生态环境学报 ›› 2022, Vol. 31 ›› Issue (3): 621-633.DOI: 10.16258/j.cnki.1674-5906.2022.03.021
崔键1,2(), 杜易3, 丁程成4, 李金凤1,2, 高方述5, 常雅军1,2, 张继彪6, 刘晓静1,2, 姚东瑞1,2,*(
)
收稿日期:
2021-08-16
出版日期:
2022-03-18
发布日期:
2022-05-25
通讯作者:
*姚东瑞(1966年生),男,研究员,主要从事水生植物资源开发与利用。E-mail: shuishengzu@126.com作者简介:
崔键(1980年生),男,研究员,主要研究方向为水土环境修复。E-mail: jcui@cnbg.net
基金资助:
CUI Jian1,2(), DU Yi3, DING Chengcheng4, LI Jinfeng1,2, GAO Fangshu5, CHANG Yajun1,2, ZHANG Jibiao6, LIU Xiaojing1,2, YAO Dongrui1,2,*(
)
Received:
2021-08-16
Online:
2022-03-18
Published:
2022-05-25
摘要:
磷是驱动湖泊发生稳态转换的重要环境因子,也是当前中国湖泊污染的主要因子,探究湖水磷赋存形态和生态修复模式是湖泊生态治理和管理的关键。近30年来,中国在水体磷治理方面积累了丰富的经验,并取得了显著的成效,但目前磷仍是湖泊污染中的首要污染物,其治理仍任重道远。文章基于国内外文献,统计和整理了中国湖泊水体磷的赋存形态,梳理了水体磷污染治理的单项技术与联合技术,并对技术进展进行了分类评述。结果发现,(1)中国湖泊水体磷的研究主要集中在总磷浓度及沉积物无机磷形态方面,而水体磷形态、沉积物有机磷形态及其与水体间的转化机制和PH3产生机制仍需进一步探明。(2)适用于湖泊水体磷去除的方法包括物理、化学和生物-生态法,而生物-生态法为当前湖泊水体磷治理的主导技术而被广泛应用,在湖泊修复和水生态构建上发挥着重要的作用;然而技术仍存在基质和外来动植物等引发的二次生态风险,且相关研究多集中在磷去除效果及基质吸附机制上,而对生物特别是植物与微生物的作用机制不够深入,工程植物资源化利用开发路径仍需深化。最后,文章指明今后湖泊磷治理技术研发的方向和待攻关的湖泊水体有机磷形态的转化机制、水生植物-微生物互作机制、PH3产生机制及工程植物残体的高效资源化利用等关键科学问题,旨在为中国湖泊生态安全管控和美丽河湖建设提供参考。
中图分类号:
崔键, 杜易, 丁程成, 李金凤, 高方述, 常雅军, 张继彪, 刘晓静, 姚东瑞. 中国湖泊水体磷的赋存形态及污染治理措施进展[J]. 生态环境学报, 2022, 31(3): 621-633.
CUI Jian, DU Yi, DING Chengcheng, LI Jinfeng, GAO Fangshu, CHANG Yajun, ZHANG Jibiao, LIU Xiaojing, YAO Dongrui. Phosphorus Fraction and Abatement of Lakes in China: A Review[J]. Ecology and Environment, 2022, 31(3): 621-633.
序号 Number | 方法 Method names | 提取剂 Extracting agents | 磷赋存形态 Phosphorus speciation |
---|---|---|---|
1 | C-J法 (Chang et al., | 1.0 mol∙L-1 NH4Cl、0.5 mol NH4F、0.1 mol∙L-1 NaOH、 0.5 mol∙L-1 HCl、CBD和NaOH | 不稳定磷、铝结合态磷、铁结合态磷、 钙结合态磷、闭蓄态磷和惰性磷 |
2 | Williams法 (Williams et al., | 0.22 mol∙L-1 CBD、0.1 mol∙L-1 NaOH、0.5 mol∙L-1 HCl | 非磷灰岩、磷灰岩、有机磷 |
3 | H-J法 (沈宏等, | 1.0 mol∙L-1 NH4Cl、0.1 mol∙L-1 NaOH、0.5 mol∙L-1 HCl | 不稳定态磷、铁铝结合态磷、钙结合态磷 |
4 | R法 (陈俊等, | 1.0 mol∙L-1 MgCl2、0.3 mol∙L-1 Na3C6H5O7+1.0 mol∙L-1 NaHCO3、1.0 mol∙L-1 NaAc-NaHCO3、1.0 mol∙L-1 HCl和550 ℃灰化,1.0 mol∙L-1 HCl | 可交换态磷、铁结合态磷、碳酸氟磷灰石磷、氟磷灰石磷、钙结合态磷和有机磷 |
5 | G-2法 (Brandes et al., | 0.05 mol∙L-1 Ca-EDTA+1%Na2S2O4、0.1mol∙L-1 Na-EDTA、 0.5 mol∙L-1 H2SO4、2.0 mol∙L-1 NaOH | 铁结合态磷、钙结合态磷、 酸可溶性磷和残余态磷 |
6 | SMT法 (Jin et al., | 1.0 mol∙L-1 NaOH+3.5 mol∙L-1 HCl、 1.0 mol∙L-1 HCl、450 ℃煅烧3.5mol∙L-1 HCl | 铁铝结合态磷、无机磷、有机磷和总磷 |
表1 底泥磷的提取方法与赋存形态
Table 1 Phosphorus speciation and its extraction method of sediments
序号 Number | 方法 Method names | 提取剂 Extracting agents | 磷赋存形态 Phosphorus speciation |
---|---|---|---|
1 | C-J法 (Chang et al., | 1.0 mol∙L-1 NH4Cl、0.5 mol NH4F、0.1 mol∙L-1 NaOH、 0.5 mol∙L-1 HCl、CBD和NaOH | 不稳定磷、铝结合态磷、铁结合态磷、 钙结合态磷、闭蓄态磷和惰性磷 |
2 | Williams法 (Williams et al., | 0.22 mol∙L-1 CBD、0.1 mol∙L-1 NaOH、0.5 mol∙L-1 HCl | 非磷灰岩、磷灰岩、有机磷 |
3 | H-J法 (沈宏等, | 1.0 mol∙L-1 NH4Cl、0.1 mol∙L-1 NaOH、0.5 mol∙L-1 HCl | 不稳定态磷、铁铝结合态磷、钙结合态磷 |
4 | R法 (陈俊等, | 1.0 mol∙L-1 MgCl2、0.3 mol∙L-1 Na3C6H5O7+1.0 mol∙L-1 NaHCO3、1.0 mol∙L-1 NaAc-NaHCO3、1.0 mol∙L-1 HCl和550 ℃灰化,1.0 mol∙L-1 HCl | 可交换态磷、铁结合态磷、碳酸氟磷灰石磷、氟磷灰石磷、钙结合态磷和有机磷 |
5 | G-2法 (Brandes et al., | 0.05 mol∙L-1 Ca-EDTA+1%Na2S2O4、0.1mol∙L-1 Na-EDTA、 0.5 mol∙L-1 H2SO4、2.0 mol∙L-1 NaOH | 铁结合态磷、钙结合态磷、 酸可溶性磷和残余态磷 |
6 | SMT法 (Jin et al., | 1.0 mol∙L-1 NaOH+3.5 mol∙L-1 HCl、 1.0 mol∙L-1 HCl、450 ℃煅烧3.5mol∙L-1 HCl | 铁铝结合态磷、无机磷、有机磷和总磷 |
方法 Methods | 去磷机理 Mechanism of removing water phosphorus | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|
物理法 Physical method | 物理吸附、为生物提供载体 和药剂提供动力等辅助条件 | 见效快、药剂投放方便、 设备可移动及反复多次使用 | 安装复杂,能耗大、运维成本高;对水、电和地形等要求较高;一旦设备停止,磷较易反复;药剂有二次风险 |
化学法 Chemical method | 化学吸附、络合反应、 化学沉淀、化学絮凝等 | 投放简单、起效快, 不需要维护 | 治标不治本,容易产生二次风险, 存在一定的局限性 |
生物-生态法 Bio-ecological methd | 植物拦截和吸收、 微生物反应与繁育、 动物吸滤等 | 景观效果好,无二次风险, 总体成本较低,效果持久; 技术革新潜力大,应用范围广 | 人工成本高、效果相对缓慢、受外界环境影响较大; 工程过程,需留意外来物种的入侵风险 |
表2 不同磷处理技术的比较
Table 2 Comparison of advantages and disadvantages of different removal technologies from water phosphorus
方法 Methods | 去磷机理 Mechanism of removing water phosphorus | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|
物理法 Physical method | 物理吸附、为生物提供载体 和药剂提供动力等辅助条件 | 见效快、药剂投放方便、 设备可移动及反复多次使用 | 安装复杂,能耗大、运维成本高;对水、电和地形等要求较高;一旦设备停止,磷较易反复;药剂有二次风险 |
化学法 Chemical method | 化学吸附、络合反应、 化学沉淀、化学絮凝等 | 投放简单、起效快, 不需要维护 | 治标不治本,容易产生二次风险, 存在一定的局限性 |
生物-生态法 Bio-ecological methd | 植物拦截和吸收、 微生物反应与繁育、 动物吸滤等 | 景观效果好,无二次风险, 总体成本较低,效果持久; 技术革新潜力大,应用范围广 | 人工成本高、效果相对缓慢、受外界环境影响较大; 工程过程,需留意外来物种的入侵风险 |
生活型 Life styles | 工程常用品种 The most common species in real engineer | 优点 Advantages | 缺点 Disadvantages | 去磷机制与能力 Mechanism and capacity of removing water phosphorus |
---|---|---|---|---|
挺水植物 emergent aquatic plants | 美人蕉(Canna indica)、菖蒲(Acorus calamus)、水芹(Oenanthe javanica)、千屈菜(Lythrum salicaria)、鸢尾(Iris tectorum)、再力花(Thalia dealbata)、香菇草(Hydrocotyle vulgaris)、水葱(Schoenoplectus tabernaemontani)、菰(Zizania latifolia)、芦苇(Phragmites australis) | 观赏、药用、经济和生态功能,对水体透明度要求不高,易工程栽培 | 受水位影响大,多生长在滨岸带,景观季节差异大,去磷能力相对差。秋冬季需收割死亡植株 | 根系吸收同化与根系微生物机制为主,TP去除率4.4%—95.7%(Wang et al., |
浮水植物 Floating plants | 黄花水龙(Ludwigia peploides)、凤眼莲(Eichhornia crassipes)、大漂(Pistia stratiotes)、浮萍(Lemna minor)、睡莲(Nymphaea tetragona)、菱(Trapa bispinosa)、野菱(Trapa incisa)、荇菜(Nymphoides peltatum) | 观赏、药用、经济和生态功能,对水体透明度要求不高,去磷能力强 | 部分植物如漂浮植物,繁殖快、较难控制,易疯长;部分植物如睡莲浮叶边生长边死亡,越冬品种少 | 整株吸收同化和微生物协同机制为主,TP去除率11.3%—99.0%(Muradov et al., |
沉水植物 submerged plant2 | 绿狐尾藻(Myriophyllu spicatum)、轮叶黑藻(Hydrilla verticillate)、穗花狐尾藻(Myriophyllum spicatum)、金鱼藻(Ceratophyllum demersum)、苦草(Vallisneria natans)和菹草(Potamogeton crispus) | 观赏、药用、经济和生态功能,去磷能力强 | 受水位、透明度和风浪等环境因素的影响大,种植前需调水,施工费用较高 | 整株吸收同化和微生物协同机制为主,TP去除率7.8%—91.1%(胡晓东等, |
表3 不同生活型工程水生植物的优缺点及去磷机制与能力的比较
Table 3 Comparison of advantages, disadvantages, and TP removal effects and mechanisms of different life-form aquatic plants
生活型 Life styles | 工程常用品种 The most common species in real engineer | 优点 Advantages | 缺点 Disadvantages | 去磷机制与能力 Mechanism and capacity of removing water phosphorus |
---|---|---|---|---|
挺水植物 emergent aquatic plants | 美人蕉(Canna indica)、菖蒲(Acorus calamus)、水芹(Oenanthe javanica)、千屈菜(Lythrum salicaria)、鸢尾(Iris tectorum)、再力花(Thalia dealbata)、香菇草(Hydrocotyle vulgaris)、水葱(Schoenoplectus tabernaemontani)、菰(Zizania latifolia)、芦苇(Phragmites australis) | 观赏、药用、经济和生态功能,对水体透明度要求不高,易工程栽培 | 受水位影响大,多生长在滨岸带,景观季节差异大,去磷能力相对差。秋冬季需收割死亡植株 | 根系吸收同化与根系微生物机制为主,TP去除率4.4%—95.7%(Wang et al., |
浮水植物 Floating plants | 黄花水龙(Ludwigia peploides)、凤眼莲(Eichhornia crassipes)、大漂(Pistia stratiotes)、浮萍(Lemna minor)、睡莲(Nymphaea tetragona)、菱(Trapa bispinosa)、野菱(Trapa incisa)、荇菜(Nymphoides peltatum) | 观赏、药用、经济和生态功能,对水体透明度要求不高,去磷能力强 | 部分植物如漂浮植物,繁殖快、较难控制,易疯长;部分植物如睡莲浮叶边生长边死亡,越冬品种少 | 整株吸收同化和微生物协同机制为主,TP去除率11.3%—99.0%(Muradov et al., |
沉水植物 submerged plant2 | 绿狐尾藻(Myriophyllu spicatum)、轮叶黑藻(Hydrilla verticillate)、穗花狐尾藻(Myriophyllum spicatum)、金鱼藻(Ceratophyllum demersum)、苦草(Vallisneria natans)和菹草(Potamogeton crispus) | 观赏、药用、经济和生态功能,去磷能力强 | 受水位、透明度和风浪等环境因素的影响大,种植前需调水,施工费用较高 | 整株吸收同化和微生物协同机制为主,TP去除率7.8%—91.1%(胡晓东等, |
介质 Mediums | 地点 Sites | ρ/ (ng∙m-3) | 释放通量 Fluxes/ (ng∙m-2∙h-1) |
---|---|---|---|
大气 Atmosphere | 污水处理厂 | 11.6-382 | 0.09-9.2 |
北方稻田 | 137 | 1.8 | |
南方稻田 | 14.25 | 9.2-19.2 | |
太湖湖面 | 20.2-46 | 8.1-36.9 | |
南极米洛米岛 | 10.4-229.0 | — | |
北极海面/地面 | 16.3-600.2 | 27.0-37.7 | |
厌氧消化 过程 Anaerobic digestion process | 填埋场 | 0-24646 | — |
动物腐败 | 24-20300 | — | |
含盐沼泽地 | — | 0.9-6.5 | |
微咸沼泽地 | — | 0.4-3.0 | |
沼气 Methane | 屠宰场 | 179 | — |
人体排泄物 | 42.3 | — | |
工农业活动a) Industrial and agricultural activities | 粮食仓储熏蒸仓 | 1257.8-2632.6 | |
烟草熏蒸仓 | 30.36-182.2 | ||
微电子产品车间 | 0.15-0.17 | — | |
黄磷尾气 | 500-1300 | — |
表4 环境中气态磷化氢的浓度及释放通量
Table 4 Concentration and flux of phosphine in environment
介质 Mediums | 地点 Sites | ρ/ (ng∙m-3) | 释放通量 Fluxes/ (ng∙m-2∙h-1) |
---|---|---|---|
大气 Atmosphere | 污水处理厂 | 11.6-382 | 0.09-9.2 |
北方稻田 | 137 | 1.8 | |
南方稻田 | 14.25 | 9.2-19.2 | |
太湖湖面 | 20.2-46 | 8.1-36.9 | |
南极米洛米岛 | 10.4-229.0 | — | |
北极海面/地面 | 16.3-600.2 | 27.0-37.7 | |
厌氧消化 过程 Anaerobic digestion process | 填埋场 | 0-24646 | — |
动物腐败 | 24-20300 | — | |
含盐沼泽地 | — | 0.9-6.5 | |
微咸沼泽地 | — | 0.4-3.0 | |
沼气 Methane | 屠宰场 | 179 | — |
人体排泄物 | 42.3 | — | |
工农业活动a) Industrial and agricultural activities | 粮食仓储熏蒸仓 | 1257.8-2632.6 | |
烟草熏蒸仓 | 30.36-182.2 | ||
微电子产品车间 | 0.15-0.17 | — | |
黄磷尾气 | 500-1300 | — |
[1] |
BACELO H, PINTOR AMA, SANTOS SCR, et al., 2020. Performance and prospects of different adsorbents for phosphorus uptake and recovery form water[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2019.122566.
DOI |
[2] |
BAINS W, PETKOWSI J J, SOUSA-SILVA C et al., 2019. New environmental model for thermodynamic ecology of biological phosphine production[J]. Science of The Total Environment, 658: 521-536.
DOI URL |
[3] |
BATTIN T J, BESEMER K, BENGTSSON M M, et al., 2016. The ecology and biogeochemistry of stream biofilms[J]. Nature Reviews Microbiology, 14: 251-263.
DOI URL |
[4] |
BRANDES J A, INGALL E, PATERSON D, 2007. Characterization of minerals and organic phosphorus species in marine sediments using soft X-ray fluorescence spectromicroscopy[J]. Marine Chemistry, 103(3): 250-265.
DOI URL |
[5] |
CARAVELLI A H, GREGORIO C D, ZARITZKY N E, 2012. Effect of operating conditions on the chemical phosphorus removal using ferric chloride by evaluating orthophosphate precipitation and sedimentation of formed precipitates in batch and continuous systems[J]. Chemical Engineering Journal, 209: 469-477.
DOI URL |
[6] |
CHANG S C, JACKSON M L, 1957. Fraction of soil phosphorus[J]. Soil Science, 84: 133-144.
DOI URL |
[7] |
DE ROZARI P, GREENWAY M, EL HANANDEH A, 2016. Phosphorus removal from secondary sewage and septage using sand media amended with biochar in constructed wetland mesocosms[J]. Science of The Total Environment, 569-570: 123-133.
DOI URL |
[8] |
DESMIDT E, CHYSELBRECHT K, ZHANG Y, et al., 2015 Global phosphorus scarcity and full-scale P-recovery techniques: A review[J]. Critical Reviews in Environmental Science and Technology, 45(4): 336-384.
DOI URL |
[9] |
DÉVAI I, FELFÖLDY L, WITTNER I, et al., 1988. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere[J]. Nature, 333(6171): 343-345.
DOI URL |
[10] |
DING S M, BAI X, FAN C, et al., 2010. Caution needed in pretreatment of sediments for refining phosphorus-31 Nuclear magnetic resonance analysis: results from a comprehensive assessment of pretreatment with ethylenediaminetetraacetic acid[J]. Journal of Environmental Quality, 39(5): 1668-1678.
DOI URL |
[11] |
DITHMER L, LIPTON AS, REITZEL K, et al., 2015. Characterization of phosphate sequestration by a lanthanum modified bentonite clay: a solid-state NMR, EXAFS and PXRD study[J]. Environmental Science and Technology, 49(7): 4559-4566.
DOI URL |
[12] |
DOWNING J A, 2014. Limnology and oceanography: Two estranged twins reuniting by global change[J]. Inland Water, 4(2): 215-232.
DOI URL |
[13] |
GALANOPOULOS C, SAZAKLI E, LEOTSINIDIS M, et al., 2013. A pilot-scale study for modeling a free water surface constructed wetlands wastewater treatment system[J]. Journal of Environmental Chemical Engineering, 1(4): 642-651.
DOI URL |
[14] |
GASSMANN G, 1994. Phosphine in the fluvial and marine hydrosphere[J]. Marine Chemistry, 45(3): 197-205.
DOI URL |
[15] |
GILLOR O, HADAS O, POST AF, et al., 2010. Phosphorus and nitrogen in a monomictic freshwater lake: Employing cyanobacterial bioreporters to gain new insights into nutrient bioavailability[J]. Freshwater Biology, 55(6): 1182-1190.
DOI URL |
[16] |
GU B J, JU X T, CHANG J, et al., 2015. Integrated reactive nitrogen budgets and future trends in China[J]. PNAS, 112(28): 8792-9797.
DOI URL |
[17] |
HAO B B, WU H P, LI W, et al., 2020. Periphytic algae mediate interactions between neighbor and target submerged macrophytes along a nutrient gradient[J]. Ecological Indicators, DOI: 10.1016/j.ecolind.2019.105898.
DOI |
[18] |
JI Z G, JIN K R, 2016. An integrated environmental model for a surface flow constructed wetland: Water quality process[J]. Ecological Engineering, 86: 247-261.
DOI URL |
[19] |
JIN X C, WANG S R, CHU J Z, et al., 2008. Organic phosphorus in shallow lake sediments in middle and lower reaches of the Yangtze River Areas in China[J]. Pedosphere, 18(3): 394-400.
DOI URL |
[20] |
KHALIL A M E, ELJAMAL O, AMEN T W M, et al., 2017. Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water[J]. Chemical Engineering Journal, 309: 349-365.
DOI URL |
[21] |
KUROKI V, BOSCO G E, FADINI P S, et al., 2014. Use of a La (Ш)-modified bentonite for effective phosphate removal from aqueous media[J]. Journal of Hazardous Materials, 274: 124-131.
DOI URL |
[22] |
LI D X, ZHANG S H, ADEYL T M, et al., 2020a. Negative effects on the leaves of submerged macrophyte and associated biofilms growth at high nitrate induced-stress[J]. Aquatic Toxicology, DOI: 10.1016/j.aquatox.2020.105559.
DOI |
[23] |
LI Q, GU P, ZHANG H, et al., 2020b. Response of submerged macrophytes and leaf biofilms to the decline phase of Microcystis aeruginosa: antioxidant response, ultrastructure, microbial properties, and potential mechanism[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2019.134325.
DOI |
[24] |
LI R, LI N, HOU J W, et al., 2021. Aquatic environment remediation by atomic layer deposition-based multi-functional materials: A review[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2020.123513.3.
DOI |
[25] |
LI X L, GUO M L, DUAN X D, et al., 2019. Distribution of organic phosphorus species in sediment profiles of shallow lakes and its effect on photo-release of phosphate during sediment resuspension[J]. Environmental International, DOI: 10.1016/j.envint.2019.104916.
DOI |
[26] |
LIANG Z Y, SONRANNO P A, WAGNER T, 2020. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes[J]. Water Research, DOI: 10.1016/j.watres.2020.116236.
DOI |
[27] |
LU H L, KU C R, CHANG Y H, 2015. Water quality improvement with artificial floating islands[J]. Ecological Engineering, 74: 371-375.
DOI URL |
[28] |
MANAP N, VOULVOLIS N, 2015. Environmental management for dredging sediments: The requirement of developing nations[J]. Journal of Environmental Management, 147: 338-348.
DOI URL |
[29] |
MARK B, HANSJORG G, 2016. PH3 as a phosphorus source for phosphinidence-carbene adducts and phosphinidene transition metal complexes[J]. Chimia International Journal for Chemistry, 70(4): 279-283.
DOI URL |
[30] |
MCINTYRE P B, FLECKER A S, VANNI M J, et al., 2008. Fish distributions and nutrient cycling in streams: Can fish create biogechemical hotspots[J]. Ecology, 89(8): 2335-2346.
DOI URL |
[31] |
MEIS S, SPEARS B M, MABERLYY S C, et al., 2012. Sediment amendment with Phoslock in Clatto Reservoir (Dundee, UK): Investigating changes in sediment elemental composition and phosphorus fractionation[J]. Journal of Environmental Management, 93(1): 185-193.
DOI URL |
[32] |
MITROGIANNIS D, PSYCHOYOU M, BAZIOTIS I, et al., 2017. Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite[J]. Chemical Engineering Journal, 320: 510-522.
DOI URL |
[33] |
MURADOV N, TAHA M, MIRANDA A F, et al., 2014. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production[J]. Biotechnol Biofuels, 7: 30
DOI URL |
[34] |
NAJAR I A, 2017. Vermicomposting of aquatic weed: A quick review[J]. Plant Science Today, 4(3): 133-136.
DOI URL |
[35] |
OEHMEN A, LEMOS PC, CARVALHO G, et al., 2007. Advances in enhanced biological phosphorus removal: from micro to macro scale[J]. Water Research, 41(11): 2271-2300.
DOI URL |
[36] |
PANT H K, 2020. Estimation of internal loading of phosphorus in freshwater wetlands[J]. Current Pollution Reports, 6(1): 28-35.
DOI URL |
[37] |
PARK J H, WANG J J, KIM S H, et al., 2017. Phosphate removal in constructed wetland with rapid cooled basic oxygen furnace slag[J]. Chemical Engineering Journal, 327: 713-724.
DOI URL |
[38] |
QIN B Q, PAERL H W, BROOKS J D, et al., 2019. Why lake Taihu continues to be plagued with cyanobacterial blooms through 10-years (2007-2017) efforts[J]. Science Bulletin, 64(6): 354-356.
DOI URL |
[39] |
SCHINDLER D W, CARPENTER S R, CHAPRA S C, et al., 2016. Reducing phosphorus to curb lake eutrophication is a success[J]. Environmental Science & Technology, 50(17): 8923-8929.
DOI URL |
[40] |
SCINTO L J, REDDY K R, 2003. Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland[J]. Aquatic Botany, 77(3): 203-222.
DOI URL |
[41] |
SHANTZ A A, LADD M C, BURKEPILE D E, 2017. Algal nitrogen and phosphorus content drive inter- and intraspecific differences in herbivore grazing on a Caribbean reef[J]. Journal of Experimental Marine Biology and Ecology, 497: 164-171.
DOI URL |
[42] |
SHINOHARA R, HIROKI M, KOHZU A, et al., 2017. Role of organic phosphorus in sediment in a shallow eutrophic lake[J]. Water Resources Research, 53(8): 7175-7189.
DOI URL |
[43] |
SPEARS B M, CARVALHO L, PERKINS R, et al., 2007. Sediment phosphorus cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release[J]. Hydrobiologia, 584(1): 37-48.
DOI URL |
[44] |
STUTTER M I, GRAEBER D, EVANS C D, et al., 2018. Balancing macronutrient stoichiometry to alleviate eutrophication[J]. Science of the Total Environment, 634: 439-447.
DOI URL |
[45] |
SUN C, CHEN L, ZHAI L M, et al., 2018. National-scale evaluation of phosphorus emissions and the related water-quality risk hotspots accompanied by increased agricultural production[J]. Agriculture, Ecosystems and Environment, 267: 33-41.
DOI URL |
[46] |
TANG Q, SHI C H, SHI W M, et al., 2019. Preferable phosphate removal by nano-La (Ⅲ) hydroxides modified mesoporous rice husk biochars: role of the host pore structure and point of zero charge[J]. Science of the Total Environment, 662: 511-520.
DOI URL |
[47] |
TAO Y Q, LU J, 2020. Occurrence of total phosphorus in surface sediments of Chinese lakes and its driving factors and implications[J]. Journal of Hydrology, DOI: 10.1016/j.jhydrol.2019.124345.
DOI |
[48] |
TURP G A, TURP S M, OZDEMIR S, et al., 2021. Vermicomposting of biomass ash with bio-waste for solubilizing nutrients and its effect on nitrogen fixation in common beans[J]. Environmental Technology and Innovation, DOI: 10.1016/j.eti.2021.101691.
DOI |
[49] |
WAN S F, WANG S S, LI Y C, et al., 2017. Functionalizing biochar with Mg-Al and Mg-Fe layered double hydroxides for removal of phosphate from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 47: 246-253.
DOI URL |
[50] |
WANG H, WANG X, WANG S M, et al., 2014. Purification efficiency of compound aquatic plants for the eutrophic water body[J]. Applied Mechanics and Materials, 675-677: 430-433.
DOI URL |
[51] |
WANG X, WANG S, ZHAO J, et al., 2016. Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment[J]. Bioresource Technology, 220: 17-25.
DOI URL |
[52] |
WEN Z, ZHANG Y, DAI C, 2014. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457: 433-440.
DOI URL |
[53] | WILLIAMS J D H, JAQUET J, THOMAS R L, 1976. Forms of phosphorus in the surficial sediments of Lake Erie[J]. Journal of Fish Resboard Canada, 33(3): 413-429. |
[54] |
WORSFOLD P J, MONBET P, TAPPIN A D, et al., 2008. Characteristic and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A review[J]. Analytica Chimica Acta, 624(1): 37-58.
DOI URL |
[55] |
YAMADA T M, SUEITT A P E, BERALDO A S, et al., 2012. Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir: Microcosm experiments[J]. Water Research, 46(19): 6463-6475.
DOI URL |
[56] |
YAN K, YUAN Z W, GOLDBERG S, et al., 2019. Phosphorus mitigation remains critical in water protection: A review and meta-analysis from one of China's most eutrophicated lakes[J]. Science of the Total Environment, 689: 1336-1347.
DOI URL |
[57] |
YANG Y, ZHAO Y Q, TANG C, et al., 2020. Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2019.123708.
DOI |
[58] |
YIN H B, KONG M, FAN C X, 2013. Batch investigations on P immobilization from wastewaters and sediment using natural calcium rich sepiolite as a reactive material[J]. Water Research, 47(13): 4247-4258.
DOI URL |
[59] |
ZHAN Y H, WU X L, LIN J W, 2020. Combined use of calcium nitrate, zeolite, and anion exchange resin for controlling phosphorus and nitrogen release from sediment and for overcoming disadvantage of calcium nitrate addition technology[J]. Environmental Science and Pollution Research, 27(20): 24863-24878.
DOI URL |
[60] |
ZHANG M, SONG G, GELARDI D L, et al., 2020. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water[J]. Water Research, DOI: 10.1016/j.watres.2020.116303.
DOI |
[61] |
ZHANG W Q, JIN X, MENG X, et al., 2018. Phosphorus transformations at the sediment-water interface in shallow freshwater ecosystems caused by decomposition of plant debris[J]. Chemosphere, 201: 328-334.
DOI URL |
[62] |
ZHANG W Z, GU P, ZHENG X W, et al., 2021. Ecological damage of submerged macrophytes by fresh cyanobacteria (FC) and cyanobacterial decomposition solution (CDS)[J]. Journal of Hazardous Materials, DOI: 10.1016/j.jhazmat.2020.123372.
DOI |
[63] |
ZHANG Y, WANG C, HE F, et al., 2016. In-situ absorption-biological combined technology treating sediment phosphorus in all fractions[J]. Scientific Reports, DOI: 10.1038/srep29725.
DOI |
[64] |
ZHOU Y W, ZHOU X H, HAN R M, et al., 2017. Reproduction capacity of Potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes[J]. Science of the Total Environment, 580: 1421-1428.
DOI URL |
[65] | 鲍林林, 李叙勇, 2017. 河流沉积物磷的吸附释放特征及其影响因素[J]. 生态环境学报, 26(2): 350-356. |
BAO L L, LI X Y, 2017. Release and absorption characteristics of phosphorus in river sediment and their influential factors[J]. Ecology and Environmental Sciences, 26(2): 350-356. | |
[66] | 薄涛, 季民, 2017. 内源污染控制技术研究进展[J]. 生态环境学报, 26(3): 514-521. |
BO T, JI M, 2017. The advance of control techniques for internal pollution[J]. Ecology and Environmental Sciences, 26(3): 514-521. | |
[67] | 边德军, 聂泽兵, 王帆, 等, 2019. 污水处理中磷化氢的释放及其研究现状[J]. 长春工程学院学报 (自然科学版), 20(4): 70-75. |
BIAN D J, NIE Z B, WANG F, et al., 2019. The research status to the release of phosphine in biological treatment of sewage[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 20(4): 70-75. | |
[68] | 蔡永久, 薛庆举, 陆永军, 等, 2015. 长江中下游浅水湖泊5种常见底栖动物碳、氮、磷化学计量特征[J]. 湖泊科学, 27(1): 76-85. |
CAI Y J, XUE Q J, LU Y J, et al., 2015. C:N:P stoichiometry of five common macrozoobenthic taxa in shallow lakes along the Yangtze River[J]. Journal of Lake Science, 27(1): 76-85. | |
[69] | 常雅军, 姚东瑞, 韩士群, 等, 2017. 基于基质吸附法与生物协同作用的强化生态浮岛对不同富营养化水体的净化效果[J]. 江苏农业学报, 33(2): 346-352. |
CHANG Y J, YAO D R, HAN S Q, et al., 2017. Purification effect of floating bed on different eutrophic water bodies based on substrate absorption and bio-cooperation effect[J]. Jiangsu Journal of Agricultural Sciences, 33(2): 346-352. | |
[70] | 陈俊, 李勇, 李大鹏, 等, 2016. 藻类与扰动共存下水体中不同形态磷的数量分布规律[J]. 环境科学, 37(4): 1413-1421. |
CHEN J, LI Y, LI D P, et al., 2016. Distribution of phosphorus forms in the overlying water under disturbance with the addition of algae[J]. Environmental Science, 37(4): 1413-1421. | |
[71] | 陈敏, 2021. 基于湖区差异的磷形态特征[D]. 呼和浩特: 内蒙古大学. |
CHEN M, 2021. Characteristics of phosphorus fractions based on lake ecoregions differences[D]. Huhehot: Inner Mongolia University. | |
[72] | 陈琦, 王和云, 2020. 钙离子添加对沉水植物菹草 (Potamogeton crispus L.) 和金鱼藻 (Ceratophyllum demersum L.) 富集水体磷的影响[J]. 湖泊科学, 32(2): 406-416. |
CHEN Q, WANG H Y, 2020. Effect of calcium addition on phosphorus enrichment capacity of two submerged plants (Potamogeton crispus L. and Potamogeton crispus L.) in water bodies[J]. Journal of Lake Sciences, 32(2): 406-416.
DOI URL |
|
[73] | 陈巧玲, 林晓葱, 宫本涛, 等, 2019. 12种水生植物对氨氮和总磷的净化效果研究[J]. 福建农业科技, 1(1): 44-49. |
CHEN Q L, LIN X C, GONG B T, et al., 2019. Study on purification effect of 12 aquatic plants on ammonia nitrogen and total phosphorus. Fujian Agricultural Science and Technology, 1(1): 44-49. | |
[74] | 陈小远, 胡友彪, 郑永红, 等, 2020. 6种水生植物及其组合对模拟污水中磷的净化效果[J]. 水土保持通报, 40(1): 99-107. |
CHEN X Y, HU Y B, ZHENG Y H, et al., 2020. Purification effects of six aquatic plants and their combinations on phosphorus in simulated sewage[J]. Bulletin of Soil and Water Conservation, 40(1): 99-107. | |
[75] | 陈照方, 陈凯, 杨司嘉, 等, 2019. 水生植物对淡水生态系统的修复效果[J]. 分子植物育种, 17(13): 4501-4506. |
CHEN Z F, CHEN K, YANG S J, 2019. Analysis of remediation effect of aquatic plants on freshwater ecosystem[J]. Molecular Plant Breeding, 17(13): 4501-4506. | |
[76] | 成水平, 王月圆, 吴娟, 2019. 人工湿地研究现状与展望[J]. 湖泊科学, 31(6): 1489-1498. |
CHENG S P, WANG Y Y, WU J, 2019. Advances and prospect in the studies on constructed wetlands[J]. Journal of Lake Sciences, 31(6): 1489-1498.
DOI URL |
|
[77] | 代兵, 谭长银, 曹雪莹, 等, 2019. 荷梗生物炭理化性质及其对水体Cd的吸附机制[J]. 环境科学研究, 32(3): 513-522. |
DAI B, TAN C Y, CAO X Y, et al., 2019. Physicochemical properties of biochar derived from Lotus petiole and its adsorption mechanism of cadmium in aqueous solution[J]. Research of Environmental Sciences, 32(3): 513-522. | |
[78] | 邸攀攀, 张力, 王岩, 等, 2015. 微生物固定化技术对污水中微生物丰度变化的影响[J]. 生态与农村环境学报, 31(6): 942-949. |
DI P P, ZHANG L, WANG Y, et al., 2015. Effect of microorganism immobilization techniques on microorganism abundances in polluted ponds[J]. Journal of Ecology and Rural Environment, 31(6): 942-949. | |
[79] | 杜彦良, 张双虎, 王利军, 等, 2019. 人工湿地植物水质净化作用的数值模拟研究[J]. 水利学报, 51(6): 675-684. |
DU Y L, ZHANG S H, WANG L J, et al., 2019. Numerical simulation of water purification effects of aquatic plant in artificial surface flow wetland[J]. Journal of Hydraulic Engineering, 51(6): 675-684. | |
[80] | 杜奕衡, 2019. 鱼类滤食与植物净化协同下藻华削减及氮磷迁移研究[D]. 合肥: 安徽农业大学. |
DU Y H, 2019. Study on the reduction of algal bloom and migration of nitrogen and phosphorus under the cooperation of ish filter-feeding and plant purification[D]. Hefei: Anhui Agricultural University. | |
[81] | 范成新, 钟继承, 张路, 等, 2020. 湖泊底泥环保疏浚决策研究进展与展望[J]. 湖泊科学, 32(5): 1254-1277. |
FAN C X, ZHONG J C, ZHANG L, et al., 2020. Research progress and prospect of environmental dredging decision-making of lake sediment[J]. Lake Science, 32(5): 1254-1277. | |
[82] | 甘磊, 钟萍, 苏玲, 等, 2019. 镧改性膨润土对浅水湖泊水体磷浓度和沉积物磷形态的影响[J]. 湖泊科学, 31(5): 1219-1228. |
GAN L, ZHONG P, SU L, et al., 2019. Effects of lanthanum modified bentonite on the water phosphorus concentration and sediment phosphorus form in a shallow eutrophic lake[J]. Journal of Lake Sciences, 31(5): 1219-1228.
DOI URL |
|
[83] | 郭建, 崔理华, 2020. 生态塘水生植物对受污染河水中氮磷的净化效果研究[J]. 环境科学导刊, 39(1): 24-27. |
GUO J, CUI L H, 2020. Study on nitrogen and phosphorus purification effect of polluted river water by aquatic plants in ecological ponds[J]. Environmental Science Survey, 39(1): 24-27. | |
[84] | 郭雅倩, 薛建辉, 吴永波, 等, 2020. 沉水植物对富营养化水体的净化作用及修复技术研究进展[J]. 植物资源与环境学报, 29(3): 58-68. |
GUO Y Q, XUE J H, WU Y B, et al., 2020. Research progress on purification effects and restoration technologies of submerged macrophytes on eutrophic water[J]. Journal of Plant Resources and Environment, 29(3): 58-68. | |
[85] | 何思琪, 张薇, 林建伟, 等, 2018. 锆改性沸石添加对重污染河道底泥磷释放和钝化的影响[J]. 环境科学, 39(9): 4139-4188. |
HE S Q, ZHANG W, LIN J W, et al., 2018. Effect of zirconium-modified zeolite addition on phosphorus release and immobilization in heavily polluted river sediment[J]. Environmental Science, 39(9): 4139-4188. | |
[86] | 晓东, 王俊, 吴苏舒, 等, 2020. 江苏省湖泊水生植物优势种对氮、磷去除效果比较研究[J]. 中国农村水利水电 (2): 48-51. |
HU X D, WANG J, WU S S, et al., 2020. Research on nitrogen and phosphorus removal efficiency of dominant species of aquatic plants in lakes of Jiangsu Province[J]. China Rural Water and Hydropower (2): 48-51. | |
[87] | 黄蓉, 杨文斌, 程俊杰, 等, 2019. 菹草和伊乐藻对水-沉积物界面磷迁移转化的影响[J]. 环境科学研究, 32(7): 1204-1212. |
HUANG R, YANG W B, CHENG J J, et al., 2019. Effects of Potamogeton crispus L. and Elodea nuttallii on phosphorus migration and transformation between water and sediment[J]. Research of Environmental Science, 32(7): 1204-1212. | |
[88] | 黄翔峰, 王坤, 陈国鑫, 等, 2015. 水生动植物组合对水产养殖废水的净化能力[J]. 水处理技术, 41(2): 62-66. |
HUANG X F, WANG K, CHEN G X, et al., 2015. The capacity for purifying aquaculture wastewater by aquatic plants and aquatic filter feeders[J]. Technology of Water Treatment, 41(2): 62-66. | |
[89] | 李彬, 宁平, 陈玉保, 等, 2005. 氧化镧改性沸石除磷脱氮研究[J]. 武汉理工大学学报, 27(9): 56-59. |
LI B, NING P, CHEN Y B, et al., 2005. Nitrogen and phosphate removal by activated zeolite with lanthana[J]. Journal of Wuhan University of Technology, 27(9): 56-59. | |
[90] | 李静, 赵婧娴, 廉鑫, 等, 2021. 基于CiteSpace的磷形态研究进展及前沿分析[J]. 环境生态学, 3(6): 85-91. |
LI J, ZHAO J X, LIAN X, et al., 2021. Research progress and frontier of phosphorus speciation based on CiteSpace[J]. Environmental Ecology, 3(6): 85-91. | |
[91] | 刘海琴, 邱园园, 闻学政, 等, 2018. 4种水生植物深度净化村镇生活污水厂尾水效果研究[J]. 中国生态农业学报, 26(4): 616-626. |
LIU H Q, QIU Y Y, WEN X Z, et al., 2018. The deep purification of four aquatic macrophytes for tailrace of rural sewage treatment plants[J]. Chinese Journal of Eco-Agriculture, 26(4): 616-626. | |
[92] | 刘舒蕾, 彭慧君, 杨佳怡, 等, 2019. 水生植物生物炭去除水体中氮磷性能[J]. 环境科学, 40(11): 4980-4986. |
LIU S L, PENG H J, YANG J Y, et al., 2019. Removal of nitrogen and phosphorus from water by biomass carbon of aquatic plants[J]. Environmental Science, 40(11): 4980-4986. | |
[93] | 刘晓玲, 徐瑶瑶, 宋晨, 等, 2019. 城市黑臭水体的治理技术及措施分析[J]. 环境工程学报, 13(3): 519-529. |
LIU X L, XU Y Y, SONG C, et al., 2019. Analysis of treatment technologies and measures for the urban black-stinking water body[J]. Chinese Journal of Environmental Engineering, 13(3): 519-529. | |
[94] | 李莹杰, 王丽婧, 李虹, 等, 2019. 不同水期洞庭湖水体中磷分布特征及影响因素[J]. 环境科学, 40(5): 2170-2177. |
LI Y J, WANG L J, LI H, et al., 2019. Distribution characteristics and influencing factors of phosphorus in the Dongting Lake at different water periods[J]. Environmental Science, 40(5): 2170-2177. | |
[95] | 刘义满, 何卫东, 2012. 关于提高莲产业效益的建议[J]. 长江蔬菜 (学术版) (16): 134-137. |
LIU Y M, HE W D, 2012. Suggestions on improving industrial benefit of Asia Lotus (Nelumbo nucifera Gaertn.)[J]. Journal of Changjiang Vegetables (16): 134-137. | |
[96] | 刘子森, 张义, 王川, 等, 2018. 改性膨润土和沉水植物联合作用处理沉积物磷[J]. 中国环境科学, 38(2): 665-674. |
LIU Z S, ZHANG Y, WANG C, et al., 2018. Synergistic removal of sediment P by combining the modified bentonite and Callisneria spiralis[J]. China Environmental Science, 38(2): 665-674. | |
[97] | 吕小央, 张松贺, 刘凯辉, 等, 2015. 水生植物-生物膜体系的生态功能与互作机制研究进展[J]. 水资源保护, 31(2): 20-25. |
LÜ X Y, ZHANG S H, LIU K H, et al., 2015. Advances in ecological function and interaction mechanism of aquatic macrophyte-biofilm system[J]. Water Resources Protection, 31(2): 20-25. | |
[98] |
马晓阳, 牛凤霞, 肖尚斌, 等, 2021. 高磷沉积物有机磷形态及释放动力学特征研究--以宜昌西北口水库为例[J]. 中国环境科学, DOI: 10.19674/j.cnki.issn1000-6923.20210709.009.
DOI |
MAO X Y, NIU F X, XIAO S B, et al., 2021. Distribution and release kinetics of organic phosphorus in phosphorus-rich sediments: a case study of Xibeikou Reservoir in Yichang[J]. China Environmental Science, DOI: 10.19674/j.cnki.issn1000-6923.20210709.009.
DOI |
|
[99] | 孟顺龙, 胡庚东, 瞿建宏, 等, 2012. 镧/铝改性沸石去除富营养化水体中磷的研究[J]. 生态环境学报, 21(11): 1875-1880. |
MENG S M, HU G S, QU J H, et al., 2012. Effect of lanthanum/aluminum-modified zeolite on phosphorus removal form eutrophic water[J]. Ecology and Environmental Sciences, 21(11): 1875-1880. | |
[100] | 闵奋力, 左进城, 刘碧云, 等, 2016. 穗状狐尾藻与不同生长期苦草种间竞争研究[J]. 植物科学学报, 34(1): 47-55. |
MIN F L, ZUO J C, LIU B Y, et al., 2016. Competition between Myriophyllum spicatum L. and Vallisneria natans (Lour.) Hara at different growth stages[J]. Plant Science Journal, 34(1): 47-55. | |
[101] | 牛晓君, 耿金菊, 王晓蓉, 2004. 太湖水域PH3的时空变化特征[J]. 环境科学学报, 24(2): 255-259. |
NIU X J, GENG J J, WANG X R, 2004. Temporal and spatial distributions of phosphine in Taihu Lake[J]. Acta Scientiae Circumstantiae, 24(2): 255-259. | |
[102] | 齐延凯, 孟顺龙, 范立民, 等, 2019. 湖泊生态修复技术研究进展[J]. 中国农学通报, 35(26): 84-93. |
QI Y K, MENG S L, FAN L M, et al., 2019. Ecological restoration technology of lakes: Research progress[J]. Chinese Agricultural Science Bulletin, 35(26): 84-93 | |
[103] | 钱燕, 陈正军, 吴定心, 等, 2016. 微生物活动对富营养化湖泊底泥磷释放的影响[J]. 环境科学与技术, 39(4): 35-40. |
QIAN Y, CHEN Z J, WU D X, et al., 2016. Effects of microorganisms on phosphorus release from sediment of eutropic lake[J]. Environmental Science and Technology, 39(4): 35-40. | |
[104] | 沈宏, 宋立荣, 周培疆, 等, 2007. 有机磷农药对滇池微囊藻生长和摄磷效应的影响[J]. 水生生态学报, 31(6): 863-868. |
SHEN H, SONG L R, ZHOU P J, et al., 2007. Kintic studies on the effects of organophosphorus pesticides on the growth of Microcystis aeruginosa and the uptake of phosphorus forms by microcystis aeruginosa in Dianchi Lake[J]. Acta Hydrobiologica Sinica, 31(6): 863-868. | |
[105] | 宋小敏, 唐婉莹, 韩士群, 2016. 除磷菌筛选及除磷效果和磷去向分析[J]. 江苏农业学报, 32(2): 362-367. |
SONG X M, TANG W Y, HAN S Q, 2016. Effects and screening of dephosphorization bacteria on phosphorus removal and the whereabouts of phosphorus[J]. Jiangsu Journal of Agricultural Science, 32(2): 362-367. | |
[106] | 孙亮, 2012. 磷化氢的释放机理及其过程研究[D]. 广州: 广州大学. |
SUN L, 2012. Study on mechanism and process of the phosphine released[D]. Guangzhou: Guangzhou University. | |
[107] | 谭舒波, 徐丽, 刘潇锋, 2021. 氮磷前体物质对磷酸盐还原系统产气效能的影响[J]. 环境工程, 39(2): 61-65. |
TAN S B, XU L, LIU X F, 2021. Effects of nitrogen and phosphorus precursors on gas production efficiency of phosphate reduction systems[J]. Environmental Engineering, 39(2): 61-65. | |
[108] | 童雄, 罗沛, 刘锋, 等, 2019. 绿狐尾藻分解及其氮磷释放特征[J]. 环境科学, 40(7): 3118-3125. |
TONG X, LUO P, LIU F, et al., 2019. Decomposition of Myriophyllum aquaticum and the associated release of nitrogen and phosphorus[J]. Environmental Science, 40(7): 3118-3125.
DOI URL |
|
[109] | 王洪铸, 王海军, 李艳, 等, 2020. 湖泊富营养化治理:集中控磷,或氮磷皆控?[J]. 水生生物学报, 44(5): 938-960. |
WANG H Z, WANG H J, LI Y, et al., 2020. The control of lake eutrophication: focusing of phosphorus abatement, or reducing both phosphorus and nitrogen?[J]. Acta Hydrobiologica Sinica, 44(5): 938-960. | |
[110] | 王硕, 2021. 人工湿地磷化氢产生特征及其对湿地除磷的影响机制研究[D]. 济南: 山东大学. |
WANG S, 2021. Characteristics of phosphine production in constructed wetlands and its effect on phosphorus removal of wetlands[D]. Ji'nan: Shangdong University. | |
[111] | 吴根林, 2019. 蚌湖磷形态分布特征及生物有效性研究[D]. 南昌: 南昌大学. |
WU G L, 2019. Distribution characteristics of phosphorus speciation and bioavailability in Banghu Lake[D]. Nanchang: Nanchang University. | |
[112] | 吴露, 陈向, 刘锋, 等, 2020. 3种Ca(OH)2改性材料对水体磷的吸附特征研究[J]. 水处理技术, 46(3): 50-55. |
WU L, CHEN X, LIU F, et al., 2020. Study on phosphorus adsorption characteristics from water by three kinds of Ca(OH)2 modified materials[J]. Technology of Water Treatment, 46(3): 50-55. | |
[113] | 吴桢, 吴思枫, 刘永, 等, 2018. 湖泊氮磷循环的关键过程与定量识别方法[J]. 北京大学学报 (自然科学版), 54(1): 218-228. |
WU Z, WU S F, LIU Y, et al., 2018. Key processes and mechanisms of nitrogen and phosphorus cycling in Lakes[J]. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Sciences Edition), 54(1): 218-228. | |
[114] | 谢朦, 张飞, 章莹颖, 等, 2016. 3种浮萍对富营养化水体的修复[J]. 环境工程学报, 10(5): 2447-2453. |
XIE M, ZHANG F, ZHANG Y Y, et al., 2016. Effect of three duckweed species on remediation of eutrophic water[J]. Chinese Journal of Environmental Engineering, 10(5): 2447-2453. | |
[115] | 徐敏, 张涛, 王东, 等, 2019. 中国水污染防治40年回顾与展望[J]. 中国环境管理, 11(3): 65-71. |
XU M, ZHANG T, WANG D, et al., 2019. Review and prospect of water pollution prevention and control of China in the forty years of reform and opening-up[J]. Chinese Journal of Environmental Management, 11(3): 65-71. | |
[116] | 薛欢, 2007. 城市湖泊引清调水数值模拟与调度模式研究[D]. 南京: 河海大学. |
XUE H, 2007. Research on clean water diversion numeric simulation and water diversion scheme in urban lake[D]. Nanjing: Hohai University. | |
[117] | 杨柳燕, 杨欣妍, 任丽曼, 等, 2019. 太湖蓝藻水华暴发机制与控制对策[J]. 湖泊科学, 31(1): 18-27. |
YANG L Y, YANG X Y, REN L M, et al., 2019. Mechanism and control strategy of cyanobacterial bloom in Lake Taihu[J]. Journal of Lake Sciences, 31(1): 18-27.
DOI URL |
|
[118] | 游凯, 封磊, 范立维, 等, 2020. 磁铁锆改性牡蛎壳对水体磷的控释行为研究[J]. 环境科学学报, 40(7): 2486-2495. |
YOU K, FENG L, FAN L W, et al., 2020. The controlled release of phosphorus in water by magnet zirconium modified oyster shell[J]. Acta Scieniae Circumstantiae, 40(7): 2486-2495. | |
[119] | 俞阳, 林建伟, 詹艳慧, 等, 2019. 静止和水动力扰动下皓改性沸石添加对河道底泥磷迁移转化的影响[J]. 环境科学, 40(3): 329-338. |
YU Y, LIN J W, ZHAN Y H, et al., 2019. Effect of zirconium-modified zeolite addition on migration and transformation of phosphorus in river sediments under static and hydrodynamic disturbance conditions[J]. Environmental Science, 40(3): 329-338. | |
[120] | 余佑金, 方向京, 王圣瑞, 等, 2017. 滇池水体不同形态磷负荷时空分布特征[J]. 湖泊科学, 29(1): 59-68. |
YU Y J, FANG X J, WANG S R, et al., 2017. Spatial and temporal distribution patterns of loadings of different phosphorous forms in Lake Dianchi[J]. Journal of Lake Sciences, 29(1): 59-68.
DOI URL |
|
[121] | 张洛红, 朱钰, 李宗睿, 等, 2021. 有机磷酸酯污染现状及其生物富集和生物转化研究进展[J]. 环境化学, 40(8): 2355-2370. |
ZHANG L H, ZHU Y, LI Z R, et al., 2021. Pollution status, bioaccumulation and biotransformation of organophosphate esters: A review[J]. Environmental Chemistry, 40(8): 2355-2370. | |
[122] | 张帅, 李大鹏, 丁玉琴, 等, 2020. 过氧化钙复合片剂对水体修复和底泥磷控制的作用[J]. 环境科学, 41(6): 2706-2713. |
ZHANG S, LI D P, DING Y Q, et al., 2020. Effect of calcium peroxide composite tablets on water remediation and phosphorus control in sediment[J]. Environmental Science, 41(6): 2706-2713. | |
[123] | 张文斌, 董昭皆, 徐书童, 等, 2019. 微生物和藻类分解对荣成天鹅湖沉积物氮磷释放的影响[J]. 海洋环境科学, 38(4): 561-567. |
ZHANG W B, DONG Z J, XU S T, et al., 2016. Effects of microorganism and algal decomposition on nitrogen and phosphorus release from the sediments in Rongcheng Swan lake[J]. Marine Environmental Science, 39(4): 35-40. | |
[124] | 张晓燕, 2017. 新型高效生物膜与水生植物组合技术净化湖泊水体效果研究[D]. 南京: 东南大学. |
ZHANG X Y, 2017. Study on the effect of a new type of high efficient biofilm and aquatic plant combination technology for the purification of landscape sewage[D]. Nanjing: University of South China. | |
[125] | 郑培儒, 李春华, 叶春, 等, 2021. 镜泊湖沉积物各形态磷分布特征及释放贡献[J]. 中国环境科学, 41(2): 883-890. |
ZHOU P R, LI C H, YE C, et al., 2021. Distribution characteristics and release contribution of different phosphorus forms in sediments of Jingpo Lake[J]. China Environmental Science, 41(2): 883-890. | |
[126] | 周康群, 刘晖, 崔英德, 等, 2008. 一株新的厌氧除磷功能菌株的鉴定与活性[J]. 化工学报, 59(6): 1522-1530. |
ZHOU K Q, LIU H, CUI D Y, et al., 2008. Identification of a novel anaerobic dephosphorization bacterial strain and its activity in phosphate removal under anaerobic condition[J]. Journal of Chemical Industry and Engineering (China), 59(6): 1522-1530. | |
[127] | 周楠楠, 王赢, 高顺峰, 等, 2021. 两种不同根系特征沉水植物对沉积物剖面不同形态磷的影响[J]. 环境科学学报, 41(6): 2222-2228. |
ZHOU N N, WANG Y, GAO S F, et al., 2021. Effects of two submerged macrophtes with different root systems on different fractions of phosphorus in sediment profiles[J]. Acta Scientiae Cticumstantiae, 41(6): 2222-2228. | |
[128] | 周银, 许丹, 肖恩荣, 等, 2016. 水生植物能源化利用技术与方法研究进展[J]. 环境科学与技术, 39(11): 118-126. |
ZHOU Y, XU D, XIAO E R, et al., 2016. Progress on the technology and methods of the energy utilization of aquatic plants[J]. Environmental Science and Technology, 39(11): 118-126. | |
[129] | 周玥, 韩玉国, 张梦, 等, 2016. 4种不同生活型湿地植物对富营养化水体的净化效果[J]. 应用生态学报, 27(10): 3353-3360. |
ZHOU Y, HAN Y G, ZHANG M, et al., 2016. Purification efficiency of four different ecotypes of wetland plants on eutrophic water body[J]. Chinese Journal of Applied Ecology, 27(10): 3353-3360. | |
[130] | 朱广伟, 秦伯强, 张运林, 等, 2021. 近70年来太湖水体磷浓度变化特征及未来控制策略[J]. 湖泊科学, 33(4): 957-973. |
ZHU G W, QIN B Q, ZHANG Y L, et al., 2021. Fluctuation of phosphorus concentration in Lake Taihu in the past 70 years and future control strategy[J]. Journal of Lake Sciences, 33(4): 957-973.
DOI URL |
|
[131] | 朱广伟, 许海, 朱梦圆, 等, 2019. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素[J]. 湖泊科学, 31(6): 1510-1524. |
ZHU G W, XU H, ZHU M Y, 2019. Changing characteristics and driving factors of trophic state of lakes in the middle and lower reaches of Yangtze River in the past 30 years[J]. Journal of Lake Sciences, 31(6): 1510-1524.
DOI URL |
|
[132] | 朱广伟, 邹伟, 国超旋, 等, 2020. 太湖水体磷浓度与赋存量长期变化(2005-2018年) 及其对未来磷控制目标管理的启示[J]. 湖泊科学, 32(1): 21-35. |
ZHU G W, ZOU W, GUO C X, et al., 2020. Long-term variations of phosphorus concentration and capacity in Lake Taihu, 2005-2018: Implications for future phosphorus reduction target management[J]. Journal of Lake Sciences, 32(1): 21-35.
DOI URL |
|
[133] | 宗小香, 闵梦月, 孙广芳, 等, 2016. 铁-碳内电解质下4种水生植物的净化效果[J]. 应用生态学报, 27(7): 2084-2090. |
ZONG X X, MIN M Y, SUN G Q, et al., 2016. Water purification of four aquatic plant species with the presence of iron-carbon interior electrolytic substrates[J]. Chinese Journal of Applied Ecology, 27(7): 2084-2090. |
[1] | 贺斌, 胡茂川. 广东省各区县农业面源污染负荷估算及特征分析[J]. 生态环境学报, 2022, 31(4): 771-776. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||