生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 744-755.DOI: 10.16258/j.cnki.1674-5906.2023.04.012
胡芳1,2(), 刘聚涛1,2,*(
), 温春云1,2, 韩柳, 文慧1,2
收稿日期:
2021-08-12
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*刘聚涛(1983年生),男,正高级工程师,博士,主要从事生态环境保护研究。E-mail: liujutao126@163.com作者简介:
胡芳(1987年生),女,高级工程师,硕士,主要从事生态监测与评价研究。E-mail: hufangab@126.com
基金资助:
HU Fang1,2(), LIU Jutao1,2,*(
), WEN Chunyun1,2, HAN Liu, WEN Hui1,2
Received:
2021-08-12
Online:
2023-04-18
Published:
2023-07-12
摘要:
抚河流域水环境质量呈下降趋势,给沿岸供水甚至鄱阳湖生态安全造成巨大压力,亟需开展全流域生态监测与评价,诊断水生态风险。浮游植物作为水生态系统的初级生产者,能表征水生态环境的变化。针对以往抚河浮游植物群落特征研究主要集中在干流和河口等局部区域,以抚河干流和主要支流为研究对象,于丰(2017年7月)、枯(2017年12月)、平(2018年4月)等3个水文期对抚河流域40个采样点的水环境因子及浮游植物群落结构进行了调查,结合浮游植物的种类组成、优势种、密度、生物多样性等对抚河流域水生态状况进行评价,运用冗余分析方法(Redundancy analysis,RDA),分析抚河流域浮游植物优势种与水环境因子的关系。结果表明:抚河流域共检出浮游植物7门171种,浮游植物细胞密度变化范围为8.33×105-4.43×106 cell?L?1,优势类群以硅藻、绿藻和蓝藻为主,颗粒沟链藻极狭变种(Aulacoseira granulata var. angustissima (O. Müller)Simonsen)、针杆藻(Synedra Ehr. sp.)、四尾栅藻(Scenedesmus quadricauda (Turp.) de Bréb.)为抚河常年优势种。水温、氮磷营养盐(主要是正磷酸盐、硝氮)以及有机物(主要是五日生化需氧量、高锰酸盐指数)是影响抚河流域浮游植物优势种更替的重要影响因子。生物学评价结果表明,丰水期和枯水期,抚河水体处于富营养状态和中污染水平,平水期,抚河水体处于中营养状态和轻污染水平,但干流的南城县城河段以及下游,支流黎滩河、崇仁河的城市河段处于中污染水平。近10年,抚河水生态状况呈下降趋势,削减流域氮磷、有机物污染是抚河流域水生态环境保护的关键。研究结果可为抚河流域水生态环境保护提供科学依据。
中图分类号:
胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755.
HU Fang, LIU Jutao, WEN Chunyun, HAN Liu, WEN Hui. Phytoplankton Community Structure and Evaluation of Aquatic Ecological Conditions in Fu River Basin[J]. Ecology and Environment, 2023, 32(4): 744-755.
水文期 | 河段 | pH | t/℃ | ρ(DO)/ (mg∙L−1) | SD/m | γ/(μS∙cm−1) | ρ(PO43−-P)/ (mg∙L−1) | ρ(NH4+-N)/ (mg∙L−1) | ρ(NO3−-N)/ (mg∙L−1) | ρ(SS)/ (mg∙L−1) | ρ(CODMn)/ (mg∙L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
丰水期 | 上游 | 8.55±0.46 | 30.8±2.5 | 8.26±2.59 | 0.47±0.12 | 72.5±13.0 | 0.03±0.02 | 0.27±0.06 | 0.56±0.16 | 9.19±8.69 | 2.69±0.55 |
中游 | 8.30±0.96 | 32.5±1.8 | 9.66±3.75 | 0.62±0.14 | 75.7±19.2 | 0.01±0.01 | 0.22±0.06 | 0.51±0.22 | 7.98±7.92 | 2.21±0.73 | |
下游 | 8.37±0.39 | 34.5±0.9 | 8.50±1.97 | 0.59±0.12 | 95.5±10.3 | 0.00±0.00 | 0.17±0.05 | 0.46±0.05 | 6.09±2.83 | 2.45±1.69 | |
支流 | 8.56±0.37 | 31.6±4.2 | 9.21±1.18 | 0.56±0.20 | 80.2±32.1 | 0.01±0.01 | 0.15±0.10 | 0.39±0.25 | 5.36±3.70 | 2.38±0.54 | |
枯水期 | 上游 | 8.33±0.13 | 11.2±1.3 | 11.18±0.51 | 0.50±0.20 | 70.7±17.4 | 0.02±0.01 | 0.22±0.11 | 0.94±0.27 | 22.22±14.90 | 2.28±0.97 |
中游 | 8.38±0.12 | 11.7±2.1 | 11.31±1.28 | 1.04±0.47 | 73.3±7.8 | 0.02±0.01 | 0.19±0.05 | 1.17±0.10 | 9.30±8.84 | 3.06±0.86 | |
下游 | 8.40±0.27 | 10.7±0.8 | 10.93±0.72 | 0.69±0.23 | 91.8±6.6 | 0.12±0.09 | 0.38±0.11 | 1.43±0.22 | 15.31±7.40 | 2.43±0.43 | |
支流 | 8.37±0.25 | 10.7±1.6 | 11.21±1.11 | 0.76±0.37 | 69.2±28.0 | 0.10±0.16 | 0.31±0.58 | 0.84±0.52 | 13.75±14.05 | 1.94±0.49 | |
平水期 | 上游 | 8.48±0.12 | 25.4±3.1 | 8.42±0.85 | 0.40±0.00 | 100.8±27.8 | 0.01±0.02 | 0.18±0.07 | 0.90±0.38 | 12.35±6.35 | 3.73±2.19 |
中游 | 8.38±0.28 | 24.9±1.0 | 8.37±1.23 | 0.51±0.25 | 101.2±11.3 | 0.01±0.01 | 0.54±0.27 | 0.79±0.35 | 18.43±9.56 | 3.85±1.92 | |
下游 | 8.59±0.39 | 24.5±0.9 | 6.57±1.41 | 0.39±0.08 | 113.7±23.75 | 0.06±0.03 | 0.88±0.81 | 1.65±0.32 | 30.31±31.38 | 3.10±0.50 | |
支流 | 8.55±0.26 | 24.0±1.7 | 7.35±1.22 | 0.37±0.23 | 83.2±31.25 | 0.04±0.06 | 0.30±0.31 | 1.00±0.67 | 35.42±44.04 | 3.29±1.05 |
表1 抚河流域水体水质指标
Table 1 Water quality index of Fu River
水文期 | 河段 | pH | t/℃ | ρ(DO)/ (mg∙L−1) | SD/m | γ/(μS∙cm−1) | ρ(PO43−-P)/ (mg∙L−1) | ρ(NH4+-N)/ (mg∙L−1) | ρ(NO3−-N)/ (mg∙L−1) | ρ(SS)/ (mg∙L−1) | ρ(CODMn)/ (mg∙L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
丰水期 | 上游 | 8.55±0.46 | 30.8±2.5 | 8.26±2.59 | 0.47±0.12 | 72.5±13.0 | 0.03±0.02 | 0.27±0.06 | 0.56±0.16 | 9.19±8.69 | 2.69±0.55 |
中游 | 8.30±0.96 | 32.5±1.8 | 9.66±3.75 | 0.62±0.14 | 75.7±19.2 | 0.01±0.01 | 0.22±0.06 | 0.51±0.22 | 7.98±7.92 | 2.21±0.73 | |
下游 | 8.37±0.39 | 34.5±0.9 | 8.50±1.97 | 0.59±0.12 | 95.5±10.3 | 0.00±0.00 | 0.17±0.05 | 0.46±0.05 | 6.09±2.83 | 2.45±1.69 | |
支流 | 8.56±0.37 | 31.6±4.2 | 9.21±1.18 | 0.56±0.20 | 80.2±32.1 | 0.01±0.01 | 0.15±0.10 | 0.39±0.25 | 5.36±3.70 | 2.38±0.54 | |
枯水期 | 上游 | 8.33±0.13 | 11.2±1.3 | 11.18±0.51 | 0.50±0.20 | 70.7±17.4 | 0.02±0.01 | 0.22±0.11 | 0.94±0.27 | 22.22±14.90 | 2.28±0.97 |
中游 | 8.38±0.12 | 11.7±2.1 | 11.31±1.28 | 1.04±0.47 | 73.3±7.8 | 0.02±0.01 | 0.19±0.05 | 1.17±0.10 | 9.30±8.84 | 3.06±0.86 | |
下游 | 8.40±0.27 | 10.7±0.8 | 10.93±0.72 | 0.69±0.23 | 91.8±6.6 | 0.12±0.09 | 0.38±0.11 | 1.43±0.22 | 15.31±7.40 | 2.43±0.43 | |
支流 | 8.37±0.25 | 10.7±1.6 | 11.21±1.11 | 0.76±0.37 | 69.2±28.0 | 0.10±0.16 | 0.31±0.58 | 0.84±0.52 | 13.75±14.05 | 1.94±0.49 | |
平水期 | 上游 | 8.48±0.12 | 25.4±3.1 | 8.42±0.85 | 0.40±0.00 | 100.8±27.8 | 0.01±0.02 | 0.18±0.07 | 0.90±0.38 | 12.35±6.35 | 3.73±2.19 |
中游 | 8.38±0.28 | 24.9±1.0 | 8.37±1.23 | 0.51±0.25 | 101.2±11.3 | 0.01±0.01 | 0.54±0.27 | 0.79±0.35 | 18.43±9.56 | 3.85±1.92 | |
下游 | 8.59±0.39 | 24.5±0.9 | 6.57±1.41 | 0.39±0.08 | 113.7±23.75 | 0.06±0.03 | 0.88±0.81 | 1.65±0.32 | 30.31±31.38 | 3.10±0.50 | |
支流 | 8.55±0.26 | 24.0±1.7 | 7.35±1.22 | 0.37±0.23 | 83.2±31.25 | 0.04±0.06 | 0.30±0.31 | 1.00±0.67 | 35.42±44.04 | 3.29±1.05 |
编码 | 种类 | 上游 | 中游 | 下游 | 支流 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | |||||
a | 鱼腥藻 Anabaena Bory sp. | 0.03 | 0.04 | 0.16 | 0.03 | 0.16 | ||||||||||
b | 伪鱼腥藻 Pseudanabaena sp. | 0.24 | 0.1 | 0.27 | 0.04 | 0.02 | 0.06 | 0.03 | ||||||||
c | 微囊藻 Microcystis Kütz. sp. | 0.03 | 0.06 | |||||||||||||
d | 平裂藻 Merismopedia Meyen sp. | 0.07 | 0.06 | 0.03 | ||||||||||||
e | 颗粒沟链藻 Melosira granulate (Ehr.) Ralfs. | 0.03 | ||||||||||||||
f | 颗粒沟链藻极狭变种螺旋变型 Melosira granulate var. angustissima f. spiralis Hustedt | 0.05 | ||||||||||||||
g | 变异直链藻 Melosira varians Ag. | 0.07 | 0.02 | 0.08 | 0.31 | 0.13 | 0.03 | 0.05 | ||||||||
h | 颗粒沟链藻极狭变种 Melosira granulate var. angustissima O. Müller | 0.06 | 0.1 | 0.33 | 0.08 | 0.11 | 0.19 | 0.08 | 0.1 | 0.17 | ||||||
i | 菱形藻 Nitzschiaceae | 0.14 | 0.01 | 0.12 | 0.02 | 0.03 | 0.08 | 0.01 | 0.03 | |||||||
j | 针杆藻 Synedra Ehr. sp. | 0.21 | 0.05 | 0.12 | 0.03 | 0.08 | 0.05 | 0.02 | ||||||||
k | 尖针杆藻 Synedra acus Kütz. | 0.03 | 0.03 | |||||||||||||
l | 小环藻 Cyclotella operculata Kütz. | 0.04 | 0.06 | 0.02 | 0.03 | 0.03 | ||||||||||
m | 舟形藻 Navicula Bory sp. | 0.05 | ||||||||||||||
n | 尖头舟形藻 Navicula cuspidate (Kütz.) Pfitzer. | 0.06 | ||||||||||||||
o | 羽纹藻 Pinnul aria Ehr. sp. | 0.04 | ||||||||||||||
p | 脆杆藻 Fragilaria Lyngb. sp. | 0.02 | 0.03 | 0.02 | 0.02 | |||||||||||
q | 二角盘星藻 Pediastrum duplex Meyen | 0.02 | 0.05 | |||||||||||||
r | 集星藻 Actinastrum hantzschii Lamx | 0.02 | 0.13 | |||||||||||||
s | 空球藻 Eudorina elegans Ehr. | 0.04 | ||||||||||||||
t | 胶网藻 Dictyosphaerium ehrenbergianum Näg. | 0.04 | 0.02 | 0.05 | ||||||||||||
u | 四尾栅藻 Scenedesmus quadricauda (Turp.) de Bréb. | 0.05 | 0.03 | 0.03 | 0.05 | 0.02 | 0.13 | 0.09 | 0.08 | 0.11 | 0.03 | 0.03 | ||||
v | 卵形隐藻 Cryptomonas ovata Ehr. | 0.02 |
表2 抚河浮游植物优势种及其优势度
Table 2 Dominant species and the abundance of the phytoplankton in Fu River
编码 | 种类 | 上游 | 中游 | 下游 | 支流 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | |||||
a | 鱼腥藻 Anabaena Bory sp. | 0.03 | 0.04 | 0.16 | 0.03 | 0.16 | ||||||||||
b | 伪鱼腥藻 Pseudanabaena sp. | 0.24 | 0.1 | 0.27 | 0.04 | 0.02 | 0.06 | 0.03 | ||||||||
c | 微囊藻 Microcystis Kütz. sp. | 0.03 | 0.06 | |||||||||||||
d | 平裂藻 Merismopedia Meyen sp. | 0.07 | 0.06 | 0.03 | ||||||||||||
e | 颗粒沟链藻 Melosira granulate (Ehr.) Ralfs. | 0.03 | ||||||||||||||
f | 颗粒沟链藻极狭变种螺旋变型 Melosira granulate var. angustissima f. spiralis Hustedt | 0.05 | ||||||||||||||
g | 变异直链藻 Melosira varians Ag. | 0.07 | 0.02 | 0.08 | 0.31 | 0.13 | 0.03 | 0.05 | ||||||||
h | 颗粒沟链藻极狭变种 Melosira granulate var. angustissima O. Müller | 0.06 | 0.1 | 0.33 | 0.08 | 0.11 | 0.19 | 0.08 | 0.1 | 0.17 | ||||||
i | 菱形藻 Nitzschiaceae | 0.14 | 0.01 | 0.12 | 0.02 | 0.03 | 0.08 | 0.01 | 0.03 | |||||||
j | 针杆藻 Synedra Ehr. sp. | 0.21 | 0.05 | 0.12 | 0.03 | 0.08 | 0.05 | 0.02 | ||||||||
k | 尖针杆藻 Synedra acus Kütz. | 0.03 | 0.03 | |||||||||||||
l | 小环藻 Cyclotella operculata Kütz. | 0.04 | 0.06 | 0.02 | 0.03 | 0.03 | ||||||||||
m | 舟形藻 Navicula Bory sp. | 0.05 | ||||||||||||||
n | 尖头舟形藻 Navicula cuspidate (Kütz.) Pfitzer. | 0.06 | ||||||||||||||
o | 羽纹藻 Pinnul aria Ehr. sp. | 0.04 | ||||||||||||||
p | 脆杆藻 Fragilaria Lyngb. sp. | 0.02 | 0.03 | 0.02 | 0.02 | |||||||||||
q | 二角盘星藻 Pediastrum duplex Meyen | 0.02 | 0.05 | |||||||||||||
r | 集星藻 Actinastrum hantzschii Lamx | 0.02 | 0.13 | |||||||||||||
s | 空球藻 Eudorina elegans Ehr. | 0.04 | ||||||||||||||
t | 胶网藻 Dictyosphaerium ehrenbergianum Näg. | 0.04 | 0.02 | 0.05 | ||||||||||||
u | 四尾栅藻 Scenedesmus quadricauda (Turp.) de Bréb. | 0.05 | 0.03 | 0.03 | 0.05 | 0.02 | 0.13 | 0.09 | 0.08 | 0.11 | 0.03 | 0.03 | ||||
v | 卵形隐藻 Cryptomonas ovata Ehr. | 0.02 |
时期 | 项目 | 特征值 | 物种-环境相关性 | 累计百分比/% | 总特 征值 | |
---|---|---|---|---|---|---|
物种 | 物种-环境相关性 | |||||
丰水期 | 轴1 | 0.359 | 0.955 | 35.9 | 63.4 | 1.000 |
轴2 | 0.066 | 0.714 | 42.5 | 75.1 | ||
枯水期 | 轴1 | 0.203 | 0.856 | 20.3 | 41.1 | 1.000 |
轴2 | 0.068 | 0.717 | 27.1 | 54.7 | ||
平水期 | 轴1 | 0.130 | 0.790 | 13.0 | 33.9 | 1.000 |
轴2 | 0.090 | 0.782 | 21.9 | 57.3 |
表3 抚河浮游植物与环境因子的RDA分析
Table 3 Redundancy analysis results of phytoplankton and environmental factors in Fu River
时期 | 项目 | 特征值 | 物种-环境相关性 | 累计百分比/% | 总特 征值 | |
---|---|---|---|---|---|---|
物种 | 物种-环境相关性 | |||||
丰水期 | 轴1 | 0.359 | 0.955 | 35.9 | 63.4 | 1.000 |
轴2 | 0.066 | 0.714 | 42.5 | 75.1 | ||
枯水期 | 轴1 | 0.203 | 0.856 | 20.3 | 41.1 | 1.000 |
轴2 | 0.068 | 0.717 | 27.1 | 54.7 | ||
平水期 | 轴1 | 0.130 | 0.790 | 13.0 | 33.9 | 1.000 |
轴2 | 0.090 | 0.782 | 21.9 | 57.3 |
河流 | 密度/(105 cell∙L−1) | 主要优势类群 | 浮游植物优势种 | Shannon-Wiener指数 | 污染状态 | 文献来源 |
---|---|---|---|---|---|---|
赣江中下游 | 8.23-90.6/31.5 | 硅藻、绿藻、蓝藻 | 衣藻、团藻、栅藻、球藻 | 1.57-2.12/1.87 | 中度污染 | 杨威等, |
信江 | 31.2-99.6/80.6 | 绿藻、硅藻、蓝藻 | 团藻、四孢藻、普通水绵、四角藻、螺旋藻、颤藻、小环藻、舟形藻、平板藻 | 0.81-2.01/ 1.23 | 中度及较重污染 | 张洁等, |
抚河 | 8.33-44.3 | 硅藻、绿藻、蓝藻 | 颗粒沟链藻极狭变种、针杆藻、四尾栅藻等 | 2.76-3.81 | 轻中污染 | 本研究 |
表4 与鄱阳湖流域其他河流浮游植物群落结构的比较
Table 4 Comparison of phytoplankton community structure in the other rivers of Poyang Lake basin
河流 | 密度/(105 cell∙L−1) | 主要优势类群 | 浮游植物优势种 | Shannon-Wiener指数 | 污染状态 | 文献来源 |
---|---|---|---|---|---|---|
赣江中下游 | 8.23-90.6/31.5 | 硅藻、绿藻、蓝藻 | 衣藻、团藻、栅藻、球藻 | 1.57-2.12/1.87 | 中度污染 | 杨威等, |
信江 | 31.2-99.6/80.6 | 绿藻、硅藻、蓝藻 | 团藻、四孢藻、普通水绵、四角藻、螺旋藻、颤藻、小环藻、舟形藻、平板藻 | 0.81-2.01/ 1.23 | 中度及较重污染 | 张洁等, |
抚河 | 8.33-44.3 | 硅藻、绿藻、蓝藻 | 颗粒沟链藻极狭变种、针杆藻、四尾栅藻等 | 2.76-3.81 | 轻中污染 | 本研究 |
调查时间 | 调查区域 | 指示种 | 水质评价结果 |
---|---|---|---|
2009 | 抚河河口 | β-中污-多污染 | - |
2010-2011 | 抚河干流 | 寡污-β-中污 | 清洁至轻度污染 |
2017 | 抚河流域 | α-中污 | 轻中污染 |
表5 抚河水质评价对比
Tab.5 Comparison of water quality assessment in Fu River
调查时间 | 调查区域 | 指示种 | 水质评价结果 |
---|---|---|---|
2009 | 抚河河口 | β-中污-多污染 | - |
2010-2011 | 抚河干流 | 寡污-β-中污 | 清洁至轻度污染 |
2017 | 抚河流域 | α-中污 | 轻中污染 |
[1] |
CONTER J B, WETZEL R G, l992. Uptake of dissolved inorganic and organic phosphors compounds by phytoplankton and bacterioplankton[J]. Limnology and Oceanography, 37(2): 232-243.
DOI URL |
[2] | DING T, WANG H X, MENG Y, et al, 2020. Phytoplankton community structure and its relationship with environmental factors in Xin’anjiang River Basin (Tunxi section)[J]. Chinese Journal of Ecology, 39(2): 527-540. |
[3] |
FIELD C B, BEHRENFELD M J, RANDERSON J T, et al., 1998. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 281(5374): 237-240.
DOI URL |
[4] | FLORES L N, BARONE R, 1998. Phytoplankton dynamics in two reservoirs with different trophic state (Lake Rosamarina and Lake Arancio, Sicily Italy)[J]. Hydrobiologia, 369: 163-178. |
[5] | HONG H S, WANG H L, HUANG B Q, 1995. The availability of dissolved organic phosphorus compounds to marine phytoplankton[J]. Chinese Journal of Oceanography Limnology, 13(2): 169-179. |
[6] |
KAKIMOTO M, ISHIKAWA T, MIYAGI A, 2014. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol- producing cyanobacterium Pseudanabaena galeata[J]. Journal of Plant Physiology, 171(3-4): 292-300.
DOI URL |
[7] |
KATSIAPI M, MARIA MG, EVANGELIA M, et al, 2011. Phytoplankton and water quality in a Mediterranean and drinking-water reservoir (Marathonas Reservoir, Greece)[J]. Environmental Monitoring and Assessment, 181(1-4): 563-575.
DOI URL |
[8] | LI S Y, ZHANG J, YAO L A, et al, 2016. The community structure of phytoplankton and its relationship with environmental factors in Xizhijiang River[J]. Acta Scientiae Circumstantiae, 36(6): 1939-1947. |
[9] |
LEPISTÖ L, HOLOPAINEN AL, VUORISTO H, 2004. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finish boreal lakes[J]. Limnologica, 34(3): 236-248.
DOI URL |
[10] | LU H C, WANG F E, CHEN Y X, et al., 2003. Multianalysis between chlorophyll-a and environmental factors in Qiandao Lake water, China[J]. Journal of Applied Ecology, 14(8): 1347-1350. |
[11] |
MCCARTHY M J, LAVRENTYEV P J, YANG L Y, et al., 2007. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China)[J]. Hydrobiologia, 581(1): 195-207.
DOI URL |
[12] |
WANG M S, ZHANG Y L, LIU X H, et al., 2013. Phytoplankton absorption and chlorophyll-specific absorption coefficients characteristics of different trophic level lakes[J]. Journal of Lake Sciences, 25(4): 505-513.
DOI URL |
[13] | WANG Q, HUANG W, CHEN K N, et al., 2020. Phytoplankton community structure and trophic status evaluation in Reservior Daxi[J]. Acta Scientiae Circumstantiae, 40(4): 1-12. |
[14] | YANG Y X, DU C Y, QIAN Z, et al., 2020. Phytoplankton Community structure and its influencing factors in Nanhan Polder Area of Dongting Lake[J]. Research of Environmental Sciences, 33(11): 147-154. |
[15] |
YANG Y S, WANG L, 2010. A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution[J]. Water Resources Management, 24(9): 1819-1843.
DOI URL |
[16] | ZHANG Y L, QIN B Q, 2001. Study prospect and evolution of eutrophication in Taihu Lake[J]. Shanghai Environmental Sciences, 20: 263-265. |
[17] |
ZHAO Z H, MI T F, XIA L L, et al., 2013. Understanding the patterns and mechanisms of urban water ecosystem degradation: phytoplankton community structure and water quality in the Qinhuai River, Nanjing City, China[J]. Environmental Science and Pollution Research, 20(7): 5003-5012.
DOI URL |
[18] | 程文娟, 包立, 罗雄鑫, 等, 2019. 滇池水体沉积物磷素特征及其对藻类的影响[J]. 农业资源与环境学报, 36(6): 822-828. |
CHENG W J, BAO L, LUO X X, et al., 2019. Characteristics of phosphorus in the sediment of Dianchi Lake and its effects on algae[J]. Journal of Agricultural Resources and Environment, 36(6): 822-828. | |
[19] | 高世荣, 潘力军, 孙凤英, 等, 2006. 用水生生物评价环境水体的污染和富营养化[J]. 环境科学与管理, 31(6): 174-176. |
GAO S R, PAN L J, SUN F Y, et al., 2006. Assessment on the pollution and eutrophication of environmental water by hydrobiologica[J]. Environmental science and management, 31(6): 174-176. | |
[20] | 葛大艳, 刘乾甫, 赖子尼, 等, 2021. 珠三角河网链状硅藻物种组成及生态特征研究[J]. 生态学报, 41(6): 2482-2495. |
GE D Y, LIU Q F, LAI Z N, et al., 2021. Species composition and ecological characteristics of filamentous diatoms in the Pearl River Delta[J]. Acta Ecologica Sinica, 41(6): 1-14.
DOI URL |
|
[21] | 国家环境保护总局, 2002. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社: 94-273. |
State Environmental Protection Administration, 2002. Methods for Monitoring and Analysis of Water and Wastewater[M]. 4th Edition. Beijing: China Environmental Science Press: 94-273. | |
[22] | 郭沛涌, 沈焕庭, 刘阿成, 等, 2009. 应用浮游植物监测与评价长江水体营养状况[J]. 海洋科学, 33(12): 68-72. |
GUO P C, SHEN H T, LIU A C, et al., 2009. Monitoring and assessment of water trophic states using phytoplankton community in Changjiang Estuary[J]. Marine Sciences, 33(12): 68-72. | |
[23] | 郝媛媛, 孙国钧, 张立勋, 等, 2014. 黑河流域浮游植物群落特征与环境因子的关系[J]. 湖泊科学, 26(1): 121-130. |
HAO Y Y, SUN G J, ZHANG L X, et al., 2014. Relationship between community characteristics of the phytoplankton and environmental factors in Heihe River Basin[J]. Journal of Lake Science, 26(1): 121-130. | |
[24] | 胡芳, 许振成, 姚玲爱, 等, 2014. 剑潭水库浮游植物群落特征与水环境因子关系研究[J]. 环境科学学报, 34(4): 950-958. |
HU F, XU Z C, YAO L A, et al., 2014. Community structure of phytoplankton and its relationship with aquatic environment factors in Jiantan Reservoir[J]. Acta Scientiae Circumstantiae, 34(4): 950-958 | |
[25] | 胡鸿钧, 魏印心, 2006. 中国淡水藻类-系统、分类及生态[M]. 北京: 科学出版社: 23-903. |
HU H J, WEI Y X, 2006. Chinese freshwater algae-systems, classification and ecology[M]. Beijing: Science Press: 23-903. | |
[26] |
江源, 王博, 杨浩春, 等, 2011. 东江干流浮游植物群落结构特征基于水质的关系[J]. 生态环境学报, 20(11): 1700-1705.
DOI URL |
JIANG Y, WANG B, YANG H C, et al., 2011. Community structure of phytoplankon and its relation with water quality in Dongjiang River[J]. Ecology and Environmental Sciences, 20(11): 1700-1705. | |
[27] | 况琪军, 马沛明, 胡征宇, 等, 2005. 湖泊富营养化的藻类生物学评价与治理研究进展[J]. 安全与环境学报, 5(2): 87-91. |
KUANG Q J, MA P M, HU Z Y, et al., 2005. Study on the evaluation and treatment of lake eutrophication by means of algae biology[J]. Journal of Safety and Environment, 5(2): 87-91. | |
[28] | 李思阳, 张娟, 姚玲爱, 等, 2016. 西枝江流域浮游植物群落结构特征与主要环境因子的关系研究[J]. 环境科学学报, 36(6): 1939-1947. |
LI S Y, ZHANG J, YAO L A, et al., 2016. The community structure of phytoplankton and its relationship with environmental factors in Xizhijiang River[J]. Acta Scientiae Circumstantiae, 36(6): 1939-1947. | |
[29] | 卢碧林, 严平川, 田小海, 等, 2012. 洪湖水体藻类藻相特征及其对生境的响应[J]. 生态学报, 32(3): 680-689. |
LU B L, YAN P C, TIAN X H, et al., 2012. Characteristics of algous facies of planktonic algae in Lake Honghu and its response to habitat[J]. Acta Ecologica Sinica, 32(3): 680-689.
DOI URL |
|
[30] | 刘健康, 1999. 高级水生生物学[M]. 北京: 科学出版社: 176-198. |
LIU J K, 1999. Advanced Aquatic Biology[M]. Beijing: Science Press: 176-198. | |
[31] | 骆鑫, 蓝文陆, 李天深, 等, 2019. 钦州湾春、夏季浮游植物群落特征及其与环境因子的关系[J]. 生态学报, 39(7): 2603-2613. |
LUO X, LAN W L, LI T S, et al., 2019. Distribution of phytoplankton and its relationship with environmental factors in the Qinzhou Bay in spring and summer[J]. Acta Ecologica Sinica, 39(7): 2603-2613. | |
[32] | 王爱爱, 冯佳, 谢树莲, 2014. 汾河中下游浮游藻类群落特征及水质分析[J]. 环境科学, 35(3): 915-923. |
WANG A A, FENG J, XIE S L, 2014. Phytoplankton community structure and assessment of water quality in the middle and lower reaches of Fenhe River[J]. Environmental Science, 35(3): 915-923. | |
[33] | 王明殊, 张运林, 刘笑菡, 等, 2013. 不同营养水平湖泊浮游植物吸收和比吸收系数变化特征[J]. 湖泊科学, 25(4): 505-513. |
WANG M S, ZHANG Y L, LIU X H, et al., 2013. Phytoplankton absorption and chlorophyll specific absorption coefficients characteristics of different trophic level lakes[J]. Journal of Lake Science, 25(4): 505-513. | |
[34] | 吴湘香, 李云峰, 沈子伟, 等, 2014. 赤水河浮游植物群落结构特征及其与水环境因子的关系[J]. 中国水产科学, 21(2): 361-368. |
WU X X, LI Y F, SHEN Z W, et al., 2014. Relationship between phytoplankton community structure and aquatic environmental factors in the Chishui River, a protected tributary of Yangtze River[J]. Journal of Fishery Sciences of China, 21(2): 361-368. | |
[35] | 史晓丹, 阮晓红, 邢雅囡, 等, 2008. 苏州平原河网区浅水湖泊冬夏季浮游植物群落与环境因子的典范对应分析[J]. 环境科学, 29(11): 2999-3008. |
SHI X D, RUAN X H, XING Y N, et al., 2008. Canonical correspondence analysis between phytoplankton community and environmental factors in winter and summer in shallow lakes of plain river network areas Suzhou[J]. Environmental Science, 29(11): 2999-3008. | |
[36] | 孙旭杨, 赵增锋, 尹娟, 等, 2021. 宁夏太阳山湿地水质现状与富营养化评价[J]. 水土保持通报, 41(2): 298-305. |
SUN X Y, ZHAO Z F, YIN J, et al., 2021. Evaluation on water quality and eutrophication of Taiyangshan Wetland in Ningxia Hui Autonomous Region[J]. Bulletin of Soil and Water Conservation, 41(2): 298-305. | |
[37] | 汪琪, 黄蔚, 陈开宁, 等, 2020. 大溪水库浮游植物群落结构特征及营养状态评价[J]. 环境科学学报, 40(4): 1-12. |
WANG Q, HUANG W, CHEN K N, et al., 2020. Phytoplankton community structure and trophic status evaluation in Reservoir Daxi[J]. Acta Scientiae Circumstantiae, 40(4): 1286-1297. | |
[38] | 许秋瑾, 郑丙辉, 朱延忠, 等, 2010. 三峡水库支流营养状态评价方法[J]. 中国环境科学, 30(4): 453-457. |
XU Q J, ZHENG B H, ZHU Y Z, et al., 2010. Nutrient status evaluation for tributary of Three Gorges Reservoir[J]. China Environmental Science, 30(4): 453-457. | |
[39] | 杨威, 刘琪, 张婷婷, 等, 2020. 赣江中下游浮游植物群落结构及其水质生物学评价[J]. 水生态学杂志, 41(2): 68-76. |
YANG W, LIU Q, ZHANG T T, et al., 2020. Phytoplankton community structure and biological evaluation of water quality in the middle and lower Ganjiang River[J]. Journal of Hydroecology, 41(2): 68-76. | |
[40] | 杨毓鑫, 杜春艳, 钱湛, 等, 2020. 洞庭湖区南汉垸水体浮游植物群落结构特征及其影响因素[J]. 环境科学研究, 33(1): 147-154. |
YANG Y X, DU C Y, QIAN Z, et al., 2020. Phytoplankton community structure and its influencing factors in Nanhan Polder Area of Dongting Lake[J]. Research of Environmental Sciences, 33(1): 147-154. | |
[41] | 杨振宇, 杨海保, 2015. 抚河干流水质评价与成因分析[J]. 水资源研究, 2(4): 143-153. |
YANG Z Y, YANG H B, 2015. Water quality assessment and analysis in the main stream of Fuhe River[J]. Journal of Water Resources Research, 2(4): 143-153. | |
[42] | 张国庆, 杨雨玲, 唐爱国, 等, 2020. 新安江流域 (屯溪段) 浮游植物群落结构及其与环境因子的关系[J]. 生态学杂志, 39(2): 527-540. |
ZHANG G Q, YANG Y L, TANG A G, et al., 2020. Phytoplankton community structure and its relationship with environmental factors in Xin’anjiang River Basin (Tunxi section)[J]. Chinese Journal of Ecology, 39(2): 527-540. | |
[43] | 张洁, 计勇, 麻夏, 等, 2013. 抚河干流浮游藻类群落调查及水质评价[J]. 湖北农业科学, 52(2): 306-308, 312. |
ZHANG J, JI Y, MA X, et al., 2013. Research on floating algae community and water quality assessment in the main stream of the Fu River[J]. Hubei Agricultural Sciences, 52(2): 306-308, 312. | |
[44] | 张洁, 吴义泉, 夏美龙, 等, 2016. 信江干流浮游藻类分布特征及水质评价[J]. 湖北农业科学, 55(9): 2230-2232. |
ZHANG J, WU Y Q, XIA M L, et al., 2016. Space time distribution characteristics of floating algae and water quality assessment for Xinjiang River[J]. Hubei Agricultural Sciences, 55(9): 2230-2232. | |
[45] | 张俊芳, 冯佳, 谢树莲, 等, 2012. 山西宁武亚高山湖群浮游植物群落结构特征[J]. 湖泊科学, 24(1): 117-122. |
ZHANG J F, FENG J, XIE S L, et al., 2012. Characteristics of phytoplankton community structures in Ningwu Subalpine Lakes, Shanxi, Province[J]. Journal of Lake Science, 24(1): 117-122. | |
[46] | 张佳磊, 郑丙辉, 熊超军, 等, 2014. 三峡大宁河水体光学特征及其对藻类生物量的影响[J]. 环境科学研究, 27(5): 492-497. |
ZHANG J L, ZHENG B H, XIONG C J, et al., 2014. Optical characteristics of Daning River in the Three Gorges Reservoir and its impact on algae biomass[J]. Research of Environmental Science, 27(5): 492-497. | |
[47] | 张晟, 李崇明, 付永川, 等, 2008. 三峡水库成库后支流库湾营养状态及营养盐输出[J]. 环境科学, 29(1): 7-12. |
ZHANG S, LI C M, FU Y C, et al., 2008. Trophic states and nutrient output of Tributaries Bay in Three Gorges Reservoir after impoundment[J]. Environmental Science, 29(1): 7-12.
DOI URL |
|
[48] | 张远, 郑丙辉, 刘鸿亮, 2006. 三峡水库蓄水后的浮游植物特征变化及影响因素[J]. 长江流域资源与环境, 15(2): 551-555. |
ZHANG Y, ZHENG B H, LIU H L, 2006. Characteristic of phytoplankton composition with analysis of impact factors after impounding of the Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 15(2): 254-258. | |
[49] | 张宗涉, 黄祥飞, 1995. 淡水浮游生物研究方法[M]. 北京: 科学出版社:18-220. |
ZHANG Z S, HUANG X F, 1995. Freshwater plankton research methods[M]. Beijing: Science Press: 18-220. | |
[50] | 钟荣华, 董磊, 黄德娟, 等, 2012. 抚河河口富营养化现状评价[J]. 环境监控与预警, 4(4): 46-50. |
ZHONG R H, DONG L, HUANG D J, et al., 2012. Assessment on eutrophication of Fuhe River Estuary[J]. Environmental Monitoring and Forewarning, 4(4): 46-50. | |
[51] | 周振明, 陈朝述, 刘可慧, 等, 2014. 漓江桂林市区段夏季浮游植物群落特征与水质评价[J]. 生态环境学报, 23(4): 649-656. |
ZHOU Z M, CHEN C S, LIU K H, et al., 2014. Phytoplankton community and water quality in Guilin City section of Lijiang River in summer, China[J]. Ecology and Environmental Sciences, 23(4): 649-656. |
[1] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[2] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[3] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[4] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[5] | 于菲, 曾海龙, 房怀阳, 付玲芳, 林澍, 董家豪. 典型感潮河网浮游藻类功能群时空变化特征及水质评价[J]. 生态环境学报, 2023, 32(4): 756-765. |
[6] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[7] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
[8] | 刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722. |
[9] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[10] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
[11] | 龙靖, 黄耀, 刘占锋, 简曙光, 魏丽萍, 王俊. 西沙热带珊瑚岛典型乔木叶片性状和养分再吸收特征[J]. 生态环境学报, 2022, 31(2): 248-256. |
[12] | 薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340. |
[13] | 李聪, 吕晶花, 陆梅, 杨志东, 刘攀, 任玉连, 杜凡. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 2022, 31(10): 1971-1983. |
[14] | 白海锋, 王怡睿, 宋进喜, 孔飞鹤, 张雪仙, 李琦. 渭河浮游生物群落结构特征及其与环境因子的关系[J]. 生态环境学报, 2022, 31(1): 117-130. |
[15] | 何瑞, 蒋然, 杨芳, 张心凤, 林键銮, 朱小平, 彭松耀. 茂名近岸海域中、小型浮游动物群落特征及其与环境因子的关系[J]. 生态环境学报, 2022, 31(1): 142-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||