生态环境学报 ›› 2023, Vol. 32 ›› Issue (2): 407-420.DOI: 10.16258/j.cnki.1674-5906.2023.02.021
李海燕1,2(), 杨小琴2, 简美鹏1,2, 张晓然2,*(
)
收稿日期:
2022-09-27
出版日期:
2023-02-18
发布日期:
2023-05-11
通讯作者:
*张晓然(1983年生),女,讲师,博士,主要从事纳米颗粒的环境行为、环境修复新材料、径流污染控制等研究。E-mail: zhangxiaoran@bucea.edu.cn作者简介:
李海燕(1975年生),女,教授,博士,主要从事水污染控制技术、城市雨水利用与径流污染控制等研究。E-mail: lihaiyan@bucea.edu.cn
基金资助:
LI Haiyan1,2(), YANG Xiaoqin2, JAN Meipeng1,2, ZHANG Xiaoran2,*(
)
Received:
2022-09-27
Online:
2023-02-18
Published:
2023-05-11
摘要:
微塑料是一种高度多样化的污染物,形态各异、组成复杂且具有生物难降解性,导致的环境污染问题引起了广泛关注。已有的文献主要总结了海洋和淡水系统中微塑料的赋存特征和危害,城市水体是内陆淡水环境的重要组成部分,和人类生产和生活息息相关。目前缺乏对城市水体中微塑料来源、赋存特征和生态风险的系统归纳。该文概括了这几方面的研究,得出如下的若干结果。城市水体中的微塑料可通过污水处理厂排水、地表径流、合流制溢流、塑料设施老化释放、大气沉降等进入水环境。主要赋存类型为PP(聚丙烯)和PE(聚乙烯),其丰度、类型、尺寸和颜色的赋存受叠加的人为因素影响,包括降雨季节变化、土地利用类型和城市化工业化程度。微塑料可对水生生物造成危害,并与众多污染物发生协同效应,最终通过食物链危害人体健康,具有一定的生态风险。目前主要采用生态风险指数法对城市水体中微塑料进行评价,评价结果多为低风险。此外,国内外为减少城市水环境微塑料提出的许多管理措施,在一定程度上缓解了微塑料污染。最后,该文对城市水体中微塑料研究进行了展望,其内容包括建立源解析方法,阐明各污染源对水体微塑料污染的贡献;加强微塑料和其它污染物的协同赋存与污染特征以及纳米塑料检测方法的研究;建立科学系统的方法评价影响城市水体微塑料赋存的因素,如城市土地使用量、下水道网络的扩充、排水系统容量增加等;深入研究微塑料对水生态系统功能的影响,包括碳/氮循环等生物地球化学循环。此外,该文认为,全面评价城市水体中微塑料的生态风险应重视微塑料进入食物链后的放大和累积效应。
中图分类号:
李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420.
LI Haiyan, YANG Xiaoqin, JAN Meipeng, ZHANG Xiaoran. [J]. Ecology and Environment, 2023, 32(2): 407-420.
污水处理厂 (WWTPs) | 处理量/ (104 m3·d-1) | 处理 方式 | 进水丰度/ (particles·L-1) | 出水丰度/ (particles·L-1) | 去除率/ % | 排放量/ (particles·d-1) | 形状 | 尺寸/ μm | 类型 | 颜色 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
意大利佛 罗伦萨 | 20 | 二级 处理 | — | 5 | — | 10×108 | 碎片、纤维、薄膜 | 38-1000 | PP、PE、PET、尼龙 | 白色、蓝色、红色、棕色或黑色 | Becucci et al., |
西班牙 | 4.5 | 二级 处理 | 171±42 | 10.7 | 94 | 4.8×108 | 碎片、纤维 | 25-104 | PE、PP | 透明、彩色 | Edo et al., |
意大利北部 | 40 | 三级处理 | 2.5±0.3 | 0.4±0.1 | 84 | 1.6×108 | 纤维、薄膜、碎片 | 100-500 | PET、PA | — | Magni et al., |
韩国天安 | 3.6 | A2O, DeNiPho法 | 3.52 | 1.65 | 49.4 | 5.9×107 | — | — | PET、PE、PP | — | Yano et al., |
北京 | 100 | A2O | 12.03±1.29 | 0.59±0.22 | 95.2 | 5.9±2.2×108 | 纤维、球形、颗粒、碎片、薄膜 | 50-5000 | PET、PES、PP | — | Yang et al., |
桂林 | 10、4、4.5 | 一级处理, A/O | 0.70-8.72 | 0.39-4.77 | 89.2-93.6 | 1.6×107-4.8×108 | 碎片、纤维 | 500-5000 | PP、PE | — | Zhang et al., |
哈尔滨 | 60 | 二级 处理 | 126.0±14.0 | 30.6±7.8 | 75.7 | 1.8×108 | 纤维、碎片 | 20-5000 | PES、PA、PET、PE、PP、PS | 透明、灰色、彩色 | Jiang et al., |
宁波 | 3 | 序批式活性污泥法 | 100.0±3.9 | 4.3±3.4 | 95.7 | 1.3×108 | 纤维、碎片、薄膜、泡沫、颗粒 | 500-2000 | PET、PE、PU、PP、PS、CSM | 黑色、红色、透明、白色、蓝色、绿色 | Jiang et al., |
宁波 | 10 | 循环活性污泥技术 | 105.0±5.3 | 3.5±2.6 | 96.7 | 3.5×108 | 纤维、碎片、薄膜、泡沫、颗粒 | 500-2000 | PET、PE、PU、PP、PS、CSM | 黑色、红色、透明、白色、蓝色、绿色 | Jiang et al., |
宁波 | 8 | 氧化沟工艺 | 65.0±4.3 | 3.0±1.6 | 95.4 | 2.4×108 | 纤维、碎片、薄膜、泡沫、颗粒 | 500-2000 | PET、PE、PU、PP、PS、CSM | 黑色、红色、透明、白色、蓝色、绿色 | Jiang et al., |
西班牙 加的斯市 | 5.2 | 二级 处理 | 645.03±182.24 | 16.40±7.85 | 97.46 | 1.49-1.94×109 | 纤维、碎片、薄膜 | 100-335 | PVC、PE、PA、PS | — | Franco et al., |
土耳其 伊斯坦布尔 | 40 | 二级 处理 | 137.0 | 9.6-21.0 | 84.7-93.0 | 2.9×108 | 纤维、碎片、颗粒 | 500-1000 | PC、PUR、PET | 黑色、蓝色、红色、棕色、绿色、透明 | Vardar et al., |
表1 国内外污水处理厂中微塑料的分布及去除特征
Table 1 Distribution and removal characteristics of microplastics in wastewater treatment plants at home and abroad
污水处理厂 (WWTPs) | 处理量/ (104 m3·d-1) | 处理 方式 | 进水丰度/ (particles·L-1) | 出水丰度/ (particles·L-1) | 去除率/ % | 排放量/ (particles·d-1) | 形状 | 尺寸/ μm | 类型 | 颜色 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
意大利佛 罗伦萨 | 20 | 二级 处理 | — | 5 | — | 10×108 | 碎片、纤维、薄膜 | 38-1000 | PP、PE、PET、尼龙 | 白色、蓝色、红色、棕色或黑色 | Becucci et al., |
西班牙 | 4.5 | 二级 处理 | 171±42 | 10.7 | 94 | 4.8×108 | 碎片、纤维 | 25-104 | PE、PP | 透明、彩色 | Edo et al., |
意大利北部 | 40 | 三级处理 | 2.5±0.3 | 0.4±0.1 | 84 | 1.6×108 | 纤维、薄膜、碎片 | 100-500 | PET、PA | — | Magni et al., |
韩国天安 | 3.6 | A2O, DeNiPho法 | 3.52 | 1.65 | 49.4 | 5.9×107 | — | — | PET、PE、PP | — | Yano et al., |
北京 | 100 | A2O | 12.03±1.29 | 0.59±0.22 | 95.2 | 5.9±2.2×108 | 纤维、球形、颗粒、碎片、薄膜 | 50-5000 | PET、PES、PP | — | Yang et al., |
桂林 | 10、4、4.5 | 一级处理, A/O | 0.70-8.72 | 0.39-4.77 | 89.2-93.6 | 1.6×107-4.8×108 | 碎片、纤维 | 500-5000 | PP、PE | — | Zhang et al., |
哈尔滨 | 60 | 二级 处理 | 126.0±14.0 | 30.6±7.8 | 75.7 | 1.8×108 | 纤维、碎片 | 20-5000 | PES、PA、PET、PE、PP、PS | 透明、灰色、彩色 | Jiang et al., |
宁波 | 3 | 序批式活性污泥法 | 100.0±3.9 | 4.3±3.4 | 95.7 | 1.3×108 | 纤维、碎片、薄膜、泡沫、颗粒 | 500-2000 | PET、PE、PU、PP、PS、CSM | 黑色、红色、透明、白色、蓝色、绿色 | Jiang et al., |
宁波 | 10 | 循环活性污泥技术 | 105.0±5.3 | 3.5±2.6 | 96.7 | 3.5×108 | 纤维、碎片、薄膜、泡沫、颗粒 | 500-2000 | PET、PE、PU、PP、PS、CSM | 黑色、红色、透明、白色、蓝色、绿色 | Jiang et al., |
宁波 | 8 | 氧化沟工艺 | 65.0±4.3 | 3.0±1.6 | 95.4 | 2.4×108 | 纤维、碎片、薄膜、泡沫、颗粒 | 500-2000 | PET、PE、PU、PP、PS、CSM | 黑色、红色、透明、白色、蓝色、绿色 | Jiang et al., |
西班牙 加的斯市 | 5.2 | 二级 处理 | 645.03±182.24 | 16.40±7.85 | 97.46 | 1.49-1.94×109 | 纤维、碎片、薄膜 | 100-335 | PVC、PE、PA、PS | — | Franco et al., |
土耳其 伊斯坦布尔 | 40 | 二级 处理 | 137.0 | 9.6-21.0 | 84.7-93.0 | 2.9×108 | 纤维、碎片、颗粒 | 500-1000 | PC、PUR、PET | 黑色、蓝色、红色、棕色、绿色、透明 | Vardar et al., |
城市水体 | 丰度/(particles·L-1) | 主要尺寸/μm | 形状 | 类型 | 颜色 | 参考文献 |
---|---|---|---|---|---|---|
上海黄浦江 | 26.2±9.60 | 80-500 | 纤维、薄膜、球形 | PET、PE、PP | — | Chen et al., |
上海苏州河 | 14.4±5.10 | 80-500 | 纤维、薄膜、球形 | PET、PE、PP、PA | — | Chen et al., |
天津海河 | 0.69-75 | 100-1000 | 纤维、碎片、薄膜、 泡沫、颗粒 | PE、EPC、PA、PP、PS、PU、PET | 白色、透明、黑色、棕色/灰色、蓝色/绿色、红色 | Liu et al., |
日本Tsurumi河 | 0.30-1.24 | 64-131 | 纤维 | PE、PP、PVC、 PS、PMMA | — | Kameda et al., |
波兰Vistula河 | 1.60-2.55 | — | 纤维、微珠、碎片 | — | 黑色、蓝色、粉红色、 灰色、绿色 | Sekudewicz et al., |
韩国Nakdong河 | 293-4.76×103 | 50-150 | 碎片、纤维、碎片、薄膜 | PP、PES、PE、PA | — | Eo et al., |
北京沙河 | 0.526-4.53 | 10-300 | 纤维、碎片、薄膜、球形 | PET、PP、PS、 PE、PVC | 透明、白色、灰色、 棕色、蓝色 | Zhang et al., |
南京秦淮河 | 1.47-2.06 | 100-500 | 纤维、碎片、泡沫、颗粒、薄膜 | PP、PE | 透明、蓝色、红色、 黑色、白色 | Yan et al., |
桂林辉县湿地 | 16.5-89.0 | 50-500 | 纤维、薄膜、碎片 | PE、PP、PVC、PA、PS | — | Xia et al., |
合肥大方营水库 | 8.80-32.1 | — | 纤维、碎片、薄膜、 微珠、颗粒 | — | 黑色、透明、蓝色、黄色、红色、绿色 | Wu et al., |
西安公园 | 2.90-6.97 | <500 | 纤维、颗粒、碎片、薄膜 | PP、PE、PS、 | — | Xu et al., |
丹麦雨水蓄水池 | 0.12-8.90 | 10-500 | 碎片、薄膜、 纤维、颗粒 | PP、PS、PES、 PE、PU、PVC | — | Liu et al., |
表2 城市水体中微塑料的赋予特征
Table 2 Occurrences characteristics of microplastics in urban waters
城市水体 | 丰度/(particles·L-1) | 主要尺寸/μm | 形状 | 类型 | 颜色 | 参考文献 |
---|---|---|---|---|---|---|
上海黄浦江 | 26.2±9.60 | 80-500 | 纤维、薄膜、球形 | PET、PE、PP | — | Chen et al., |
上海苏州河 | 14.4±5.10 | 80-500 | 纤维、薄膜、球形 | PET、PE、PP、PA | — | Chen et al., |
天津海河 | 0.69-75 | 100-1000 | 纤维、碎片、薄膜、 泡沫、颗粒 | PE、EPC、PA、PP、PS、PU、PET | 白色、透明、黑色、棕色/灰色、蓝色/绿色、红色 | Liu et al., |
日本Tsurumi河 | 0.30-1.24 | 64-131 | 纤维 | PE、PP、PVC、 PS、PMMA | — | Kameda et al., |
波兰Vistula河 | 1.60-2.55 | — | 纤维、微珠、碎片 | — | 黑色、蓝色、粉红色、 灰色、绿色 | Sekudewicz et al., |
韩国Nakdong河 | 293-4.76×103 | 50-150 | 碎片、纤维、碎片、薄膜 | PP、PES、PE、PA | — | Eo et al., |
北京沙河 | 0.526-4.53 | 10-300 | 纤维、碎片、薄膜、球形 | PET、PP、PS、 PE、PVC | 透明、白色、灰色、 棕色、蓝色 | Zhang et al., |
南京秦淮河 | 1.47-2.06 | 100-500 | 纤维、碎片、泡沫、颗粒、薄膜 | PP、PE | 透明、蓝色、红色、 黑色、白色 | Yan et al., |
桂林辉县湿地 | 16.5-89.0 | 50-500 | 纤维、薄膜、碎片 | PE、PP、PVC、PA、PS | — | Xia et al., |
合肥大方营水库 | 8.80-32.1 | — | 纤维、碎片、薄膜、 微珠、颗粒 | — | 黑色、透明、蓝色、黄色、红色、绿色 | Wu et al., |
西安公园 | 2.90-6.97 | <500 | 纤维、颗粒、碎片、薄膜 | PP、PE、PS、 | — | Xu et al., |
丹麦雨水蓄水池 | 0.12-8.90 | 10-500 | 碎片、薄膜、 纤维、颗粒 | PP、PS、PES、 PE、PU、PVC | — | Liu et al., |
评价方法 | 评价内容 | 评价公式 | 参考文献 |
---|---|---|---|
聚合物危害指数 | 根据不同微塑料的化学毒性来评价其生态危害 | H=ΣPn×Sn | Lithner et al., |
污染负荷指数 | 根据微塑料的丰度来评价 微塑料的污染程度 | Tomlinson et al., | |
潜在生态风险指数 | 根据微塑料的丰度和化学毒性 来评价微塑料的污染程度 | Cf i=Ci/Cni Eri=Tri×Cf i | Peng et al., |
污染风险指数 | 根据转换的微塑料丰度和 化学毒性来评价其生态危害 | Ri=Hi×Li | Kabir et al., |
表3 微塑料生态风险评价方法
Table 3 Ecological risk evaluation methods of microplastic
评价方法 | 评价内容 | 评价公式 | 参考文献 |
---|---|---|---|
聚合物危害指数 | 根据不同微塑料的化学毒性来评价其生态危害 | H=ΣPn×Sn | Lithner et al., |
污染负荷指数 | 根据微塑料的丰度来评价 微塑料的污染程度 | Tomlinson et al., | |
潜在生态风险指数 | 根据微塑料的丰度和化学毒性 来评价微塑料的污染程度 | Cf i=Ci/Cni Eri=Tri×Cf i | Peng et al., |
污染风险指数 | 根据转换的微塑料丰度和 化学毒性来评价其生态危害 | Ri=Hi×Li | Kabir et al., |
微塑料类型 | 单体 | 密度/(g·cm-3) | 主要风险声明 | 危险等级 | 分数 |
---|---|---|---|---|---|
聚乙烯 (PE) | 乙烯 | 0.91-0.97 | 极易燃气体 | 1 | 11 |
可能引起嗜睡或头晕 | 2 | ||||
聚丙烯 (PP) | 丙烯 | 0.89-0.92 | 极易燃气体 | 1 | 1 |
聚苯乙烯 (PS) | 苯乙烯 | 0.28-1.04 | 易燃液体和蒸汽 | 0 | 30 |
吸入有害 | 2 | ||||
聚对苯二甲酸乙二醇酯 (PET) | 乙二醇 | 1.37-1.38 | 吞食有害 | 2 | 4 |
聚酰胺 (PA) | 己二胺 | 1.14-1.15 | 与皮肤接触有害 | 2 | 47 |
吞食有害 | 2 | ||||
可能引起呼吸刺激 | 2 | ||||
造成严重的皮肤烧伤和眼睛损伤 | 3 |
表4 微塑料的风险分数Sn
Table 4 Risk scores of microplastics Sn
微塑料类型 | 单体 | 密度/(g·cm-3) | 主要风险声明 | 危险等级 | 分数 |
---|---|---|---|---|---|
聚乙烯 (PE) | 乙烯 | 0.91-0.97 | 极易燃气体 | 1 | 11 |
可能引起嗜睡或头晕 | 2 | ||||
聚丙烯 (PP) | 丙烯 | 0.89-0.92 | 极易燃气体 | 1 | 1 |
聚苯乙烯 (PS) | 苯乙烯 | 0.28-1.04 | 易燃液体和蒸汽 | 0 | 30 |
吸入有害 | 2 | ||||
聚对苯二甲酸乙二醇酯 (PET) | 乙二醇 | 1.37-1.38 | 吞食有害 | 2 | 4 |
聚酰胺 (PA) | 己二胺 | 1.14-1.15 | 与皮肤接触有害 | 2 | 47 |
吞食有害 | 2 | ||||
可能引起呼吸刺激 | 2 | ||||
造成严重的皮肤烧伤和眼睛损伤 | 3 |
[1] |
ABBASI S, KESHAVARZI B, MOORE F, et al., 2019. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran[J]. Environmental Pollution, 244: 153-164.
DOI PMID |
[2] |
ALI M U, LIN S, YOUSAF B, et al., 2021. Environmental emission, fate and transformation of microplastics in biotic and abiotic compartments: Global status, recent advances and future perspectives[J]. Science of the Total Environment, 791: 148422.
DOI URL |
[3] |
ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al., 2018. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport[J]. Environmental Science & Technology, 52(4): 1704-1724.
DOI URL |
[4] |
ANAGNOSTI L, VARVARESOU A, PAVLOU P, et al., 2021. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively?[J]. Marine Pollution Bulletin, 162: 111883.
DOI URL |
[5] |
ANDRADY A L. 2011. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 62(8): 1596-1605.
DOI PMID |
[6] |
BAUER-CIVIELLO A, CRITCHELL K, HOOGENBOOM M, et al., 2019. Input of plastic debris in an urban tropical river system[J]. Marine Pollution Bulletin, 144: 235-242.
DOI URL |
[7] |
BECUCCI M, MANCINI M, CAMPO R, et al., 2022. Microplastics in the Florence wastewater treatment plant studied by a continuous sampling method and Raman spectroscopy: A preliminary investigation[J]. Science of the Total Environment, 808: 152025.
DOI URL |
[8] |
BLAIR R M, WALDRON S, GAUCHOTTE-LINDSAY C, 2019. Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period[J]. Water Research, 163: 114909.
DOI URL |
[9] |
BOSSHART S, ERNI-CASSOLA G, BURKHARDT-HOLM P, 2020. Independence of microplastic ingestion from environmental load in the round goby (Neogobius melanostomus) from the Rhine river using high quality standards[J]. Environmental Pollution, 267: 115664.
DOI URL |
[10] |
CAI L Q, WANG J D, PENG J P, et al., 2017. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence[J]. Environmental Science and Pollution Research, 24(32): 24928-24935.
DOI |
[11] |
CAO Y R, LIN H J, ZHANG K, et al., 2022. Microplastics: A major source of phthalate esters in aquatic environments[J]. Journal of Hazardous Materials, 432: 128731.
DOI URL |
[12] |
CHEN G L, FENG Q Y, WANG J, 2020b. Mini-review of microplastics in the atmosphere and their risks to humans[J]. Science of the Total Environment, 703: 135504.
DOI URL |
[13] |
CHEN H, JIA Q L, ZHAO X, et al., 2020a. The occurrence of microplastics in water bodies in urban agglomerations: Impacts of drainage system overflow in wet weather, catchment land-uses, and environmental management practices[J]. Water Research, 183: 116073.
DOI URL |
[14] |
CHEUNG P K, FOK L, 2017. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China[J]. Water Research, 122: 53-61.
DOI PMID |
[15] |
CHRISTENSEN N D, WISINGER C E, MAYNARD L A, et al., 2020. Transport and characterization of microplastics in inland waterways[J]. Journal of Water Process Engineering, 38: 101640.
DOI URL |
[16] |
DICK V, JULIETTE L, 2021. Microplastics and human health[J]. Science, 371(6530): 672-674.
DOI PMID |
[17] | DRIS R, GASPERI J, TASSIN B, 2018. Sources and fate of microplastics in urban areas: A focus on Paris megacity[M]//Freshwater Microplastics. Springer, Cham: 69-83. |
[18] |
DRIS R, JOHNNY G, VINCENT R, et al., 2015. Microplastic contamination in an urban area: A case study in Greater Paris[J]. Environmental Chemistry, 12(5): 592-599.
DOI URL |
[19] | DRUMMOND J D, NEI H A, PACKMAN A I, et al., 2020. Significance of hyporheic exchange for predicting microplastic fate in rivers[J]. Environmental Science & Technology Letters, 7(10): 727-732. |
[20] |
EDO C, GONZALEZ-PLEITER M, LEGANES F, et al., 2020. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge[J]. Environmental Pollution, 259: 113837.
DOI URL |
[21] |
EO S, HONG S H, SONG Y K, et al., 2019. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea[J]. Water Research, 160: 228-237.
DOI PMID |
[22] |
FAN Y F, ZHENG J L, DENG L G, et al., 2022. Spatiotemporal dynamics of microplastics in an urban river network area[J]. Water Research, 212: 118116.
DOI URL |
[23] |
FENDALL L S, SEWELL M A, 2009. Contributing to marine pollution by washing your face: microplastics in facial cleansers[J]. Marine Pollution Bulletin, 58(8): 1225-1228.
DOI PMID |
[24] |
FRANCO A A, ARELLANO J M, ALBENDI N G, et al., 2021. Microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency and presence in receiving water body[J]. Science of the Total Environment, 776: 145795.
DOI URL |
[25] |
FU D D, CHEN C M, QI H Y, et al., 2020. Occurrences and distribution of microplastic pollution and the control measures in China[J]. Marine Pollution Bulletin, 153: 110963.
DOI URL |
[26] |
GE J H, LI H, LIU P, et al., 2021. Review of the toxic effect of microplastics on terrestrial and aquatic plants[J]. Science of The Total Environment, 791: 148333.
DOI URL |
[27] |
GIGAULT J, TER HALLE A, BAUDRIMONT M, et al., 2018. Current opinion: What is a nanoplastic?[J]. Environmental Pollution, 235: 1030-1034.
DOI PMID |
[28] |
GOULD S J F, DAVIS P, BEALE D J, et al., 2013. Failure analysis of a PVC sewer pipeline by fractography and materials characterization[J]. Engineering Failure Analysis, 34: 41-50.
DOI URL |
[29] |
GRBIĆ J, HELM P, ATHEY S, et al., 2020. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources[J]. Water Research, 174: 115623.
DOI URL |
[30] |
HAJIOUNI S, MOHAMMADI A, RAMAVANDI B, et al., 2022. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline[J]. Science of the Total Environment, 806(Part 1): 150559.
DOI URL |
[31] |
HAMIDIAN A H, OZUMCHELOUEI E J, FEIZI F, et al., 2021. A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals[J]. Journal of Cleaner Production, 295: 126480.
DOI URL |
[32] |
HAN M, NIU X R, TANG M, et al., 2020. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment, 707: 135601.
DOI URL |
[33] |
HARLEY-NYANG D, MEMON F A, JONES N, et al., 2022. Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK[J]. Science of the Total Environment, 823: 153735.
DOI URL |
[34] |
HE P J, CHEN L Y, SHAO L M, et al., 2019. Municipal solid waste (MSW) landfill: A source of microplastics? -Evidence of microplastics in landfill leachate[J]. Water Research, 159: 38-45.
DOI PMID |
[35] |
HERNANDEZ E, NOWACK B, MITRANO D M, 2017. Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing[J]. Environmental Science & Technology, 51(12): 7036-7046.
DOI URL |
[36] |
HITCHCOCK J N, 2020. Storm events as key moments of microplastic contamination in aquatic ecosystems[J]. Science of the Total Environment, 734: 139436.
DOI URL |
[37] |
HITCHCOCK J N, MITROVIC S M, 2015. Highs and lows: The effect of differently sized freshwater inflows on estuarine carbon, nitrogen, phosphorus, bacteria and chlorophyll a dynamics[J]. Estuarine, Coastal and Shelf Science, 156: 71-82.
DOI URL |
[38] |
HORTON A A, WALTON A, SPURGEON D J, et al., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 586: 127-141.
DOI URL |
[39] |
JÄRLSKOG I, STRÖMVALL A M, MAGNUSSON K, et al., 2020. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater[J]. Science of the Total Environment, 729: 138950.
DOI URL |
[40] |
JIANG J H, WANG X W, REN H Y, et al., 2020. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China[J]. Science of the Total Environment, 746: 141378.
DOI URL |
[41] |
JIANG L, CHEN M L, HUANG Y, et al., 2022. Effects of different treatment processes in four municipal wastewater treatment plants on the transport and fate of microplastics[J]. Science of the Total Environment, 831: 154946.
DOI URL |
[42] |
JIN Y X, XIA J Z, PAN Z H, et al., 2018. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 235: 322-329.
DOI PMID |
[43] |
KABIR A, SEKINE M, IMAI T, et al., 2021. Assessing small-scale freshwater microplastics pollution, land-use, source-to-sink conduits, and pollution risks: Perspectives from Japanese rivers polluted with microplastics[J]. Science of the Total Environment, 768: 144655.
DOI URL |
[44] |
KABIR A, SEKINE M, IMAI T, et al., 2022. Microplastics in the sediments of small-scale Japanese rivers: Abundance and distribution, characterization, sources-to-sink, and ecological risks[J]. Science of the Total Environment, 812: 152590.
DOI URL |
[45] |
KAMEDA Y, YAMADA N, FUJITA E, 2021. Source- and polymer-specific size distributions of fine microplastics in surface water in an urban river[J]. Environmental Pollution, 284: 117516.
DOI URL |
[46] |
KATAOKA T, NIHEI Y, KUDOU K, et al., 2019. Assessment of the sources and inflow processes of microplastics in the river environments of Japan[J]. Environmental Pollution, 244: 958-965.
DOI PMID |
[47] |
KAWECKI D, SCHEEDER P R W, NOWACK B, 2018. Probabilistic Material Flow Analysis of Seven Commodity Plastics in Europe[J]. Environmental Science & Technology, 52(17): 9874-9888.
DOI URL |
[48] |
KOLE P J, LOHR A J, VAN BELLEGHEM F, et al., 2017. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment[J]. International Journal of Environmental Research and Public Health, 14(10): 1265.
DOI URL |
[49] |
KOOI M, NES E H V, SCHEFFER M, et al., 2017. Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics[J]. Environmental Science & Technology, 51(14): 7963-7971.
DOI URL |
[50] |
LANGE K, OSTERLUND H, VIKLANDER M, et al., 2022. Occurrence and concentration of 20-100 μm sized microplastic in highway runoff and its removal in a gross pollutant trap — Bioretention and sand filter stormwater treatment train[J]. Science of the Total Environment, 809: 151151.
DOI URL |
[51] | LEBRETON L, SLAT B, FERRARI F, et al., 2018. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic[J]. Scientific reports, 8(1): 1-15. |
[52] | LEI L L, WU S Y, LU S B, et al., 2018. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 619-620: 1-8. |
[53] |
LI L Z, LUO Y M, LI R J, et al., 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature sustainability, 3(11): 929-937.
DOI |
[54] |
LI X W, CHEN L B, MEI Q Q, et al., 2018. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 142: 75-85.
DOI PMID |
[55] |
LITHNER D, LARSSON A, DAVE G, 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 409(18): 3309-3324.
DOI URL |
[56] |
LIU F, VIANELLO A, VOLLERTSEN J, 2019a. Retention of microplastics in sediments of urban and highway stormwater retention ponds[J]. Environmental Pollution, 255(Part 2): 113335.
DOI URL |
[57] |
LIU K, WANG X H, FANG T, et al., 2019b. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai[J]. Science of the Total Environment, 675: 462-471.
DOI URL |
[58] |
LIU P, LU K, LI J L, et al., 2020b. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 384: 121193.
DOI URL |
[59] |
LIU X M, SHI H H, XIE B, et al., 2019c. Microplastics as both a sink and a source of bisphenol a in the marine environment[J]. Environmental Science & Technology, 53(17): 10188-10196.
DOI URL |
[60] |
LIU Y, ZHANG J D, CAI C Y, et al., 2020a. Occurrence and characteristics of microplastics in the Haihe River: An investigation of a seagoing river flowing through a megacity in northern China[J]. Environmental Pollution, 262: 114261.
DOI URL |
[61] |
MAGNI S, BINELLI A, PITTURA L, et al., 2019. The fate of microplastics in an Italian Wastewater Treatment Plant[J]. Science of the Total Environment, 652: 602-610.
DOI |
[62] |
MAHON A M, O'CONNELL B, HEALY M G, et al., 2017. Microplastics in sewage sludge: Effects of treatment[J]. Environmental Science & Technology, 51(2): 810-818.
DOI URL |
[63] |
MIRANDA L S, AYOKO G A, EGODAWATTA P, et al., 2022. Adsorption-desorption behavior of heavy metals in aquatic environments: Influence of sediment, water and metal ionic properties[J]. Journal of Hazardous Materials, 421: 126743.
DOI URL |
[64] |
MIRANDA M N, SAMPAIO M J, TAVARES P B, et al., 2021. Aging assessment of microplastics (LDPE, PET and uPVC) under urban environment stressors[J]. Science of the Total Environment, 796: 148914.
DOI URL |
[65] |
MONIRA S, BHUIYAN M A, HAQUE N, et al., 2021. Understanding the fate and control of road dust-associated microplastics in stormwater[J]. Process Safety and Environmental Protection, 152: 47-57.
DOI URL |
[66] |
NIZZETTO L, FUTTER M, LANGAAS S, 2016. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 50(20): 10777-10779.
DOI URL |
[67] |
NOCON W, MORACZEWSKA-MAJKUT K, WISNIOWSKA E, 2020. Microplastics upstream and downstream dam-reservoirs[J]. Desalination and water treatment, 199: 263-272.
DOI URL |
[68] |
OKOFFO E D, DONNER E, MCGRATH S P, et al., 2021. Plastics in biosolids from 1950 to 2016: A function of global plastic production and consumption[J]. Water Research, 201: 117367.
DOI URL |
[69] |
PARK T J, LEE S H, LEE M S, et al., 2020. Occurrence of microplastics in the Han River and riverine fish in South Korea[J]. Science of the Total Environment, 708: 134535.
DOI URL |
[70] |
PENG G Y, XU P, ZHU B S, et al., 2018. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities[J]. Environmental Pollution, 234: 448-456.
DOI PMID |
[71] |
PINON-COLIN T J, RODRIGUEZ-JIMENEZ R, ROGEL-HERNANDEZ E, et al., 2020. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico[J]. Science of the Total Environment, 704: 135411.
DOI URL |
[72] |
POLANCO H, HAYES S, ROBLE C, et al., 2020. The presence and significance of microplastics in surface water in the Lower Hudson River Estuary 2016-2019: A research note[J]. Marine Pollution Bulletin, 161(Part A): 111702.
DOI URL |
[73] |
RANJANI M, VEERASINGAM S, VENKATACHALAPATHY R, et al., 2021. Assessment of potential ecological risk of microplastics in the coastal sediments of India: A meta-analysis[J]. Marine Pollution Bulletin, 163: 111969.
DOI URL |
[74] |
RAUERT C, CHARLTON N, OKOFFO E D, et al., 2022. Concentrations of Tire Additive Chemicals and Tire Road Wear Particles in an Australian Urban Tributary[J]. Environmental Science & Technology, 56(4): 2421-2431.
DOI URL |
[75] |
REVITT D M, LUNDY L, ERIKSSON E, et al., 2013. Comparison of pollutant emission control strategies for cadmium and mercury in urban water systems using substance flow analysis[J]. Journal of Environmental Management, 116: 172-180.
DOI PMID |
[76] | ROLSKY C, KELKAR V, DRIVER E, et al., 2020. Municipal sewage sludge as a source of microplastics in the environment[J]. Current Opinion in Environmental Science & Health, 14: 16-22. |
[77] |
SANG W, CHEN Z, MEI L, et al., 2021. The abundance and characteristics of microplastics in rainwater pipelines in Wuhan, China[J]. Science of the Total Environment, 755(Part 2): 142606.
DOI URL |
[78] |
SCHMIDT L K, BOCHOW M, IMHOF H K, et al., 2018. Multi-temporal surveys for microplastic particles enabled by a novel and fast application of SWIR imaging spectroscopy—Study of an urban watercourse traversing the city of Berlin, Germany[J]. Environmental Pollution, 239: 579-589.
DOI URL |
[79] |
SEKUDEWICZ I, DABROWSKA A M, SYCZEWSKI M D, 2021. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland)[J]. Science of the Total Environment, 762: 143111.
DOI URL |
[80] |
SHAH A A, HASAN F, HAMEED A, et al., 2008. Biological degradation of plastics: A comprehensive review[J]. Biotechnology Advances, 26(3): 246-265.
DOI PMID |
[81] |
SO W K, CHAN K, NOT C, 2018. Abundance of plastic microbeads in Hong Kong coastal water[J]. Marine pollution bulletin, 133: 500-505.
DOI PMID |
[82] |
SOL D, LACA A, LACA A, et al., 2020. Approaching the environmental problem of microplastics: Importance of WWTP treatments[J]. Science of the Total Environment, 740: 140016.
DOI URL |
[83] |
STANG C, MOHAMED B A, LI L Y, 2022. Microplastic removal from urban stormwater: Current treatments and research gaps[J]. Journal of Environmental Management, 317: 115510.
DOI URL |
[84] |
STANTON T, JOHNSON M, NATHANAIL P, et al., 2020. Freshwater microplastic concentrations vary through both space and time[J]. Environmental Pollution, 263(Part B): 114481.
DOI URL |
[85] |
SU L, SHARP S M, PETTIGROVE V J, et al., 2020. Superimposed microplastic pollution in a coastal metropolis[J]. Water Research, 168: 115140.
DOI URL |
[86] |
SU X, YUAN J, LU Z J, et al., 2022. An enlarging ecological risk: Review on co-occurrence and migration of microplastics and microplastic-carrying organic pollutants in natural and constructed wetlands[J]. Science of the Total Environment, 837(1): 155772.
DOI URL |
[87] |
SUGIURA M, TAKADA H, TAKADA N, et al., 2021. Microplastics in urban wastewater and estuarine water: Importance of street runoff[J]. Environmental Monitoring and Contaminants Research, 1(0): 54-65.
DOI URL |
[88] |
SUN S, BARRAUD S, CASTEBRUNET H, et al., 2015. Long-term stormwater quantity and quality analysis using continuous measurements in a French urban catchment[J]. Water Research, 85: 432-442.
DOI PMID |
[89] |
THOMPSON R C, MOORE C J, VOM SAAL F S, et al., 2009. Plastics, the environment and human health: current consensus and future trends[J]. Philosophical transactions of the royal society B: biological sciences, 364(1526): 2153-2166.
DOI URL |
[90] | THOMPSON R C, OLSEN Y, MITCHELL R P, et al., 2004. Lost at sea: Where is all the plastic?[J]. Science, 364(5672): 2153-2166. |
[91] |
TOMLINSON D L, WILSON J G, HARRIS C R, et al., 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgoländer Meeresuntersuchungen, 33(1): 566-575.
DOI URL |
[92] |
TRAN-NGUYEN Q A, VU T B H, NGUYEN Q T, et al., 2022. Urban drainage channels as microplastics pollution hotspots in developing areas: A case study in Da Nang, Vietnam[J]. Marine Pollution Bulletin, 175: 113323.
DOI URL |
[93] |
VAHIDI E, JIN E, DAS M, et al., 2016. Environmental life cycle analysis of pipe materials for sewer systems[J]. Sustainable Cities and Society, 27: 167-174.
DOI URL |
[94] |
VARDAR S, ONAY T T, DEMIREL B, et al., 2021. Evaluation of microplastics removal efficiency at a wastewater treatment plant discharging to the Sea of Marmara[J]. Environmental Pollution, 289: 117862.
DOI URL |
[95] |
VIDYASAKAR A, KRISHNAKUMAR S, KASILINGAM K, et al., 2020. Characterization and distribution of microplastics and plastic debris along Silver Beach, Southern India[J]. Marine Pollution Bulletin, 158: 111421.
DOI URL |
[96] |
WANG C H, ZHAO J, XING B S, 2021a. Environmental source, fate, and toxicity of microplastics[J]. Journal of Hazardous Materials, 407: 124357.
DOI URL |
[97] |
WANG T, LI B J, ZOU X Q, et al., 2019. Emission of primary microplastics in mainland China: Invisible but not negligible[J]. Water Research, 162: 214-224.
DOI PMID |
[98] |
WANG Z Q, ZHANG Y L, KANG S C, et al., 2021b. Research progresses of microplastic pollution in freshwater systems[J]. Science of the Total Environment, 795: 148888.
DOI URL |
[99] | WERBOWSKI L M, GILBREATH A N, MUNNO K, et al., 2021. Urban stormwater runoff: A major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters[J]. ACS ES&T Water, 1(6): 1420-1428. |
[100] |
WU J J, JIANG Z G, LIU Y Z, et al., 2021. Microplastic contamination assessment in water and economic fishes in different trophic guilds from an urban water supply reservoir after flooding[J]. Journal of Environmental Management, 299: 113667.
DOI URL |
[101] |
XIA F Y, LIU H T, ZHANG J, et al., 2022. Migration characteristics of microplastics based on source-sink investigation in a typical urban wetland[J]. Water Research, 213: 118154.
DOI URL |
[102] |
XIA F Y, YAO Q W, ZHANG J, et al., 2021. Effects of seasonal variation and resuspension on microplastics in river sediments[J]. Environmental Pollution, 286: 117403.
DOI URL |
[103] |
XU A, SHI M M, XING X L, et al., 2022. Status and prospects of atmospheric microplastics: A review of methods, occurrence, composition, source and health risks[J]. Environmental Pollution, 303: 119173.
DOI URL |
[104] |
XU J L, THOMAS K V, LUO Z S, et al., 2019. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects[J]. TrAC Trends in Analytical Chemistry, 119: 115629.
DOI URL |
[105] |
XU Y Y, CHAN F K S, HE J, et al., 2020. A critical review of microplastic pollution in urban freshwater environments and legislative progress in China: Recommendations and insights[J]. Critical Reviews in Environmental Science and Technology, 51(22): 2637-2680.
DOI URL |
[106] |
YAN Z H, CHEN Y F, BAO X H, et al., 2021. Microplastic pollution in an urbanized river affected by water diversion: Combining with active biomonitoring[J]. Journal of Hazardous Materials, 417: 126058.
DOI URL |
[107] |
YANG L B, LI K X, CUI S, et al., 2019. Removal of microplastics in municipal sewage from China’s largest water reclamation plant[J]. Water Research, 155: 175-181.
DOI URL |
[108] |
YANO K A, GERONIMO F K, REYES N J, et al., 2021. Characterization and comparison of microplastic occurrence in point and non-point pollution sources[J]. Science of the Total Environment, 797: 148939.
DOI URL |
[109] |
YASEEN A, ASSAD I, SOFI M S, et al., 2022. A global review of microplastics in wastewater treatment plants: Understanding their occurrence, fate and impact[J]. Environmental Research, 212: 113258.
DOI URL |
[110] |
YIN L S, WEN X F, DU C Y, et al., 2020. Comparison of the abundance of microplastics between rural and urban areas: A case study from East Dongting Lake[J]. Chemosphere, 244: 125486.
DOI URL |
[111] |
YU D W, DIAN L, HAI Y L, et al., 2022b. Effect of rainfall characteristics on the sewer sediment, hydrograph, and pollutant discharge of combined sewer overflow[J]. Journal of Environmental Management, 303: 114268.
DOI URL |
[112] |
YU X Q, ZHAO Y M, ZHANG C T, et al., 2022a. Abundance and characteristics of microplastics in the surface water and sediment of parks in Xi'an city, Northwest China[J]. Science of the Total Environment, 806(Part 4): 150953.
DOI URL |
[113] |
ZHANG B H, XU D Y, WAN X H, et al., 2022d. Comparative analysis of microplastic organization and pollution risk before and after thawing in an urban river in Beijing, China[J]. Science of the Total Environment, 828: 154268.
DOI URL |
[114] |
ZHANG F, PENG G Y, XU P, et al., 2022c. Ecological risk assessment of marine microplastics using the analytic hierarchy process: A case study in the Yangtze River Estuary and adjacent marine areas[J]. Journal of Hazardous Materials, 425: 127960.
DOI URL |
[115] |
ZHANG K, SHI H H, PENG J P, et al., 2018. Microplastic pollution in China’s inland water systems: A review of findings, methods, characteristics, effects, and management[J]. Science of the Total Environment, 630: 1641-1653.
DOI URL |
[116] |
ZHANG K, SU J, XIONG X, et al., 2016. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China[J]. Environmental Pollution, 219: 450-455.
DOI PMID |
[117] |
ZHANG K, XIONG X, HU H J, et al., 2017. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China[J]. Environmental Science & Technology, 51(7): 3794-3801.
DOI URL |
[118] |
ZHANG L S, LIU J Y, XIE Y S, et al., 2021. Occurrence and removal of microplastics from wastewater treatment plants in a typical tourist city in China[J]. Journal of Cleaner Production, 291: 125968.
DOI URL |
[119] |
ZHANG X R, LIU C, LIU J F, et al., 2022a. Release of microplastics from typical rainwater facilities during aging process[J]. Science of the Total Environment, 813: 152674.
DOI URL |
[120] |
ZHANG Z Q, GAO S H, LUO G Y, et al., 2022b. The contamination of microplastics in China’s aquatic environment: Occurrence, detection and implications for ecological risk[J]. Environmental Pollution, 296: 118737.
DOI URL |
[121] |
ZHAO M J, CAO Y X, CHEN T T, et al., 2022. Characteristics and source-pathway of microplastics in freshwater system of China: A review[J]. Chemosphere, 297: 134192.
DOI URL |
[122] |
ZIAJAHROMI S, KUMAR A, NEALE P A, et al., 2017. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures[J]. Environmental Science & Technology, 51(22): 13397-13406.
DOI URL |
[123] | 包旭辉, 闫振华, 陆光华, 2019. 我国淡水中微塑料的污染现状及生物效应研究[J]. 水资源保护, 35(6): 115-123. |
BAO X H, YAN Z H, LU G H, 2019. Study on the pollution status and biological effects of microplastics in freshwater in China[J]. Water Resources Conservation, 35(6): 115-123. | |
[124] |
丁剑楠, 张振华, 邹华, 等. 2017. 淡水环境中微塑料的赋存、来源和生态毒理效应研究进展[J]. 生态环境学报, 26(9): 1619-1626.
DOI |
DING J N, ZHANG Z H, ZOU H, et al., 2017. Occurrence, source and ecotoxicological effect of microplastics in freshwater environment[J]. Ecology and Environmental Sciences, 26(9): 1619-1626. | |
[125] | 郝文静, 解立国, 张峰, 等, 2021. 太原北部三级污水处理厂微塑料的赋存及去除[J]. 环境污染与防治, 43(11): 1426-1431. |
HAO W J, XIE L G, ZHANG F, et al., 2021. Fugacity and removal of microplastics in tertiary wastewater treatment plants in northern Taiyuan[J]. Environmental Pollution and Prevention, 43(11): 1426-1431. | |
[126] |
刘沙沙, 陈诺, 杨晓茵, 2022. 微塑料对有机污染物的吸附-解吸特性及其复合毒性效应研究进展[J]. 生态环境学报, 31(3): 610-620.
DOI |
LIU S S, CHEN N, YANG X Y, 2022. Research progress on adsorption-desorption characteristics of organic pollutants by microplastics and their combined toxic effects[J]. Ecology and Environmental Sciences, 31(3): 610-620. | |
[127] | 王生愿, 陈江海, 陈小龙, 2022. 基于降水等级分异方法的低影响开发小区雨水径流污染负荷削减率的评估[J]. 环境工程技术学报, 12(5): 1492-1499. |
WANG S W, CHEN J H, CHEN S L, 2022. Evaluation of reduction rate of rainwater runoff pollution load in low impact development community based on rainfall grade differentiation method[J]. Journal of Environmental Engineering and Technology, 12(5): 1492-1499. | |
[128] | 张子琪, 高淑华, 康园园, 等, 2020. 中国水环境微塑料污染现状及其潜在生态风险[J]. 环境科学学报, 40(10): 3574-3581. |
ZHANG Z Q, GAO S H, KANG Y Y, et al., 2020. Current status of microplastics contamination in China’s water environment and its potential ecological risks[J]. Journal of Environmental Science, 40(10): 3574-3581. |
[1] | 樊珂宇, 高原, 赖子尼, 曾艳艺, 刘乾甫, 李海燕, 麦永湛, 杨婉玲, 魏敬欣, 孙金辉, 王超. 珠三角河网鱼类微塑料污染特征研究[J]. 生态环境学报, 2022, 31(8): 1590-1598. |
[2] | 刘晓红, 刘柳青青, 栗敏, 刘强, 曹东东, 郑浩, 罗先香. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263-1271. |
[3] | 谢晨敏, 隆楚月, 黎大宁, 朱春友, 彭先芝, 孙毓鑫, 罗孝俊, 张黎, 麦碧娴. 南海永兴岛和东岛土壤中微塑料和卤代阻燃剂的分布特征[J]. 生态环境学报, 2022, 31(5): 1008-1014. |
[4] | 闫胜文, 刘加珍, 陈永金, 马笑丹, 张亚茹, 朱海勇. 聊城大气降水氢氧同位素特征及水汽来源分析[J]. 生态环境学报, 2022, 31(3): 546-555. |
[5] | 刘沙沙, 陈诺, 杨晓茵. 微塑料对有机污染物的吸附-解吸特性及其复合毒性效应研究进展[J]. 生态环境学报, 2022, 31(3): 610-620. |
[6] | 崔键, 杜易, 丁程成, 李金凤, 高方述, 常雅军, 张继彪, 刘晓静, 姚东瑞. 中国湖泊水体磷的赋存形态及污染治理措施进展[J]. 生态环境学报, 2022, 31(3): 621-633. |
[7] | 张云, 舒抒, 罗鑫, 钟琴, 邹华. 水环境中糖皮质激素的环境行为及生态风险研究进展[J]. 生态环境学报, 2022, 31(2): 400-408. |
[8] | 陈赋秋雪, 唐思琪, 袁昊, 马子轩, 陈坦, 杨婷, 张冰, 刘颖. 聚苯乙烯微塑料对典型农作物种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(12): 2382-2392. |
[9] | 谢洁芬, 章家恩, 危晖, 刘自强, 陈璇. 土壤中微塑料复合污染研究进展与展望[J]. 生态环境学报, 2022, 31(12): 2431-2440. |
[10] | 李亮亮, 代良羽, 高维常, 张淑怡, 刘涛泽. 贵州省典型覆膜耕地残膜赋存特征及影响因素[J]. 生态环境学报, 2022, 31(11): 2189-2197. |
[11] | 姜晶, 阮呈杰, 陈霄宇, 吴仪, 汪永创. 微塑料模拟老化及其对污染物吸附行为影响研究进展[J]. 生态环境学报, 2022, 31(11): 2263-2274. |
[12] | 雷雅杰, 李雪, 常春艳, 毛雪飞. 聚苯乙烯微塑料对水中汞离子的吸附研究[J]. 生态环境学报, 2022, 31(10): 2048-2057. |
[13] | 任丽江, 张妍, 张鑫, 山泽萱, 张成前. 渭河流域关中段地表水重金属的污染特征与健康风险评价[J]. 生态环境学报, 2022, 31(1): 131-141. |
[14] | 赵晓亮, 郭猛, 吕美婷, 赵雪莹, 姜瑰国, 黄媛媛, 王凡, 姬亚芹. 阜新市绿化树种对大气颗粒物及重金属滞留能力研究[J]. 生态环境学报, 2021, 30(8): 1662-1671. |
[15] | 石慧斌, 黄艺, 程馨, 李婷, 何敏, 王进进. 成都市冬季PM2.5中碳组分污染特征及来源解析[J]. 生态环境学报, 2021, 30(7): 1420-1427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||