Science, 365(6458):1108-1113.
DOI URL |
[10] |
TILMAN D, REICH P B, KNOPS J, 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment[J]. Nature, 441(7093):629-632.
DOI URL |
[11] | WHITFORD W G, 2002. Ecology of Desert Ecosystems [M]. New York: Academic Press. |
[12] |
YU T F, FENG Q, SI J H, et al., 2013. Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China's extremely arid region[J]. Plant and Soil, 372:297-308.
DOI URL |
[13] |
ZENG Y, ZHAO C, KUNDZEWICZ Z W, et al., 2020. Distribution pattern of Tugai forests species diversity and their relationship to environmental factors in an arid area of China[J]. PLoS ONE, 15(5):e0232907.
DOI URL |
[14] | ZHENG T Y, WANG D, JI L T, et al., 2020. Classification, ordination and diversity pattern of typical forest communities in Taibai Mountain Nature Reserve[J]. Acta Ecologica Sinica, 40(20):7353-7361. |
[15] |
ZHANG X L, GUAN T L, ZHOU J H, et al., 2018. Groundwater depth and soil properties are associated with variation in vegetation of a desert riparian ecosystem in an arid area of China[J]. Forests, 9(1):34.
DOI URL |
[16] | ZHU Y H, CHEN Y N, REN L L, et al., 2016. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: Problems and strategies[J]. Ecology Engineering, 94:629-637. |
[17] | 白元, 徐海量, 张鹏, 等, 2012. 塔里木河下游荒漠植物群落物种多样性及其结构特征分析[J]. 生态与农村环境学报, 28(5):486-492. |
BAI Y, XU H L, ZHANG P, et al., 2012. Species diversity and structural characters of desert plant communities in lower reaches of Tarim River[J]. Journal of Ecology and Rural Environment, 28(5):486-492. | |
[18] | 程国栋, 2009. 黑河流域水-生态-经济系统综合管理研究[M]. 北京: 科学出版社. |
CHENG G D, 2009. Study on the integrated management of the water-ecology-economy system of Heihe River Basin [M]. Beijing: Science Press. | |
[19] |
方精云, 郭柯, 王国宏, 等, 2020. 《中国植被志》的植被分类系统、植被类型划分及编排体系[J]. 植物生态学报, 44(2):96-110.
DOI |
FANG J Y, GUO K, WANG G H, et al., 2020. Vegetation classification system and classification of vegetation types used for the compilation of vegetation of China[J]. Chinese Journal of Plant Ecology, 44(2):96-110. | |
[20] | 方精云, 王襄平, 沈泽昊, 等, 2009. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 17(6):533-548. |
FANG J Y, WANG X P, SHEN Z H, et al., 2009. Methods and protocols for plant community inventory[J]. Biodiversity Science, 17(6):533-548. | |
[21] | 冯起, 1998. 半湿润地区改良风沙土土壤性质研究[J]. 水土保持通报, 18(4):1-6. |
FENG Q, 1998. Properties of ameliorated sandy land soil on semi-humid area[J]. Bulletin of Soil and Water Conservation, 18(4):1-6. | |
[22] | 韩路, 陈家力, 王家强, 等, 2019. 塔河源荒漠河岸林群落物种组成、结构与植物区系特征[J]. 植物科学学报, 37(3):324-336. |
HAN L, CHEN J L, WANG G Q, et al., 2019. Species composition, community structure, and floristic characteristics of desert riparian forest community along the mainstream of Tarim River[J]. Plant Science Journal, 37(3):324-336. | |
[23] | 李小雁, 郑元润, 王彦辉, 等, 2020. 黑河流域植被格局与生态水文适应机制[M]. 北京: 科学出版社. |
LI X Y, ZHENG Y R, WANG Y H, et al., 2021. Vegetation pattern and eco-hydrological adaptation mechanism in Heihe River Basin[M]. Beijing: Science Press. | |
[24] | 刘秉儒, 2021. 生物多样性的海拔分布格局研究及进展[J]. 生态环境学报, 30(2):438-444. |
LIU B R, 2021. Recent advances in altitudinal distribution patterns of biodiversity[J]. Ecology and Environmental Sciences, 30(2):438-444. | |
[25] | 刘蔚, 王涛, 苏永红, 等, 2005. 黑河下游土壤和地下水盐分特征分析[J]. 冰川冻土, 27(6):890-898. |
LIU W, WANG T, SU Y H, et al., 2005. Analysis of the characteristics of soil and groundwater salinity in the lower reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 27(6):890-898. | |
[26] | 史浩伯, 孙桂丽, 王桂华, 等, 2020. 阿克苏河中游荒漠河岸林物种多样性与群落稳定性[J]. 水土保持通报 40(2):9-15. |
SHI H B, SUN G L, WANG G H, et al., 2020. Species diversity and community stability of desert riparian forests in middle reaches of Aksu River[J]. Bulletin of Soil and Water Conservation, 40(2):9-15. | |
[27] | 吴征镒, 1991. 中国种子植物属的分布区类型[J]. 云南植物研究, 13(S4):1-139. |
WU Z Y, 1991. The areal-types of Chinese genera of seed plants[J]. Acta Botanica Yunnanica, 13(S4):1-139. | |
[28] | 吴征镒, 周浙昆, 李德铢, 等, 2003. 世界种子植物科的分布区类型系统[J]. 云南植物研究, 25(3):245-257. |
WU Z Y, ZHOU Z K, LI D S, et al., 2003. The areal-types of the world families of seed plants[J]. Acta Botanica Yunnanica, 25(3):245-257. | |
[29] | 张晓龙, 周继华, 蔡文涛, 等, 2017. 水分梯度下黑河流域荒漠植物群落多样性特征[J]. 生态学报, 37(14):4627-4635. |
ZHANG X L, ZHOU J H, CAI W T, et al., 2017. Diversity characteristics of plant communities in the arid desert of the Heihe basin under different moisture gradients[J]. Acta Ecologica Sinica, 37(14):4627-4635. | |
[30] | 张晓龙, 周继华, 来利明, 等, 2019. 黑河下游荒漠河岸地带土壤水盐和养分的空间分布特征[J]. 生态环境学报, 28(9):1739-1747. |
ZHANG X L, ZHOU J H, LAI L M, et al., 2019. Spatial characterization of soil water-salt and nutrient in a desert riparian area along the lower reaches of Heihe River, China[J]. Ecology and Environmental Sciences, 28(9):1739-1747. | |
[31] | 张晓龙, 周继华, 来利明, 等, 2021. 荒漠河岸多枝柽柳灌丛碳氮磷化学计量特征及其影响因素[J]. 环境科学研究, 34(3):698-706. |
ZHANG X L, ZHOU J H, LAI L M, et al., 2021. Carbon, nitrogen and phosphorus stoichiometric characteristics of Tamarix ramosissima Ledeb. shrubland and their influencing factors in a desert riparian area of China[J]. Research of Environmental Sciences, 34(3):698-706. | |
[32] | 张新时, 1987. 中国的几种植被类型(Ⅳ)温带荒漠与荒漠生态系统[J]. 生物学通报, 7:20-22. |
ZHANG X S, 1987. Several vegetation types in China (Ⅳ) temperate desert and desert ecosystem[J]. Bulletin of Biology, 7:20-22. | |
[33] | 张雪妮, 杨晓东, 吕光辉, 2016. 水盐梯度下荒漠植物多样性格局及其与土壤环境的关系[J]. 生态学报, 36(11):3206-3215. |
ZHANG X N, YANG X D, LV G H, 2016. Diversity patterns and response mechanisms of desert plants to the soil environment along soil water and salinity gradients[J]. Acta Ecologica Sinica, 36(11):3206-3215. |
[1] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[2] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[3] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[4] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[5] | 胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755. |
[6] | 于菲, 曾海龙, 房怀阳, 付玲芳, 林澍, 董家豪. 典型感潮河网浮游藻类功能群时空变化特征及水质评价[J]. 生态环境学报, 2023, 32(4): 756-765. |
[7] | 王哲, 田胜尼, 张永梅, 张和禹, 周忠泽. 巢湖派河口滩涂植物群落特征研究[J]. 生态环境学报, 2022, 31(9): 1823-1831. |
[8] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[9] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
[10] | 刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722. |
[11] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[12] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
[13] | 李聪, 吕晶花, 陆梅, 杨志东, 刘攀, 任玉连, 杜凡. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 2022, 31(10): 1971-1983. |
[14] | 白海锋, 王怡睿, 宋进喜, 孔飞鹤, 张雪仙, 李琦. 渭河浮游生物群落结构特征及其与环境因子的关系[J]. 生态环境学报, 2022, 31(1): 117-130. |
[15] | 何瑞, 蒋然, 杨芳, 张心凤, 林键銮, 朱小平, 彭松耀. 茂名近岸海域中、小型浮游动物群落特征及其与环境因子的关系[J]. 生态环境学报, 2022, 31(1): 142-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||