生态环境学报 ›› 2021, Vol. 30 ›› Issue (10): 1943-1951.DOI: 10.16258/j.cnki.1674-5906.2021.10.001
• 研究论文 •
下一篇
收稿日期:
2020-10-20
出版日期:
2021-10-18
发布日期:
2021-12-21
通讯作者:
* E-mail: xiaminl@163.com作者简介:
刘旻霞(1972年生),女,教授,博士,主要从事生态恢复方向的研究。E-mail: xiaminl@163.com
基金资助:
LIU Minxia*(), YU Ruixin, MU Ruolan, XIA Sujuan
Received:
2020-10-20
Online:
2021-10-18
Published:
2021-12-21
摘要:
光是植物光合作用的基本因子,准确分析光合-光响应曲线及光合参数是研究植物光合生理过程对环境变化响应的重要途径。利用Li-6400XT便携式光合测定仪测定了兰州北山3种典型绿化树种侧柏(Platycladus orientalis)、山桃 (Prunus davidiana)和甘蒙柽柳(Tamarix austromongolica)在不同海拔梯度下的光响应曲线,并计算3个树种的光能利用效率(LUE)及水分利用效率(WUE)。通过光合生理参数探讨3个树种对不同海拔(1600、1800、2000 m)的光合生理适应机制,分析影响3个树种光合速率(Pn)的主要生理生态因子。结果表明,(1)3种绿化树种在海拔2000 m处具有较高的净光合速率(Pnmax)和表观量子效率(AQE),而在海拔1600 m处具有最大的光补偿点(LCP)和暗呼吸速率(Rd)。(2)侧柏、山桃和甘蒙柽柳叶片蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)都呈现出随海拔的增加而上升的趋势,不同树种的气孔限制值(Ls)有显著差异。(3)3树种LUE均表现为随海拔的升高而增加;侧柏和甘蒙柽柳的WUE随海拔的升高而降低,而山桃表现为在海拔1800 m处WUE最大。(4)侧柏净光合速率(Pn)与光合有效辐射(PAR)、LUE、WUE呈显著正相关(P<0.05);山桃Pn与Gs、Tr、LUE呈极显著正相关(P<0.01),与WUE呈显著正相关(P<0.05);甘蒙柽柳Pn与LUE、Ts呈极显著正相关(P<0.01),与WUE呈显著正相关关系(P<0.05)。综合分析发现,侧柏耐荫性较强但对光强的适应范围不广,适合栽培在低海拔地区;山桃可以很好利用光能,但其抗旱性能较差;甘蒙柽柳在较大的PAR范围内可以保持良好的WUE,并且其对光能的适应范围较广,可以大面积栽培。
中图分类号:
刘旻霞, 于瑞新, 穆若兰, 夏素娟. 兰州北山不同海拔3种典型绿化树种光合特性研究[J]. 生态环境学报, 2021, 30(10): 1943-1951.
LIU Minxia, YU Ruixin, MU Ruolan, XIA Sujuan. Photosynthetic Characteristics of Three Typical Tree Species at Different Altitudes in Beishan, Lanzhou[J]. Ecology and Environment, 2021, 30(10): 1943-1951.
样区 Plot | 海拔 Altitude/m | 经度Longitude | 纬度 Latitude | 胸径 Diameter at breast height/cm | 株高 Plant height/m | |||||
---|---|---|---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | 山桃 Prunus davidiana | 甘蒙柽柳 Tamarix austromongolica | 侧柏 Platycladus orientalis | 山桃 Prunus davidiana | 甘蒙柽柳 Tamarix austromongolica | |||||
样区1 Plot1 | 1609±6 | 103°52′47″E | 36°10′20″N | 27.13±2.12 | 17.14±1.89 | 15.27±1.14 | 2.81±0.21 | 2.13±0.25 | 3.68±0.31 | |
样区2 Plot2 | 1802±4 | 103.47′73″E | 36°06′56″N | 31.58±2.53 | 16.54±2.17 | 17.34±1.77 | 3.12±0.29 | 2.06±0.17 | 3.56±0.25 | |
样区3 Plot3 | 2060±8 | 103°41′65″E | 35°58′54″N | 31.32±2.44 | 19.23±3.11 | 18.17±2.15 | 3.17±0.27 | 2.16±0.22 | 3.74±0.28 |
表 1 样区植被概况
Table 1 Survey of Vegetation in Sample plot
样区 Plot | 海拔 Altitude/m | 经度Longitude | 纬度 Latitude | 胸径 Diameter at breast height/cm | 株高 Plant height/m | |||||
---|---|---|---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | 山桃 Prunus davidiana | 甘蒙柽柳 Tamarix austromongolica | 侧柏 Platycladus orientalis | 山桃 Prunus davidiana | 甘蒙柽柳 Tamarix austromongolica | |||||
样区1 Plot1 | 1609±6 | 103°52′47″E | 36°10′20″N | 27.13±2.12 | 17.14±1.89 | 15.27±1.14 | 2.81±0.21 | 2.13±0.25 | 3.68±0.31 | |
样区2 Plot2 | 1802±4 | 103.47′73″E | 36°06′56″N | 31.58±2.53 | 16.54±2.17 | 17.34±1.77 | 3.12±0.29 | 2.06±0.17 | 3.56±0.25 | |
样区3 Plot3 | 2060±8 | 103°41′65″E | 35°58′54″N | 31.32±2.44 | 19.23±3.11 | 18.17±2.15 | 3.17±0.27 | 2.16±0.22 | 3.74±0.28 |
海拔 Altitude/m | 光合有效辐射PAR Photosynthetically active radiation/ (μmol·m-2·s-1) | 大气温度Ta Atmospheric temperature/ ℃ | 相对湿度RH Relative humidity/ % | 土壤温度Ts Soil temperature/ ℃ | 土壤含水量SMC Soil moisture content/ (g∙kg-1) | ||
---|---|---|---|---|---|---|---|
1600 | 1651.39±6.54b | 23.41±3.11a | 51.08±7.84 a | 16.15±2.67a | 0.085±0.013a | ||
1800 | 1754.53±6.85a | 22.51±1.53b | 45.33±5.56 b | 15.81±1.79a | 0.082±0.009a | ||
2000 | 1862.31±4.23a | 19.67±2.29c | 43.40±6.44 c | 15.64±2.33a | 0.067±0.016b |
表2 样区内环境因子
Table 2 Environmental factors in the sample area
海拔 Altitude/m | 光合有效辐射PAR Photosynthetically active radiation/ (μmol·m-2·s-1) | 大气温度Ta Atmospheric temperature/ ℃ | 相对湿度RH Relative humidity/ % | 土壤温度Ts Soil temperature/ ℃ | 土壤含水量SMC Soil moisture content/ (g∙kg-1) | ||
---|---|---|---|---|---|---|---|
1600 | 1651.39±6.54b | 23.41±3.11a | 51.08±7.84 a | 16.15±2.67a | 0.085±0.013a | ||
1800 | 1754.53±6.85a | 22.51±1.53b | 45.33±5.56 b | 15.81±1.79a | 0.082±0.009a | ||
2000 | 1862.31±4.23a | 19.67±2.29c | 43.40±6.44 c | 15.64±2.33a | 0.067±0.016b |
图1 不同海拔Pn对光的响应 A,侧柏;B,山桃;C:甘蒙柽柳
Fig. 1 Response of Pn to light at different altitudes A, Platycladus orientalis; B, Prunus davidiana; C, Tamarix austromongolica
树种 Trees | 海拔 Altitude/m | 最大净光合速率 Pnmax | 饱和光强 LSP | 光补偿点 LCP | 表观量子效率 AQE | 暗呼吸速率 Rd |
---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | 1600 | 7.67±0.02b | 2190.12±13.08a | 9.39±0.57a | 0.069±0.07a | 0.507±0.14a |
1800 | 16.30±0.11a | 1962.02±9.25c | 8.20±0.64b | 0.062±0.04b | 0.48±0.02b | |
2000 | 15.91±0.08a | 2002.63±15.36b | 8.01±0.36b | 0.056±0.02c | 0.44±0.01b | |
山桃 Prunus davidiana | 1600 | 6.83±0.03b | 1731.13±0.08b | 16.94±1.27a | 0.044±0.03a | 1.86±0.26a |
1800 | 15.16±0.07a | 1788.52±8.76b | 14.40±1.49b | 0.042±0.02b | 1.69±0.32b | |
2000 | 14.21±0.18a | 2396.16±13.97a | 12.26±1.33c | 0.042±0.02b | 1.03±0.15c | |
甘蒙柽柳 Tamarix austromongolica | 1600 | 10.13±0.02b | 1808.31±12.17c | 25.66±3.85a | 0.055±0.05a | 1.2±0.22a |
1800 | 16.83±0.15a | 1996.09±11.98b | 22.69±2.98b | 0.048±0.03b | 1.04±0.02b | |
2000 | 16.64±0.12a | 2415.81±15.66a | 20.65±2.21c | 0.044±0.02b | 1.01±0.01b |
表3 不同海拔侧柏、山桃和甘蒙柽柳的光合参数变化
Table 3 Photosynthetic parameters of of P. orientalis, P. davidiana and T. austromongolica at different altitudes
树种 Trees | 海拔 Altitude/m | 最大净光合速率 Pnmax | 饱和光强 LSP | 光补偿点 LCP | 表观量子效率 AQE | 暗呼吸速率 Rd |
---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | 1600 | 7.67±0.02b | 2190.12±13.08a | 9.39±0.57a | 0.069±0.07a | 0.507±0.14a |
1800 | 16.30±0.11a | 1962.02±9.25c | 8.20±0.64b | 0.062±0.04b | 0.48±0.02b | |
2000 | 15.91±0.08a | 2002.63±15.36b | 8.01±0.36b | 0.056±0.02c | 0.44±0.01b | |
山桃 Prunus davidiana | 1600 | 6.83±0.03b | 1731.13±0.08b | 16.94±1.27a | 0.044±0.03a | 1.86±0.26a |
1800 | 15.16±0.07a | 1788.52±8.76b | 14.40±1.49b | 0.042±0.02b | 1.69±0.32b | |
2000 | 14.21±0.18a | 2396.16±13.97a | 12.26±1.33c | 0.042±0.02b | 1.03±0.15c | |
甘蒙柽柳 Tamarix austromongolica | 1600 | 10.13±0.02b | 1808.31±12.17c | 25.66±3.85a | 0.055±0.05a | 1.2±0.22a |
1800 | 16.83±0.15a | 1996.09±11.98b | 22.69±2.98b | 0.048±0.03b | 1.04±0.02b | |
2000 | 16.64±0.12a | 2415.81±15.66a | 20.65±2.21c | 0.044±0.02b | 1.01±0.01b |
图2 不同光照强度下侧柏、山桃和甘蒙柽柳的光合生理指标 A、B、C分别代表侧柏、山桃和甘蒙柽柳的气孔导度;D、E、F分别代表侧柏、山桃和甘蒙柽柳的蒸腾速率;G、H、I分别代表侧柏、山桃和甘蒙柽柳的胞间CO2浓度;J、K、L分别代表侧柏、山桃和甘蒙柽柳的气孔限制值
Fig. 2 Photosynthetic physiological indexes of P. orientalis, P. davidiana and T. austromongolica under different light intensity A, B and C respectively represent stomatal conductance of P. orientalis, P. davidiana and T. austromongolica; D, E and F respectively represent transpiration rates of P. orientalis, P. davidiana and T. austromongolica; G, H and I respectively represent intercellular CO2 concentration of P. orientalis, P. davidiana and T. austromongolica; J, K and L respectively represent stomatal limitation values of three kinds of plants
图3 不同光照强度下侧柏、山桃和甘蒙柽柳的资源利用效率 A、B、C分别代表侧柏、山桃和甘蒙柽柳的光能利用效率;D、E、F分别代表侧柏、山桃和甘蒙柽柳的水分利用效率
Fig. 3 Resource utilization efficiency of P. orientalis, P. davidiana and T. austromongolica under different light intensity A, B and C respectively represent light use efficiency of P. orientalis, P. davidiana and T. austromongolica; D, E and F respectively represent water use efficiency of P. orientalis, P. davidiana and T. austromongolica
树种 Trees | 参数Parameters | 光合有效辐射PAR | 大气相对湿度RH | 大气温度Ta | 土壤温度Ts | 土壤含水量SMC | 气孔导度Gs | 蒸腾速率Tr | 光能利用效率LUE | 水分利用效率WUE | 净光合速率Pn |
---|---|---|---|---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | PAR | 1 | |||||||||
RH | -0.22 | 1 | |||||||||
Ta | 0.103 | -0.982** | 1 | ||||||||
Ts | 0.116 | -0.866** | 0.908** | 1 | |||||||
SMC | 0.25 | -0.741* | 0.751 | 0.749* | 1 | ||||||
Gs | -0.015 | 0.793* | -0.72 | -0.598 | -0.331 | 1 | |||||
Tr | 0.286 | 0.109 | -0.045 | -0.117 | 0.281 | 0.657* | 1 | ||||
LUE | -0.014 | -0.163 | 0.199 | -0.081 | -0.264 | -0.028 | 0.314 | 1 | |||
WUE | 0.352 | -0.308 | 0.22 | 0.115 | -0.346 | -0.55 | -0.454 | 0.486 | 1 | ||
Pn | 0.664* | -0.319 | 0.27 | 0.086 | -0.011 | -0.081 | 0.385 | 0.734* | 0.64* | 1 | |
山桃 Prunus davidiana | Gs | -0.248 | 0.831** | -0.756* | -0.526 | -0.471 | 1 | ||||
Tr | 0.146 | 0.352 | -0.256 | -0.125 | -0.376 | 0.752* | 1 | ||||
LUE | -0.575 | 0.55 | -0.449 | -0.203 | -0.66* | 0.734* | 0.716* | 1 | |||
WUE | -0.789* | 0.562 | -0.489 | -0.304 | -0.628* | 0.548 | 0.448 | 0.927** | 1 | ||
Pn | 0.713* | 0.556 | -0.452 | -0.246 | -0.588 | 0.824** | 0.894** | 0.95** | 0.793* | 1 | |
甘蒙柽柳 Tamarix austromongolica | Gs | 0.965** | -0.548 | 0.557 | 0.326 | -0.342 | 1 | ||||
Tr | 0.882** | -0.863** | 0.867** | 0.429 | 0.074 | 0.89** | 1 | ||||
LUE | -0.384 | -0.093 | 0.113 | 0.805** | 0.337 | -0.147 | -0.097 | 1 | |||
WUE | -0.257 | 0.214 | -0.215 | 0.567 | -0.121 | -0.046 | -0.214 | 0.784* | 1 | ||
Pn | 0.14 | -0.323 | 0.338 | 0.909** | 0.069 | 0.374 | 0.336 | 0.846** | 0.794* | 1 |
表4 侧柏、山桃及甘蒙柽柳生理生态因子间的相关性分析
Table 4 Correlation analysis of physiological and ecological factors of P. orientalis, P. davidiana and T. austromongolica
树种 Trees | 参数Parameters | 光合有效辐射PAR | 大气相对湿度RH | 大气温度Ta | 土壤温度Ts | 土壤含水量SMC | 气孔导度Gs | 蒸腾速率Tr | 光能利用效率LUE | 水分利用效率WUE | 净光合速率Pn |
---|---|---|---|---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | PAR | 1 | |||||||||
RH | -0.22 | 1 | |||||||||
Ta | 0.103 | -0.982** | 1 | ||||||||
Ts | 0.116 | -0.866** | 0.908** | 1 | |||||||
SMC | 0.25 | -0.741* | 0.751 | 0.749* | 1 | ||||||
Gs | -0.015 | 0.793* | -0.72 | -0.598 | -0.331 | 1 | |||||
Tr | 0.286 | 0.109 | -0.045 | -0.117 | 0.281 | 0.657* | 1 | ||||
LUE | -0.014 | -0.163 | 0.199 | -0.081 | -0.264 | -0.028 | 0.314 | 1 | |||
WUE | 0.352 | -0.308 | 0.22 | 0.115 | -0.346 | -0.55 | -0.454 | 0.486 | 1 | ||
Pn | 0.664* | -0.319 | 0.27 | 0.086 | -0.011 | -0.081 | 0.385 | 0.734* | 0.64* | 1 | |
山桃 Prunus davidiana | Gs | -0.248 | 0.831** | -0.756* | -0.526 | -0.471 | 1 | ||||
Tr | 0.146 | 0.352 | -0.256 | -0.125 | -0.376 | 0.752* | 1 | ||||
LUE | -0.575 | 0.55 | -0.449 | -0.203 | -0.66* | 0.734* | 0.716* | 1 | |||
WUE | -0.789* | 0.562 | -0.489 | -0.304 | -0.628* | 0.548 | 0.448 | 0.927** | 1 | ||
Pn | 0.713* | 0.556 | -0.452 | -0.246 | -0.588 | 0.824** | 0.894** | 0.95** | 0.793* | 1 | |
甘蒙柽柳 Tamarix austromongolica | Gs | 0.965** | -0.548 | 0.557 | 0.326 | -0.342 | 1 | ||||
Tr | 0.882** | -0.863** | 0.867** | 0.429 | 0.074 | 0.89** | 1 | ||||
LUE | -0.384 | -0.093 | 0.113 | 0.805** | 0.337 | -0.147 | -0.097 | 1 | |||
WUE | -0.257 | 0.214 | -0.215 | 0.567 | -0.121 | -0.046 | -0.214 | 0.784* | 1 | ||
Pn | 0.14 | -0.323 | 0.338 | 0.909** | 0.069 | 0.374 | 0.336 | 0.846** | 0.794* | 1 |
[1] | CHEN Z Y, PENG Z S, YANG J, et al., 2011. A mathematical model for describing light-response curves in Nicotiana tabacum L.[J]. Photosynthetica, 49(3):467-471. |
[2] | GARDNER W H, 1986. Water content in methods of soil analysis[J]. American Society of Agronomy (9):493-544. |
[3] |
JOSEPH M C, PETER B R, 2005. Leaf-level light compensation points in shade-tolerant woody seedlings[J]. New Phytologist, 166(3):710-713.
DOI URL |
[4] | LIU X J, AN B Y, GU N, et al., 2020. Response of leaf photosynthetic characteristics of Syringa oblata and Syringa reticulata var. mandshurica to chilling stress[J]. Journal of Forestry Research, 31(2):187-196. |
[5] |
MEDRANO H, TOMAS M, MARTORELL S, et al., 2015. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target[J]. The Crop Journal, 3(3):220-228.
DOI URL |
[6] | QUIMADO M O, TINIO C E, COMBALICER M S, et al., 2021. Morphological and leaf anatomical characteristics of different variants of Narra (Pterocarpus indicus willd.) seedlings[J]. Philippine Journal of Science, 150(1):277-289. |
[7] |
WANG Y, ZHONG Z, QIN S, et al., 2021. Effects of temperature and light on growth rate and photosynthetic characteristics of Sargassum horneri[J]. Journal of Ocean University of China, 20(1):101-110.
DOI URL |
[8] |
REN B Z, JUAN H U, ZHANG J W, et al., 2020. Effects of urea mixed with nitrapyrin on leaf photosynthetic and senescence characteristics of summer maize (Zea mays l.) waterlogged in the field[J]. Journal of Integrative Agriculture, 19(6):1586-1595.
DOI URL |
[9] | 陈晓英, 李翠, 郭晓云, 等, 2020. 3种紫堇属植物叶片光合特性研究[J]. 植物资源与环境学报, 29(1):1-7. |
CHEN X Y, LI C, GUO X Y, et al., 2020. Study on leaf photosynthetic characteristics of three species in Corydalis DC[J]. Journal of Plant Resources and Environment, 29(1):1-7. | |
[10] | 范爱武, 刘伟, 刘炳成, 2004. 土温对植物生长的影响及其机理分析[J]. 工程热物理学报, 25(1):124-126. |
FAN A W, LIU W, LIU B C, 2004. Effect of soil theperature on the growth of plant and an analysis of its mechanism[J]. Journal of Engineering Thermophysics, 25(1):124-126. | |
[11] | 范秀华, 卢文敏, 方晓雨, 等, 2012. 长白山不同海拔岳桦 (Betula ermanii) 的光合生理[J]. 应用与环境生物学报, 18(4):553-558. |
FAN X H, LU W M, FANG X Y, et al., 2012. Photosynthetic Physiology of Betula ermanii Along the Altitudes in Changbai Mountains, China[J]. Chinese Journal of Applied and Environmental Biology, 18(4):553-558. | |
[12] | 樊莹, 2019. 长白山主要树种幼树的生长与生理生态特征对海拔梯度的响应[D]. 北京: 北京林业大学 |
FAN Y, 2019. Response of growth and physiological and ecological characteristics of saplings of main tree species in Changbai Mountain to altitude gradient[D]. Beijing: Beijing Forestry University | |
[13] | 高成杰, 刘方炎, 杨文云, 等, 2015. 不同海拔下滇重楼叶片与花萼光合特性[J]. 生态学杂志, 34(1):70-78. |
GAO C J, LIU F Y, YANG W Y, et al., 2015. Photosynthetic characteristics of leaf and calyx of Pairs polyphylla var. yunnanensis at different attitudes[J]. Chinese Journal of Ecology, 34(1):70-78. | |
[14] | 郭春燕, 李晋川, 岳建英, 等, 2013. 两种高质牧草不同生育期光合生理日变化及光响应特征[J]. 生态学报, 33(6):1751-1761. |
GUO C Y, LI J C, YUE J Y, et al., 2013. Diurnal changes in the photosynthetic characteristics of two high yield and high quality grasses during different stages of growth and their response to changes in light intensity[J]. Acta Ecologica Sinica, 33(6):1751-1761. | |
[15] | 姬明飞, 丁东粮, 吴寿方, 等, 2013. 4种蒿属植物的光合光响应曲线及其拟合模型[J]. 草业科学, 30(5):716-722. |
JI M F, DING D L, WU S F, et al., 2013. Comparison of two photosynjournal-light response curve-fitting models of four Artemistia species[J]. Pratacultural Sciences, 30(5):716-722. | |
[16] | 荆天, 2015. 四种彩色植物光合生理生态特性的研究[D]. 合肥: 安徽农业大学. |
JING T, 2015. Study on Ecological Properties of photosynthesis of Four Colour Plants [D]. Hefei: Anhui Agricultural University. | |
[17] |
李鑫豪, 闫慧娟, 卫腾宙, 等, 2019. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 43(10):889-898.
DOI |
LI X H, YAN H J, WEI T Z, et al., 2019. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season[J]. Chinese Journal of Plant Ecology, 43(10):889-898. | |
[18] | 刘旻霞, 夏素娟, 穆若兰, 等, 2020. 黄土高原中部三种典型绿化植物光合特性的季节变化[J]. 生态学杂志, 39(12):4098-4109. |
LIU M X, XIA S J, MU R L, et al., 2020. Seasonal variation of photosynthetic characteristics of three typical green plant species in central Loess Plateau[J]. Chinese Journal of Ecology, 39(12):4098-4109. | |
[19] | 潘璐, 刘杰才, 李晓静, 等, 2014. 高温和加富CO2温室中黄瓜Rubisco活化酶与光合作用的关系[J]. 园艺学报, 41(8):1591-1600. |
PAN L, LIU J C, LI X J, et al., 2014. Correlation Between Rubisco Activase and Photosynjournal of Cucumber in Greenhouse Under High Temperature and Elevated CO2[J]. Acta Horticulturae Sinica, 41(8):1591-1600. | |
[20] |
孙小玲, 许岳飞, 马鲁沂, 等, 2010. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报, 34(8):989-999.
DOI |
SUN X L, XU Y F, MA L Y, et al., 2010. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment[J]. Chinese Journal of Plant Ecology, 34(8):989-999. | |
[21] | 韦玉, 李熙萌, 桑卫国, 等, 2014. 不同海拔高度矮嵩草的光合响应差异[J]. 生态科学, 33(6):1160-1164. |
WEI Y, LI X, SANG W, et al., 2014. Difference in photosynthetic response of Kobresia humilis along latitude gradients[J]. Ecological Science, 33(6):1160-1164. | |
[22] | 王海珍, 韩路, 徐雅丽, 等, 2017. 土壤水分梯度对灰胡杨光合作用与抗逆性的影响[J]. 生态学报, 37(2):432-442. |
WANG H Z, HAN L, XU Y L, et al., 2017. Effects of soil water gradient on photosynthetic characteristics and stress resistance of Populus pruinosa in the Tarim Basin, China[J]. Acta Ecologica Sinica, 37(2):432-442. | |
[23] | 徐春华, 张华, 张兰, 等, 2015. 基于通径分析的兰州北山三种典型植物光合作用影响因子[J]. 生态学杂志, 34(5):1289-1294. |
XU C H, ZHANG H, ZHANG L, et al., 2015. Factors influencing photosynjournal of three typical plant species in Beishan Mountain of Lanzhou based on path analysis[J]. Chinese Journal of Ecology, 34(5):1289-1294. |
[1] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[2] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[3] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[4] | 曹晓云, 祝存兄, 陈国茜, 孙树娇, 赵慧芳, 朱文彬, 周秉荣. 2000—2021年柴达木盆地地表绿度变化及地形分异研究[J]. 生态环境学报, 2022, 31(6): 1080-1090. |
[5] | 雷俊, 张健, 赵福年, 齐月, 张秀云, 李强, 尚军林. 春小麦开花期光合参数对土壤水分和温度变化的响应[J]. 生态环境学报, 2022, 31(6): 1151-1159. |
[6] | 王小娜, 徐当会, 王谢军, 方向文. 祁连山灌丛群落结构特征随海拔梯度和经度的变化[J]. 生态环境学报, 2022, 31(2): 231-238. |
[7] | 蔡锡安, 黄娟, 吴彤, 刘菊秀, 蒋芬, 王森浩. 植物叶片排放甲烷的初步研究[J]. 生态环境学报, 2021, 30(9): 1842-1847. |
[8] | 闫东锋, 张妍妍, 吕康婷, 周梦丽, 王婷, 赵宁. 太行山南麓不同海拔梯度天然林优势树种生态位特征[J]. 生态环境学报, 2021, 30(8): 1571-1580. |
[9] | 刘进, 龙健, 李娟, 李红. 典型喀斯特山区优势树种钙吸收能力的海拔分异特征研究[J]. 生态环境学报, 2021, 30(8): 1589-1598. |
[10] | 赵晓亮, 郭猛, 吕美婷, 赵雪莹, 姜瑰国, 黄媛媛, 王凡, 姬亚芹. 阜新市绿化树种对大气颗粒物及重金属滞留能力研究[J]. 生态环境学报, 2021, 30(8): 1662-1671. |
[11] | 何斌, 李青, 陈群利, 李望军, 游萍. 黔西北黄杉群落物种多样性的海拔梯度格局[J]. 生态环境学报, 2021, 30(6): 1111-1120. |
[12] | 王剑, 包海, 李达毅, 刘智远, 杨娜. 干旱半干旱区夏季绿化树种挥发性有机物标准排放量的测定[J]. 生态环境学报, 2021, 30(6): 1168-1176. |
[13] | 张莎莎, 李爱琴, 王会荣, 王晶晶, 徐小牛. 不同海拔杉木人工林土壤碳氮磷生态化学计量特征[J]. 生态环境学报, 2020, 29(1): 97-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||