生态环境学报 ›› 2022, Vol. 31 ›› Issue (2): 400-408.DOI: 10.16258/j.cnki.1674-5906.2022.02.021
张云1,2(), 舒抒1, 罗鑫1, 钟琴3, 邹华1,2,*(
)
收稿日期:
2021-02-20
出版日期:
2022-02-18
发布日期:
2022-04-14
通讯作者:
*邹华(1972年生),男,教授,博士,从事天然水体污染控制和环境生物技术研究。E-mail: zouhua@jiangnan.edu.cn作者简介:
张云(1986年生),女(仫佬族),副研究员,博士,从事新污染物的环境行为和生态毒理研究。E-mail: zhangyun@jiangnan.edu.cn
基金资助:
ZHANG Yun1,2(), SHU Shu1, LUO Xin1, ZHONG Qin3, ZOU Hua1,2,*(
)
Received:
2021-02-20
Online:
2022-02-18
Published:
2022-04-14
摘要:
甾体激素是一类强效的内分泌干扰物,早先的研究重点在于最先发现的雌激素,而实际上糖皮质激素(Glucocorticoids,GCs)的使用量远大于雌激素和雄激素,并且GCs对COVID-19确诊病人的治疗效果得到广泛肯定。在新冠疫情全球爆发的大背景下,GCs的使用量还可能持续增加。因此,了解GCs在水环境中的源和汇,掌握其在环境中的赋存归趋和生态毒理效应,对评估和控制GCs的潜在风险具有重要意义。文章对此进行文献调研和总结,为进一步开展GCs的环境行为研究提供参考。GCs主要来源于制药厂、医院、养殖场以及污水处理厂,其在多个河流湖泊中检出率为50%—100%,水相质量浓度最高可接近500 ng·L-1,在沉积物中为1.10—5.85 μg·kg-1。GCs的亲水性强于其他甾体激素,其在水环境的迁移性可能更强,因此在地下水中也有检出。在环境赋存和归趋的研究中,未来可重点关注常见GCs的前体物及代谢产物、悬浮颗粒和有机质等对GCs环境行为的影响,以及GCs与其他类污染物在不同环境过程中的相互作用。在毒理研究方面,针对GCs对人体健康以及对鱼类影响的研究较多,但对其他营养级生物以及食物链和食物网影响的研究则有待进一步开展,这样才能为更科学地评价GCs的生态风险提供理论支撑。
中图分类号:
张云, 舒抒, 罗鑫, 钟琴, 邹华. 水环境中糖皮质激素的环境行为及生态风险研究进展[J]. 生态环境学报, 2022, 31(2): 400-408.
ZHANG Yun, SHU Shu, LUO Xin, ZHONG Qin, ZOU Hua. Fate and Ecological Risks of Glucocorticoids in Aquatic Environment: A Review[J]. Ecology and Environment, 2022, 31(2): 400-408.
糖皮质激素 Glucocorticoids | 地表水 Surface Water | 质量浓度范围 ρ/(ng∙L-1) | 平均质量浓度 ρmean/(ng∙L-1) | 检出率 Detection Frequency/% | 参考文献 References |
---|---|---|---|---|---|
可的松(天然) Cortisone (Natural) | 温榆河及其支流, 北京 | 0.05‒28 | 96‒100 | Chang et al., | |
0.58‒27 | 4.02 | 100 | 郭文景, | ||
49‒433 | 173.8 | Shen et al., | |||
淡水河, 广州 | Upstream 0.6 | Liu et al., | |||
Downstream 1.9 | |||||
太湖, 中国 | ND‒3.66 | 0.61 | 53.1 | Zhou et al., | |
北海, 比利时 | 4.13‒28.18 | 9.21 | Huysman et al., | ||
氢化可的松(天然) Cortisol (Natural) | 温榆河及其支流, 北京 | 0.11‒20 | 96‒100 | Chang et al., | |
ND‒13 | 2.69 | 66.7 | 郭文景, | ||
1.2‒11 | 4.67 | 100 | Shen et al., | ||
多瑙河, 匈牙利 | <0.17‒2.67 | Tölgyesi et al., | |||
太湖, 中国 | ND‒9.28 (夏) | 2.37 | 97 | Zhou et al., | |
2.78‒17.5 (冬) | 6.04 | 100 | |||
北海, 比利时 | 0.89‒7.48 | 2.98 | Huysman et al., | ||
流沙湾, 中国南海 | ND‒0.50 | 0.25 | 10 | 杨雷等, | |
醋酸氢化可的松(合成) Cortisol acetate (Synthetic) | 温榆河及其支流, 北京 | ND‒476 | 144.75 | 44.4 | 郭文景, |
2.1‒21 | 10.23 | Shen et al., | |||
秦淮河等, 南京* | 1.29‒2.38 | 1.84 | 25 | 谭丽超等, | |
泼尼松(合成) Prednisone (Synthetic) | 温榆河及其支流, 北京 | 0.12‒0.86 | 53 | Chang et al., | |
<0.02‒1.2 | Shen et al., | ||||
秦淮河等, 南京* | 1.31‒8.36 | 5.33 | 100 | 谭丽超等, | |
北海, 比利时 | 9.17‒39.14 | 20.5 | Huysman et al., | ||
泼尼松龙(合成) Prednisolone (Synthetic) | 温榆河及其支流, 北京 | 0.25‒1.8 | 96‒100 | Chang et al., | |
ND‒1.4 | 1.4 | 11.1 | 郭文景, | ||
2.7‒94 | 24.8 | Shen et al., | |||
多瑙河, 匈牙利 | <0.04‒0.58 | Tölgyesi et al., | |||
秦淮河等, 南京* | 4.14‒4.69 | 4.42 | 25 | 谭丽超等, | |
太湖, 中国 | ND‒4.91 | 2.43 | 96.9 | Zhou et al., | |
北海, 比利时 | 6.36‒15.17 | 8.99 | Huysman et al., | ||
醋酸泼尼松龙(合成) Prednisolone acetate (Synthetic) | 温榆河及其支流, 北京 | 0.04‒2.4 | 0.62 | Chang et al., | |
秦淮河等, 南京* | 4.98‒18.17 | 10.6 | 50 | 谭丽超等, | |
北海, 比利时 | <10 | Huysman et al., | |||
甲基泼尼松龙(合成) Methylprednisolone (Synthetic) | 温榆河及其支流, 北京 | 0.20‒0.41 | 6.7 | Chang et al., | |
<0.03‒12 | <2.66 | Shen et al., | |||
瑞士的多条河流 | 3‒5 | Ammann et al., | |||
秦淮河等, 南京* | 3.85‒52.03 | 18.26 | 100 | 谭丽超等, | |
地塞米松(合成) Dexamethasone (Synthetic) | 温榆河及其支流, 北京 | 0.05‒8 | 96‒100 | Chang et al., | |
ND‒0.77 | 0.44 | 郭文景, | |||
0.51‒8.2 | 4.05 | Shen et al., | |||
多瑙河, 匈牙利 | <0.01‒0.07 | Tölgyesi et al., | |||
秦淮河等, 南京* | 1.12‒10.73 | 7.06 | 62.5 | 谭丽超等, |
表1 地表水中检出的主要糖皮质激素
Table 1 Major glucocorticoids detected in surface water
糖皮质激素 Glucocorticoids | 地表水 Surface Water | 质量浓度范围 ρ/(ng∙L-1) | 平均质量浓度 ρmean/(ng∙L-1) | 检出率 Detection Frequency/% | 参考文献 References |
---|---|---|---|---|---|
可的松(天然) Cortisone (Natural) | 温榆河及其支流, 北京 | 0.05‒28 | 96‒100 | Chang et al., | |
0.58‒27 | 4.02 | 100 | 郭文景, | ||
49‒433 | 173.8 | Shen et al., | |||
淡水河, 广州 | Upstream 0.6 | Liu et al., | |||
Downstream 1.9 | |||||
太湖, 中国 | ND‒3.66 | 0.61 | 53.1 | Zhou et al., | |
北海, 比利时 | 4.13‒28.18 | 9.21 | Huysman et al., | ||
氢化可的松(天然) Cortisol (Natural) | 温榆河及其支流, 北京 | 0.11‒20 | 96‒100 | Chang et al., | |
ND‒13 | 2.69 | 66.7 | 郭文景, | ||
1.2‒11 | 4.67 | 100 | Shen et al., | ||
多瑙河, 匈牙利 | <0.17‒2.67 | Tölgyesi et al., | |||
太湖, 中国 | ND‒9.28 (夏) | 2.37 | 97 | Zhou et al., | |
2.78‒17.5 (冬) | 6.04 | 100 | |||
北海, 比利时 | 0.89‒7.48 | 2.98 | Huysman et al., | ||
流沙湾, 中国南海 | ND‒0.50 | 0.25 | 10 | 杨雷等, | |
醋酸氢化可的松(合成) Cortisol acetate (Synthetic) | 温榆河及其支流, 北京 | ND‒476 | 144.75 | 44.4 | 郭文景, |
2.1‒21 | 10.23 | Shen et al., | |||
秦淮河等, 南京* | 1.29‒2.38 | 1.84 | 25 | 谭丽超等, | |
泼尼松(合成) Prednisone (Synthetic) | 温榆河及其支流, 北京 | 0.12‒0.86 | 53 | Chang et al., | |
<0.02‒1.2 | Shen et al., | ||||
秦淮河等, 南京* | 1.31‒8.36 | 5.33 | 100 | 谭丽超等, | |
北海, 比利时 | 9.17‒39.14 | 20.5 | Huysman et al., | ||
泼尼松龙(合成) Prednisolone (Synthetic) | 温榆河及其支流, 北京 | 0.25‒1.8 | 96‒100 | Chang et al., | |
ND‒1.4 | 1.4 | 11.1 | 郭文景, | ||
2.7‒94 | 24.8 | Shen et al., | |||
多瑙河, 匈牙利 | <0.04‒0.58 | Tölgyesi et al., | |||
秦淮河等, 南京* | 4.14‒4.69 | 4.42 | 25 | 谭丽超等, | |
太湖, 中国 | ND‒4.91 | 2.43 | 96.9 | Zhou et al., | |
北海, 比利时 | 6.36‒15.17 | 8.99 | Huysman et al., | ||
醋酸泼尼松龙(合成) Prednisolone acetate (Synthetic) | 温榆河及其支流, 北京 | 0.04‒2.4 | 0.62 | Chang et al., | |
秦淮河等, 南京* | 4.98‒18.17 | 10.6 | 50 | 谭丽超等, | |
北海, 比利时 | <10 | Huysman et al., | |||
甲基泼尼松龙(合成) Methylprednisolone (Synthetic) | 温榆河及其支流, 北京 | 0.20‒0.41 | 6.7 | Chang et al., | |
<0.03‒12 | <2.66 | Shen et al., | |||
瑞士的多条河流 | 3‒5 | Ammann et al., | |||
秦淮河等, 南京* | 3.85‒52.03 | 18.26 | 100 | 谭丽超等, | |
地塞米松(合成) Dexamethasone (Synthetic) | 温榆河及其支流, 北京 | 0.05‒8 | 96‒100 | Chang et al., | |
ND‒0.77 | 0.44 | 郭文景, | |||
0.51‒8.2 | 4.05 | Shen et al., | |||
多瑙河, 匈牙利 | <0.01‒0.07 | Tölgyesi et al., | |||
秦淮河等, 南京* | 1.12‒10.73 | 7.06 | 62.5 | 谭丽超等, |
糖皮质激素 Glucocorticoids | logKoc | logKow | 其他甾体激素 Other steroids | logKoc | logKow |
---|---|---|---|---|---|
可的松(天然) Cortisone (Natural) | 1.31a, 3.02‒3.12b, c | 1.81a | 雌酚酮 (雌) | 2.60‒3.47d, e, f | 2.45‒3.43d |
氢化可的松(天然) Cortisol (Natural) | 1.38a, 1.76‒2.76b | 1.62a | 雌二醇 (雌) | 3.04‒3.64d, e, f | 3.10‒4.01d |
皮质酮(天然) Corticosterone (Natural) | 1.57a | 2.16b | 乙炔雌二醇 (雌) | 2.91‒3.68e, f, g | 3.67‒4.15e |
地塞米松(合成) Dexamethasone (Synthetic) | 1.57a | 1.72a | 睾酮 (雄) | 2.22‒3.52d, e, h | 3.22d |
泼尼松(合成) Prednisone (Synthetic) | 1.30a | 1.59a | 雄烯二酮 (雄) | 2.13‒3.77b, e | 2.75 |
泼尼松龙(合成) Prednisolone (Synthetic) | 1.39a, 2.96b | 1.40a | 孕酮 (孕) | 3.91‒4.16d | 3.67‒3.87d |
甲基泼尼龙(合成) Methylprednisolone (Synthetic) | 1.5a | 2.09b | 左炔诺孕酮 (孕) | 2.98‒3.40c, i | 3.48 |
表2 四类甾体激素的分配系数比较
Table 2 LogKoc and logKow of four groups of steroid hormones
糖皮质激素 Glucocorticoids | logKoc | logKow | 其他甾体激素 Other steroids | logKoc | logKow |
---|---|---|---|---|---|
可的松(天然) Cortisone (Natural) | 1.31a, 3.02‒3.12b, c | 1.81a | 雌酚酮 (雌) | 2.60‒3.47d, e, f | 2.45‒3.43d |
氢化可的松(天然) Cortisol (Natural) | 1.38a, 1.76‒2.76b | 1.62a | 雌二醇 (雌) | 3.04‒3.64d, e, f | 3.10‒4.01d |
皮质酮(天然) Corticosterone (Natural) | 1.57a | 2.16b | 乙炔雌二醇 (雌) | 2.91‒3.68e, f, g | 3.67‒4.15e |
地塞米松(合成) Dexamethasone (Synthetic) | 1.57a | 1.72a | 睾酮 (雄) | 2.22‒3.52d, e, h | 3.22d |
泼尼松(合成) Prednisone (Synthetic) | 1.30a | 1.59a | 雄烯二酮 (雄) | 2.13‒3.77b, e | 2.75 |
泼尼松龙(合成) Prednisolone (Synthetic) | 1.39a, 2.96b | 1.40a | 孕酮 (孕) | 3.91‒4.16d | 3.67‒3.87d |
甲基泼尼龙(合成) Methylprednisolone (Synthetic) | 1.5a | 2.09b | 左炔诺孕酮 (孕) | 2.98‒3.40c, i | 3.48 |
[1] |
AMMANN A A, MACIKOVA P, GROH K J, et al., 2014. LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters[J]. Analytical and Bioanalytical Chemistry, 406(29): 7653-7665.
DOI URL |
[2] |
ANACKER C, ZUNSZAIN P A, CARVALHO L A, et al., 2011. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment?[J]. Psychoneuroendocrinology, 36(3): 415-425.
DOI URL |
[3] |
BURKINA V, SAKALLI S, RASMUSSEN M K, et al., 2015. Does dexamethasone affect hepatic CYP450 system of fish? Semi-static in-vivo experiment on juvenile rainbow trout[J]. Chemosphere, 139: 155-162.
DOI URL |
[4] |
CASEY F X M, SIMUNEK J, LEE J, et al., 2005. Sorption, mobility, and transformation of estrogenic hormones in natural soil[J]. Journal of Environmental Quality, 34(4): 1372-1379.
DOI URL |
[5] |
CHANG H, HU J Y, SHAO B, 2007. Occurrence of natural and synthetic glucocorticoids in sewage treatment plants and receiving river waters[J]. Environmental Science and Technology, 41(10): 3462-3468.
DOI URL |
[6] |
CHANG H, WAN Y, HU J Y, 2009. Determination and source apportionment of five classes of steroid hormones in urban rivers[J]. Environmental Science and Technology, 43(20): 7691-7698.
DOI URL |
[7] |
CHEN Q Y, LI C X, GONG Z Y, et al., 2017. Common deregulated gene expression profiles and morphological changes in developing zebrafish larvae exposed to environmental-relevant high to low concentrations of glucocorticoids[J]. Chemosphere, 172: 429-439.
DOI URL |
[8] |
COUTINHO A E, CHAPMAN K E, 2011. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights[J]. Molecular and Cellular Endocrinology, 335(1): 2-13.
DOI URL |
[9] |
CREUSOT N, AIET-AIESSA S, TAPIE N, et al., 2014. Identification of synthetic steroids in river water downstream from pharmaceutical manufacture discharges based on a bioanalytical approach and passive sampling[J]. Environmental Science and Technology, 48(7): 3649-3657.
DOI URL |
[10] |
DANIELS K D, DARCY V D, WU S, et al., 2018. Downstream trends of invitro bioassay responses in a wastewater effluent-dominated river[J]. Chemosphere, 212: 182-192.
DOI URL |
[11] |
FALTERMANN S, HETTICH T, KÜNG N, et al., 2020. Effects of the glucocorticoid clobetasol propionate and its mixture with cortisol and different class steroids in adult female zebrafish[J]. Aquatic Toxicology, DOI: 10.1016/j.aquatox.2019.105372.
DOI |
[12] |
FAN Z L, WU S M, CHANG H, et al., 2011. Behaviors of glucocorticoids, androgens and progestogens in a municipal sewage treatment plant: Comparison to estrogens[J]. Environmental Science and Technology, 45(7): 2725-2733.
DOI URL |
[13] |
GILMOUR K M, DIBATTISTA J, THOMAS J B, 2005. Physiological causes and consequences of social status in salmonid fish[J]. Integrative and Comparative Biology, 45(2): 263-273.
DOI URL |
[14] | GINEYS N, GIROUD B, GINEYS M, et al., 2012. Retention of selected steroids on a silt-loam soil[J]. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47(13): 2133-2140. |
[15] |
GOUARNE C, FOURY A, DUCLOS M, 2004. Critical study of common conditions of storage of glucocorticoids and catecholamines in 24-h urine collected during resting and exercising conditions[J]. Clinica Chimica Acta, 348(1-2): 207-214.
DOI URL |
[16] |
GUILOSKI I C, RIBAS C, LUIZ J, et al., 2015. Effects of trophic exposure to dexamethasone and diclofenac in freshwater fish[J]. Ecotoxicology and Environmental Safety, 114(103): 204-211.
DOI URL |
[17] |
HORBY P, LIM W S, EMBERSON J R, et al., 2021. Dexamethasone in hospitalized patients with COVID-19[J]. The New England Journal of Medicine, 384(8): 693-704.
DOI URL |
[18] |
HUYSMAN S, MEULEBROEK L V, VANRYCKEGHEM F, et al., 2017. Development and validation of an ultra-high performance liquid chromatographic high resolution Q-Orbitrap mass spectrometric method for the simultaneous determination of steroidal endocrine disrupting compounds in aquatic matrices[J]. Analytica Chimica Acta, 984: 140-150.
DOI URL |
[19] |
ISOBE T, SATO K, KIM J W, et al., 2015. Determination of natural and synthetic glucocorticoids in effluent of sewage treatment plants using ultrahigh performance liquid chromatography-tandem mass spectrometry[J]. Environmental Science and Pollution Research, 22(18): 14127-14135.
DOI URL |
[20] | JEREZ-CEPA I, GORISSEN M, MANCERA J M, et al., 2019. What can we learn from glucocorticoid administration in fish? Effects of cortisol and dexamethasone on intermediary metabolism of gilthead seabream (Sparus aurata L.)[J]. Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology, 231: 1-10. |
[21] |
JIA A, WU S M, DANIELS K D, et al., 2016. Balancing the budget: Accounting for glucocorticoid bioactivity and fate during water treatment[J]. Environmental Science and Technology, 50(6): 2870-2880.
DOI URL |
[22] |
KUGATHAS S, RUNNALLS T J, SUMPTER J P, 2013. Metabolic and reproductive effects of relatively low concentrations of beclomethasone dipropionate, a synthetic glucocorticoid, on fathead minnows[J]. Environmental Science and Technology, 47(16): 9487-9495.
DOI URL |
[23] |
LALONE C A, VILLENEUVE D L, OLMSTEAD A W, et al., 2012. Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development[J]. Environmental Toxicology and Chemistry, 31(3): 611-622.
DOI URL |
[24] |
LEE L S, STROCK T J, SARMAH A K, et al., 2003. Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment[J]. Environmental Science and Technology, 37(18): 4098-105.
DOI URL |
[25] |
LEET J K, LEE L S, GALL H E, et al., 2012. Assessing impacts of land-applied manure from concentrated animal feeding operations on fish populations and communities[J]. Environmental Science and Technology, 46(24): 13440-13447.
DOI URL |
[26] |
LESLIE M, 2017. The case of the macho crocs[J]. Science, 357(6354): 859-861.
DOI URL |
[27] |
LI X Y, MA M S, RENE E R, et al., 2019. Changes in microbial communities during the removal of natural and synthetic glucocorticoids in three types of river-based aquifer media[J]. Environmental Science and Pollution Research, 26: 33953-33962.
DOI URL |
[28] |
LIU S, YING G G, ZHAO J L, et al., 2011. Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 1218(10): 1367-1378.
DOI URL |
[29] |
LIU S, YING G G, ZHAO J L, et al., 2012a. Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants[J]. Journal of Environmental Monitoring, 14(2): 482-491.
DOI URL |
[30] |
LIU S, YING G G, ZHOU L J, et al., 2012b. Steroids in a typical swine farm and their release into the environment[J]. Water Research, 46(12): 3754-3768.
DOI URL |
[31] |
LIU S, CHEN H, ZHOU G J, et al., 2015. Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea[J]. Science of the Total Environment, 536: 99-107.
DOI URL |
[32] |
LIU S, CHEN H, XU X R, et al., 2017a. Three classes of steroids in typical freshwater aquaculture farms: Comparison to marine aquaculture farms[J]. Science of the Total Environment, 609: 942-950.
DOI URL |
[33] |
LIU S, XU X R, QI Z H, et al., 2017b. Steroid bioaccumulation profiles in typical freshwater aquaculture environments of South China and their human health risks via fish consumption[J]. Environmental Pollution, 228: 72-81.
DOI URL |
[34] |
LIU S, YING G G, ZHANG R Q, et al., 2012c. Fate and occurrence of steroids in swine and dairy cattle farms with different farming scales and wastes disposal systems[J]. Environmental Pollution, 170: 190-201.
DOI URL |
[35] |
MILLER K A, KENTER L W, BRETON T S, et al., 2019. The effects of stress, cortisol administration and cortisol inhibition on black sea bass (Centropristis striata) sex differentiation[J]. Comparative Biochemistry and Physiology Part A, Molecular and Integrative Physiology, 227: 154-160.
DOI URL |
[36] |
MIYAMOTO A, KITAICHI Y, UCHIKURA K, 2014. Degradation of corticosteroids during activated sludge processing[J]. Chemical and Pharmaceutical Bulletin, 62(1): 72-76.
DOI URL |
[37] |
MOHSENI S N, AMOOEY A A, TASHAKKORIAN H, et al., 2016. Removal of dexamethasone from aqueous solutions using modified clinoptilolite zeolite (equilibrium and kinetic)[J]. International Journal of Environmental Science and Technology, 13(9): 1-8.
DOI URL |
[38] |
NAKAYAMA K, INOUE Y, IKEDA N, et al., 2014. Uptake and biological effects of synthetic glucocorticoids in common carp (Cyprinus carpio)[J]. Marine Pollution Bulletin, 85(2): 370-375.
DOI URL |
[39] |
PATCHEV V K, HAYASHI S, ORIKASA C, et al., 1995. Implications of estrogen-dependent brain organization for gender differences in hypothalamo-pituitary-adrenal regulation[J]. The FASEB Journal, 9(5): 419-423.
DOI URL |
[40] | PAVLOVIC D M, CURKOVIC L, MACAN J, et al., 2017. Eggshell as a new biosorbent for the removal of the pharmaceuticals from aqueous solutions[J]. Clean-Soil, Air and Water, 45(12): 1700082.1-1700082.14. |
[41] |
QI Y, ZHANG T C, REN Y, 2014. Testosterone sorption and desorption: Effects of soil particle size[J]. Journal of Hazardous Materials, 279: 493-501.
DOI URL |
[42] |
ROMAO J S, HAMDY M S, MUL G, et al., 2015. Photocatalytic decomposition of cortisone acetate in aqueous solution[J]. Journal of Hazardous Materials, 282(23): 208-215.
DOI URL |
[43] |
RUNNALLS T J, MARGIOTTA-CASALUCI L, KUGATHAS S, et al., 2010. Pharmaceuticals in the aquatic environment: steroids and anti-steroids as high priorities for research[J]. Human and Ecological Risk Assessment: An International Journal, 16(6): 1318-1338.
DOI URL |
[44] |
SACDAL R, MADRIAGA J, ESPINO M P, 2020. Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia[J]. Environmental Research, DOI: 10.1016/j.envres.2019.109091.
DOI |
[45] |
SANGSTER J L, OKE H, ZHANG Y, et al., 2015. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment[J]. Journal of Hazardous Materials, 299: 112-121.
DOI URL |
[46] |
SCHRIKS M, VAN LEERDAM J A, VAN DER LINDEN S C, et al., 2010. High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in The Netherlands[J]. Environmental Science and Technology, 44(12): 4766-4774.
DOI URL |
[47] |
SHEN X, CHANG H, SUN Y, et al., 2020. Determination and occurrence of natural and synthetic glucocorticoids in surface waters[J]. Environment International, DOI: 10.1016/j.envint.2019.105278.
DOI |
[48] |
TANG T, SHI T Y, LI D G, et al., 2012. Adsorption properties and degradation dynamics of endocrine-disrupting chemical levonorgestrel in soils[J]. Journal of Agricultural and Food Chemistry, 60: 3999-4004.
DOI URL |
[49] |
THRUPP T J, RUNNALLS T J, SCHOLZE M, et al., 2018. The consequences of exposure to mixtures of chemicals: Something from ‘nothing' and ‘a lot from a little' when fish are exposed to steroid hormones[J]. Science of the Total Environment, 619-620: 1482-1492.
DOI URL |
[50] |
TÖLGYESI A, VEREBEY Z, SHARMA V K, et al., 2010. Simultaneous determination of corticosteroids, androgens, and progesterone in river water by liquid chromatography-tandem mass spectrometry[J]. Chemosphere, 78(8): 972-979.
DOI URL |
[51] | WANG P J, LUN X X, RENE E R, et al., 2018. Hydrocortisone biotransformation pathway in three types of river-based aquifers media and changes in microbial community[J]. International Biodeterioration & Biodegradation, 130: 76-83. |
[52] |
WEIZEL A, MICHAEL P. SCHLÜSENER, DIERKES G, et al., 2018. Occurrence of glucocorticoids, mineralocorticoids and progestogens in various treated wastewater, rivers and streams[J]. Environmental Science and Technology, 52(9): 5296-5307.
DOI URL |
[53] |
WILLI R A, FALTERMANN S, HETTICH T, et al., 2018. Active glucocorticoids have a range of important adverse developmental and physiological effects on developing zebrafish embryos[J]. Environmental Science and Technology, 52(2): 877-885.
DOI URL |
[54] |
WILLI R A, SALGUEIRO-GONZÁLEZ N, CARCAISO G, et al., 2019. Glucocorticoid mixtures of fluticasone propionate, triamcinolone acetonide and clobetasol propionate induce additive effects in zebrafish embryos[J]. Journal of Hazardous Materials, 374: 101-109.
DOI URL |
[55] | XIANG Y Y, RENE E R, LUN X X, et al., 2020. Enhanced reductive defluorination and inhibited infiltration of fluoroglucocorticoids in a river receiving reclaimed water amended by nano zero-valent iron-modified biochar: Performance and mechanisms[J]. Bioresource Technology, 306: 123-127. |
[56] |
XIANG Y Y, RENE E R, MA W F, 2022. Enhanced bio-reductive degradation of fluoroglucocorticoids in the groundwater fluctuation zone by external electron donors: Performance, microbial community, and functional genes[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2021.127015.
DOI |
[57] |
XIN N, JIANG Y, LIU S, et al., 2020. Effects of prednisolone on behavior and hypothalamic-pituitary-interrenal axis activity in zebrafish[J]. Environmental toxicology and pharmacology, DOI: 10.1016/j.etap.2020.103325.
DOI |
[58] |
YIN G J, CAO L P, DU J L, et al., 2017. Dexamethasone-induced hepatomegaly and steatosis in larval zebrafish[J]. Journal of Toxicological Sciences, 42(4): 455-459.
DOI URL |
[59] |
YING G G, KOOKANA R S, DILLON P, 2003. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material[J]. Water Research, 37(15): 3785-3791.
DOI URL |
[60] |
ZHANG J N, YANG L, ZHANG M, et al., 2019. Persistence of androgens, progestogens, and glucocorticoids during commercial animal manure composting process[J]. Science of The Total Environment, 665: 91-99.
DOI URL |
[61] |
ZHONG R Y, ZOU H Y, GAO J, et al., 2021. A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China[J]. Science of The Total Environment, DOI: 10.1016/j.scitotenv.2021.147452.
DOI |
[62] |
ZHOU L J, ZHANG B B, ZHAO Y G, et al., 2016. Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu[J]. Science of the Total Environment, 557-558: 68-79.
DOI URL |
[63] | 崔波蕾, 2018. 四种医用糖皮质激素的厌氧行为研究[D]. 郑州: 河南大学. |
CUI B L, 2018. Anaerobic behavior of four medical glucocorticoids[D]. Zhengzhou: Henan University. | |
[64] | 郭文景, 2015. 地表水中糖皮质激素检测方法的建立和优化及其在北京市清河水体中的应用[D]. 南京: 南京师范大学. |
GUO W J, 2015. Analytical method for detecting glucocorticoids in surface water and its application in Qing River of Beijing[D]. Nanjing: Nanjing Normal University. | |
[65] | 郭雅婷, 2020. 生物电化学系统同步预处理地下水中含氟糖皮质激素和硝态氮的效能研究[D]. 北京: 北京林业大学. |
GUO Y T, 2020. Performance of simultaneous pretreatment of fluoroglucocorticoid and nitrate nitrogen from groundwater[D]. Beijing: Beijing Forestry University. | |
[66] | 沈晓艳, 2016. 糖皮质激素及代谢产物的识别与污水处理厂中的环境行为研究[D]. 北京: 北京林业大学. |
SHEN X Y, 2016. Identification and environmental behaviors of glucocorticoid and its metabolites in sewage treatment plant[D]. Beijing: Beijing Forestry University. | |
[67] | 谭丽超, 葛峰, 孔德洋, 等, 2014. 南京市地表水中18种类固醇激素的检测分析[J]. 环境化学, 33(2): 298-305. |
TAN L C, GE F, KONG D Y, et al., 2014. Detection method and occurrence of 18 steroid hormone compounds in surface water of Nanjing[J]. Environmental Chemistry, 33(2): 298-305. | |
[68] | 向雅芸, 2020. 复合河床系统中糖皮质激素入渗过程的强化控制研究[D]. 北京: 北京林业大学. |
XIANG Y Y, 2020. Study on enhanced control of glucocorticoid infiltration in complex riverbed system[D]. Beijing: Beijing Forestry University. | |
[69] | 杨雷, 张晋娜, 徐敏, 等, 2019. 中国南海流沙湾中雄激素、糖皮质激素和孕激素的污染特征及其生态风险评价[J]. 环境科学, 40(11): 4879-4888. |
YANG L, ZHANG J N, XU M, et al., 2019. Contamination characteristics and ecological risk assessment of androgens, glucocorticoids, and progesterone in the Liusha Bay, South China Sea[J]. Environmental Science, 40(11): 4879-4888. | |
[70] | 张晋娜, 2019. 类固醇雄激素、孕激素和糖皮质激素的环境污染特征及其生物降解转化规律[D]. 广州: 中国科学院大学 (中国科学院广州地球化学研究所). |
ZHANG J N, 2019. Occurrence and biotransformation of androgens, progestogens, and glucocorticoids in the environment[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry,Chinese Academy of Science). |
[1] | 李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420. |
[2] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[3] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[4] | 吉冰静, 刘艺, 吴杨, 高淑涛, 曾祥英, 于志强. 长江口及邻近东海沉积物中多环芳烃和含氧多环芳烃的分布特征、来源及生态风险[J]. 生态环境学报, 2022, 31(7): 1400-1408. |
[5] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[6] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[7] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[8] | 闫胜文, 刘加珍, 陈永金, 马笑丹, 张亚茹, 朱海勇. 聊城大气降水氢氧同位素特征及水汽来源分析[J]. 生态环境学报, 2022, 31(3): 546-555. |
[9] | 崔键, 杜易, 丁程成, 李金凤, 高方述, 常雅军, 张继彪, 刘晓静, 姚东瑞. 中国湖泊水体磷的赋存形态及污染治理措施进展[J]. 生态环境学报, 2022, 31(3): 621-633. |
[10] | 任珺, 潘佳璇, 陶玲, 仝云龙, 王若安, 孙新妮. 氢氧化钠改性坡缕石对Cd污染土壤的钝化修复效果[J]. 生态环境学报, 2022, 31(12): 2422-2430. |
[11] | 谢洁芬, 章家恩, 危晖, 刘自强, 陈璇. 土壤中微塑料复合污染研究进展与展望[J]. 生态环境学报, 2022, 31(12): 2431-2440. |
[12] | 李亮亮, 代良羽, 高维常, 张淑怡, 刘涛泽. 贵州省典型覆膜耕地残膜赋存特征及影响因素[J]. 生态环境学报, 2022, 31(11): 2189-2197. |
[13] | 谢邵文, 郭晓淞, 杨芬, 黄强, 陈曼佳, 魏兴琥, 刘承帅. 广州市城市公园土壤重金属累积特征、形态分布及其生态风险[J]. 生态环境学报, 2022, 31(11): 2206-2215. |
[14] | 刘志坚, 董元华, 张琇, 卿成实. 卫宁平原农用地土壤重金属污染特征与生态风险研究[J]. 生态环境学报, 2022, 31(11): 2216-2224. |
[15] | 任丽江, 张妍, 张鑫, 山泽萱, 张成前. 渭河流域关中段地表水重金属的污染特征与健康风险评价[J]. 生态环境学报, 2022, 31(1): 131-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||