生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 756-765.DOI: 10.16258/j.cnki.1674-5906.2023.04.013
于菲(), 曾海龙, 房怀阳, 付玲芳, 林澍(
), 董家豪
收稿日期:
2023-02-16
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*E-mail: linshu@scies.org作者简介:
于菲(1994年生),女,工程师,硕士,研究方向为水环境与水生态。E-mail: 547296686@qq.com
基金资助:
YU Fei(), ZENG Hailong, FANG Huaiyang, FU Lingfang, LIN Shu(
), DONG Jiahao
Received:
2023-02-16
Online:
2023-04-18
Published:
2023-07-12
摘要:
将形态、生理和生态特征相似的浮游藻类归为一组提出的功能群理论,可以从物种功能性的角度评价,更好预测水生态系统的变化。然而,目前该理论多应用于湖泊和水库,在复杂且受潮汐影响的感潮河网,浮游藻类功能群的研究相对不足。以中国大型感潮河网区珠江三角洲河网的腹地为研究区域,分析不同水期和涨退潮对该区域浮游藻类功能群的影响,探讨其时空变化特征及指示作用。结果显示,研究区域水体中共鉴定出浮游藻类127种,隶属于25个功能群,对应枯水期(1月)和丰水期(7月)的平均丰度分别为24.0×105 ind?L?1和52.7×105 ind?L?1。枯水期的优势功能群为P、J、MP,而丰水期的优势功能群为J、P、S1。浮游藻类的群落结构在不同水期有显著差异,但在涨退潮无显著差异,优势功能群组成一致。冗余分析结果表明,优势功能群与高锰酸盐指数、总磷、总氮、浊度、渠道化程度呈正相关,与溶解氧、透明度、植被覆盖度呈负相关。各样点浮游藻类功能群组成的相似性在枯水期主要受样点间的距离和潮汐的影响较大,而在丰水期受闸坝阻隔的影响更显著。基于功能群组成的聚类分析结果与基于水质指标的富营养评价结果一致。浮游藻类的Shannon-Wiener指数与Margalef指数表现出相似的变化趋势(r=0.933,P=0.000),但与Pielou指数的相关性不显著(r=0.203,P=0.187)。综上,研究区域水体现正处于中-富营养型,丰水期水质稍好于枯水期。该研究可为了解感潮河网区浮游藻类功能群对水生态系统变化的响应提供参考,为感潮河网水生态管理和保护提供科学依据。
中图分类号:
于菲, 曾海龙, 房怀阳, 付玲芳, 林澍, 董家豪. 典型感潮河网浮游藻类功能群时空变化特征及水质评价[J]. 生态环境学报, 2023, 32(4): 756-765.
YU Fei, ZENG Hailong, FANG Huaiyang, FU Lingfang, LIN Shu, DONG Jiahao. Spatio-temporal Variation Characteristics of Phytoplankton Functional Groups and Water Quality Evaluation in the Typical Tidal River Network[J]. Ecology and Environment, 2023, 32(4): 756-765.
图5 感潮河网样点枯、丰水期浮游藻类功能群丰度、生物量
Figure 5 Density and biomass of phytoplankton of sampling sites in the tidal river network during low and high water period
功能群 | 代表性种 (属) | 生境特征 | 耐受 | 敏感 | 优势度 (×10−2) | |
---|---|---|---|---|---|---|
枯水期 | 丰水期 | |||||
B | Cyclotella bodanica | 中营养、中小型或大型浅水水体 | 低光照 | pH升高、硅元素缺乏、水体分层 | 7.49 | 2.70 |
Cyclotella sp. | ||||||
D | Synedra actinastroides | 含有营养盐、浑浊 | 冲刷 | 营养缺乏 | 6.07 | 6.28 |
Nitzschia palea | ||||||
G | Eudorina sp. | 富营养、停滞水体 | 高光照 | 营养盐缺乏 | 3.52 | |
Pandorina morum | ||||||
J | Scenedesmus sp. | 高营养、混合、浅水 | 高光照 | 19.8 | 17.8 | |
Pediastrum simplex | ||||||
MP | Gyrosigma sp. | 经常性搅动、浑浊、浅水 | 混合搅动 | 11.8 | 7.04 | |
Navicula sp. | ||||||
P | Aulacoseira granulata | 持续或半持续的混合水层 | 中程度的低光照和 低碳含量 | 水体分层、硅元素 | 21.6 | 16.6 |
Melosira sp. | ||||||
S1 | Planktothrix sp. | 混合浑浊、透明度低 | 极低的光照 | 冲刷作用 | 2.06 | 9.50 |
Pseudanabaena sp. | ||||||
T | Psephonema sp. | 持续混合水层 | 低光照 | 营养缺乏 | 3.01 | |
Planctonema lauterbornii | ||||||
X1 | Schroederia sp. | 超富营养、浅水 | 分层 | 营养缺乏、滤食作用 | 2.19 | 5.77 |
Ankistrodesmus sp. | ||||||
Y | Cryptomonas ovata | 静水环境 | 低光照 | 吞噬作用 | 1.71 | 2.56 |
Cryptomonas erosa |
表1 感潮河网浮游藻类功能群和优势度(Y>2.00×10?2)
Table 1 Phytoplankton functional groups and their dominance (Y>2.00×10?2) in the tidal river network
功能群 | 代表性种 (属) | 生境特征 | 耐受 | 敏感 | 优势度 (×10−2) | |
---|---|---|---|---|---|---|
枯水期 | 丰水期 | |||||
B | Cyclotella bodanica | 中营养、中小型或大型浅水水体 | 低光照 | pH升高、硅元素缺乏、水体分层 | 7.49 | 2.70 |
Cyclotella sp. | ||||||
D | Synedra actinastroides | 含有营养盐、浑浊 | 冲刷 | 营养缺乏 | 6.07 | 6.28 |
Nitzschia palea | ||||||
G | Eudorina sp. | 富营养、停滞水体 | 高光照 | 营养盐缺乏 | 3.52 | |
Pandorina morum | ||||||
J | Scenedesmus sp. | 高营养、混合、浅水 | 高光照 | 19.8 | 17.8 | |
Pediastrum simplex | ||||||
MP | Gyrosigma sp. | 经常性搅动、浑浊、浅水 | 混合搅动 | 11.8 | 7.04 | |
Navicula sp. | ||||||
P | Aulacoseira granulata | 持续或半持续的混合水层 | 中程度的低光照和 低碳含量 | 水体分层、硅元素 | 21.6 | 16.6 |
Melosira sp. | ||||||
S1 | Planktothrix sp. | 混合浑浊、透明度低 | 极低的光照 | 冲刷作用 | 2.06 | 9.50 |
Pseudanabaena sp. | ||||||
T | Psephonema sp. | 持续混合水层 | 低光照 | 营养缺乏 | 3.01 | |
Planctonema lauterbornii | ||||||
X1 | Schroederia sp. | 超富营养、浅水 | 分层 | 营养缺乏、滤食作用 | 2.19 | 5.77 |
Ankistrodesmus sp. | ||||||
Y | Cryptomonas ovata | 静水环境 | 低光照 | 吞噬作用 | 1.71 | 2.56 |
Cryptomonas erosa |
[1] |
BECKER V, CAPUTO L, ORDÓEZ J, et al., 2010. Driving factors of the phytoplankton functional groups in a deep mediterranean reservoir[J]. Water Research, 44(11): 3345-3354.
DOI PMID |
[2] | CHETHAN N, REDDY H R V, BABU R S N, et al., 2016. Phytoplankton distribution in relation to tidal rhythm and hydrography of Gurpur Estuary, Dakshina Kannada[J]. Environment & Ecology, 34(4): 1772-1776. |
[3] |
COLE J J, CARACO N F, PEIERLS C B L, 1992. Can phytoplankton maintain a positive carbon balance in a turbid, freshwater, tidal estuary?[J]. Limnology and Oceanography, 37(8): 1608-1617.
DOI URL |
[4] | DING Y T, PAN B Z, ZHAO X H, et al., 2022. Will a heavy sediment load affect responses of phytoplankton functional groups to aquatic environmental changes in different water body types?[J]. Science of the Total Environment, 837(1): 1-9. |
[5] |
MONTECINO V, CABRERA S, 1982. Phytoplankton activity and standing crop in an impoundment of central Chile[J]. Journal of Plankton Research, 4(4): 943-950.
DOI URL |
[6] |
NEAL C, HILTON J, WADE A J, et al., 2006. Chlorophyll-a in the rivers of eastern England[J]. Science of the Total Environment, 365(1-3): 84-104.
PMID |
[7] |
PADISÁK J, CROSSETTI L O, NASELLI-FLORES L, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates[J]. Hydrobiologia, 621(1): 1-19.
DOI URL |
[8] |
PARKER J I, CONWAY H L, YAGUCHI E M, 1977. Seasonal periodicity of diatoms, and silicon limitation in offshore Lake Michigan, 1975[J]. Journal of the Fisheries Research Board of Canada, 34(4): 552-558.
DOI URL |
[9] |
REYNOLDS C S, 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability[J]. Freshwater Biology, 14(2): 111-142.
DOI URL |
[10] |
REYNOLDS C S, VERA H, CARLA K, et al., 2002. Towards a functional classification of the freshwater phytoplankton[J]. Journal of Plankton Research, 24(5): 417-428.
DOI URL |
[11] |
WANG C, BAEHR C, LAI Z N, et al., 2015. Exploring temporal trend of morphological variability of a dominant diatom in response to environmental factors in a large subtropical river[J]. Ecological Informatics, 29(Part 2): 96-106.
DOI URL |
[12] |
WANG C, LI X H, WANG X X, et al., 2016. Spatio-temporal patterns and predictions of phytoplankton assemblages in a subtropical river delta system[J]. Fundamental and Applied Limnology, 187(4): 335-349.
DOI URL |
[13] |
WANG C, JIA H J, WEI J X, et al., 2021. Phytoplankton functional groups as ecological indicators in a subtropical estuarine river delta system[J]. Ecological Indicators, 126(1): 107651.
DOI URL |
[14] |
HU C Q, GUO K, WU N C, et al., 2023. How do multidimensional traits of dominant diatom Aulacoseira respond to abiotic and biotic factors in a river delta system?[J]. Journal of Environmental Management, 327: 116858.
DOI URL |
[15] | 陈仲晗, 徐娟, 刘帅帅, 等, 2022. 城市感潮河流溶解氧收支及调控的模拟研究[J]. 环境科学学报, 42(4): 204-213. |
CHEN Z H, XU J, LIU S S, et al., 2002. Numerical analysis of dissolved oxygen budgets and hypoxia mitigation strategies for an urban tidal river[J]. Acta Scientiae Circumstantiae, 42(4): 204-213. | |
[16] | 董静, 李艳晖, 李根保, 等, 2013. 东江水系浮游植物功能群季节动态特征及影响因子[J]. 水生生物学报, 37(5): 836-843. |
DONG J, LI Y H, LI G B, et al., 2013. Seasonal dynamics characteristics and affecting physical factors of phytoplankton functional groups in Dongjiang River[J]. Acta Hydrobiologica Sinica, 37(5): 836-843. | |
[17] | 董哲仁, 2008. 城市河流的渠道化园林化问题与自然化要求[J]. 中国水利, 616(22): 12-15. |
DONG Z R, 2008. Issues related to channelization and garden lization and natual requirement of rivers[J]. China Water Resources, 616(22): 12-15. | |
[18] | 高远, 慈海鑫, 亓树财, 等, 2009. 沂河4条支流浮游植物多样性季节动态与水质评价[J]. 环境科学研究, 22(2): 176-180. |
GAO Y, CI H X, QI S C, et al., 2009. Seasonal changes of phytoplankton diversity and assessment of water quality in four tributaries of Yi River[J]. Research of Environmental Sciences, 22(2): 176-180.9 | |
[19] | 葛大艳, 刘乾甫, 赖子尼, 等, 2021. 珠三角河网链状硅藻物种组成及生态特征[J]. 生态学报, 41(6): 2482-2495. |
GE D Y, LIU Q F, LAI Z N, et al., 2021. Species composition and ecological characteristics of filamentous diatoms in the Pearl River Delta[J]. Acta Ecologica Sinica, 41(6):2482-2495. | |
[20] | 国家环境保护总局, 1989a. 水质高锰酸盐指数的测定: GB 11892—89[S]. 北京: 中国环境科学出版社. |
State Environment Protection Agency, 1989a. Water quality—Determination of permanganate index: GB 11892—89[S]. Beijing: China Environmental Science Press. | |
[21] | 国家环境保护总局, 1989b. 水质总磷的测定钼酸铵分光光度法: GB 11893-89[S]. 北京: 中国环境科学出版社. |
State Environment Protection Agency, 1989b. Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method: GB 11893-89[S]. Beijing: China Environmental Science Press. | |
[22] | 胡鸿钧, 魏印心, 2006. 中国淡水藻类——系统、分类及生态[M]. 北京: 科学出版社. |
HU H J, WEI Y X, 2006. The freshwater algae of China systematics, taxonomy and ecology[M]. Beijing: Science Press. | |
[23] |
胡俊, 舒卫先, 韦翠珍, 等, 2018. 基于浮游植物群落的纵向连通性初步研究[J]. 生态环境学报, 27(1): 79-86.
DOI URL |
HU J, SHU W X, WEI C Z, et al., 2018. Study on longitudinal connectivity based on community structure of phytoplankton[J]. Ecology and Environmental Sciences, 27(1): 79-86. | |
[24] | 胡韧, 蓝于倩, 肖利娟, 等, 2015. 淡水浮游植物功能群的概念、划分方法和应用[J]. 湖泊科学, 27(1): 11-23. |
HU R, LAN Y Q, XIAO L J, et al., 2015. The concepts, classification and application of freshwater phytoplankton functional groups[J]. Journal of Lake Sciences, 27(1):11-23.
DOI URL |
|
[25] | 环境保护部, 2009a. 水质采样方案设计技术规定: HJ 495—2009[S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection, 2009a. Water quality-Technical regulation on the design of sampling programmes: HJ 495—2009[S]. Beijing: China Environmental Science Press. | |
[26] | 环境保护部, 2009b. 水质氨氮的测定纳氏试剂分光光度法: HJ 535—2009[S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection, 2009b. Water quality-Determination of ammonia nitrogen-Nessler’s reagent spectrophotometry: HJ 535—2009[S]. Beijing: China Environmental Science Press. | |
[27] | 环境保护部, 2012. 水质总氮的测定碱性过硫酸钾消解紫外分光光度法: HJ 636—2012[S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection, 2012. Water quality-Determination of total nitrogen-Alkaline potassium persulfate digestion UV spectrophotometric method: HJ 636—2012[S]. Beijing: China Environmental Science Press. | |
[28] | 环境保护部, 2017. 水质叶绿素a 的测定分光光度法: HJ 897—2017[S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection, 2017. Water quality-Determination of chlorophyll a-Spectrophotometric method: HJ 897—2017[S]. Beijing: China Environmental Science Press | |
[29] | 贾慧娟, 赖子尼, 王超, 2019. 珠三角河网浮游植物物种丰富度时空特征[J]. 生态学报, 39(11): 3816-3827. |
JIA H J, LAI Z N, WANG C, 2019. Temporal and spatial patterns of phytoplankton species richness in the Pearl River Delta[J]. Acta Ecologica Sinica, 39(11): 3816-3827. | |
[30] | 江源, 彭秋志, 廖剑宇, 等, 2013. 浮游藻类与河流生境关系研究进展与展望[J]. 资源科学, 35(3): 461-472. |
JIANG Y, PENG Q Z, LIAO J Y, et al., 2013. Advances and prospects for research into phytoplankton and river habitats[J]. Resources Science, 35(3): 461-472. | |
[31] | 孔亚珍, 贺松林, 丁平兴, 等, 2004. 长江口盐度的时空变化特征及其指示意义[J]. 海洋学报, 26(4): 9-18. |
KONG Y Z, HE S L, DING P X, et al., 2004. Characteristics of temporal and spatial variation of salinity and their indicating significance in the Changjiang Estuary[J]. Acta Oceanologica Sinica, 26(4): 9-18. | |
[32] | 况琪军, 马沛明, 胡征宇, 等, 2005. 湖泊富营养化的藻类生物学评价与治理研究进展[J]. 安全与环境学报, 5(2): 87-91. |
KUANG Q J, MA P M, HU Z Y, et al., 2005. Study on the evaluation and treatment of lake eutrophication by means of algae biology[J]. Journal of Safety and Environment, 5(2): 87-91. | |
[33] | 李鑫, 赖子尼, 杨婉玲, 等, 2019. 基于环境因子和浮游植物的珠三角河网水质评价[J]. 南方水产科学, 15(5): 25-34. |
LI X, LAI Z N, YANG W L, et al., 2019. Water quality evaluation of Pearl River Delta based on environmental factors and phytoplankton[J]. South China Fisheries Science, 15(5): 25-34. | |
[34] | 李祚泳, 汪嘉杨, 赵晓莉, 等, 2010. 富营养化评价的对数型幂函数普适指数公式[J]. 环境科学学报, 30(3): 664-672. |
LI Z Y, WANG J Y, ZHAO X L, et al., 2010. A universal index formula for eutrophic evaluation using a logarithmic power function[J]. Acta Scientiae Circumstantiae, 30(3): 664-672. | |
[35] | 龙彪, 2019. 闸坝调控对河流水生态环境影响特征分析[J]. 环境与发展, 31(5): 186, 188. |
LONG B, 2019. Analysis of the impact of dam operations on the river water ecological environment[J]. Environmental and Development, 31(5): 186, 188. | |
[36] | 蒙仁宪, 刘贞秋, 1988. 以浮游植物评价巢湖水质污染及富营养化[J]. 水生生物学报, 12(1): 13-26. |
MENG R X, LIU Z Q, 1988. An evaluation of water pollution and eutrophication of the Chaohu Lake by means of phytoplankton[J]. Acta Hydrobiologica Sinica, 12(1): 13-26. | |
[37] | 钱奎梅, 刘宝贵, 陈宇炜, 2019. 鄱阳湖浮游植物功能群的长期变化特征(2009-2016年)[J]. 湖泊科学, 31(4): 1035-1044. |
QIAN K M, LIU B G, CHEN Y W, 2019. Long term dynamics of phytoplankton functional groups in Lake Poyang during 2009-2016[J]. Journal of Lake Sciences, 31(4): 1035-1044.
DOI URL |
|
[38] | 石全, 张建华, 王会容, 等, 2018. 河网区水污染控制影响因素诊断分析[J]. 江苏水利, 252(4):22-27. |
SHI Q, ZHANG J H, WANG H R, et al., 2018. Diagnosis and analysis of factors affecting water pollution control in river network area[J]. Jiangsu Water Resources, 252(4):22-27. | |
[39] | 孙军, 刘东艳, 2004. 多样性指数在海洋浮游植物研究中的应用[J]. 海洋学报, 26(1): 62-75. |
SUN J, LIU D Y, 2004. The application of diversity indices in marine phytoplankton studies[J]. Acta Oceanologica Sinica, 26(1): 62-75. | |
[40] | 谭香, 夏小玲, 程晓莉, 等, 2011. 丹江口水库浮游植物群落时空动态及其多样性指数[J]. 环境科学, 32(10): 2875-2882. |
TAN X, XIA X L, CHENG X L, et al., 2011. Temporal and spatial pattern of phytoplankton community and its biodiversity indices in the Danjiangkou Reservoir[J]. Environmental Science, 32(10): 2875-2882. | |
[41] | 王超, 李新辉, 赖子尼, 等, 2013. 珠三角河网浮游植物生物量的时空特征[J]. 生态学报, 33(18):5835-5847. |
WANG C, LI X H, LAI Z N, et al., 2013. Temporal and spatial pattern of the phytoplankton biomass in the Pearl River Delta[J]. Acta Ecologica Sinica, 34(7): 1800-1811. | |
[42] | 王徐林, 张民, 殷进, 2018. 巢湖浮游藻类功能群的组成特性及其影响因素[J]. 湖泊科学, 30(2): 431-440. |
WANG X L, ZHANG M, YIN J, 2018. Composition and influential factors of phytoplankton function groups in Lake Chaohu[J]. Journal of Lake Sciences, 30(2): 431-440.
DOI URL |
|
[43] | 王亚雄, 秦蓓蕾, 赖国友, 2022. 南方水网区制造业城市水生态文明建设规划研究——以佛山市为例[J]. 广东水利水电 (5): 73-76. |
WANG Y X, QIN B L, LAI G Y, 2022. Study on water ecological civilization urban construction planning in southern water network area: Taking Foshan City as an example[J]. Guangdong Water Resources and Hydropower (5): 73-76. | |
[44] | 魏洪祥, 蒋湘辉, 张涛, 等, 2021. 水丰水库浮游植物群落特征及水质评价[J]. 生态学杂志, 40(2): 402-411. |
WEI H X, JIANG X H, ZHANG T, et al., 2021. Phytoplankton community characteristics and water quality evaluation in Shuifeng Reservoir[J]. Chinese Journal of Ecology, 40(2): 402-411. | |
[45] | 张婷, 李林, 宋立荣, 2009. 熊河水库浮游植物群落结构的周年变化[J]. 生态学报, 29(6): 2971-2979. |
ZHANG T, LI L, SONG L R, 2009. Annual dynamics of phytoplankton abundance and community structure in the Xionghe Reservoir[J]. Acta Ecologica Sinica, 29(6): 2971-2979. | |
[46] | 赵耿楠, 潘保柱, 丁一桐, 等, 2021. 渭河干流和秦岭北麓典型支流浮游植物功能群特征及水质评价[J]. 生态学报, 41(8): 3226-3237. |
ZHAO G N, PAN B Z, DING Y T, et al., 2021. Characteristics and water quality evaluation of phytoplankton functional groups in the Weihe River mainstem and its tributaries in the northern foot of the Qinling Mountains[J]. Acta Ecologica Sinica, 41(8): 3226-3237. |
[1] | 翁升恒, 张玉琴, 姜冬昕, 潘卫华, 李丽纯, 张方敏. 福建省森林植被NEP时空变化及影响因子分析[J]. 生态环境学报, 2023, 32(5): 845-856. |
[2] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[3] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[4] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[5] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[6] | 胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755. |
[7] | 向兴, 满百膺, 张俊忠, 罗洋, 毛小涛, 张超, 孙丙华, 王希. 黄山土壤细菌群落及氮循环功能群的垂向分布格局[J]. 生态环境学报, 2023, 32(1): 56-69. |
[8] | 肖以华, 付志高, 许涵, 史欣, 唐海明, 陈步峰. 城市化对珠江三角洲不同功能群植物叶片功能性状的影响[J]. 生态环境学报, 2022, 31(9): 1783-1793. |
[9] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[10] | 李梦华, 韩颖娟, 赵慧, 王云霞. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(7): 1317-1325. |
[11] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
[12] | 刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722. |
[13] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[14] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
[15] | 郝永佩, 宋晓伟, 赵文珺, 向发敏. 汾渭平原大气污染时空分布及相关因子分析[J]. 生态环境学报, 2022, 31(3): 512-523. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||