生态环境学报 ›› 2023, Vol. 32 ›› Issue (11): 2030-2040.DOI: 10.16258/j.cnki.1674-5906.2023.11.013
收稿日期:
2022-07-20
出版日期:
2023-11-18
发布日期:
2024-01-17
通讯作者:
*作者简介:
刘安(1983年生),女,副教授,博士,主要从事城市环境污染治理及生态修复等研究。E-mail: liuan@szu.edu.cn
基金资助:
Received:
2022-07-20
Online:
2023-11-18
Published:
2024-01-17
摘要:
塑料在自然环境中降解缓慢,塑料污染物的积累不可避免地成为人们关注的问题。尺寸微小的塑料被定义为纳米塑料(NPs)。虽然NPs的尺寸尚存在争议,但与其他工程纳米颗粒类似,NPs可造成多种不利的环境影响。NPs的存在和在生物体内的积累会对生物体产生一系列毒性效应,影响生物体的生长、繁殖和内分泌系统等。因此,NPs对包括人类在内的较多生物都构成威胁。尽管NPs污染已成为最令人关注的环境问题之一,但目前有关NPs对土壤环境及生物体的毒害效应等的研究仍然较少。旨在综述NPs本身的毒害效应(包括其中的添加剂)、降解产物和与其他环境污染物(有机污染物、无机污染物)耦合后的复合毒性以及NPs对陆生生态环境,包括植物、动物以及土壤产生的综合影响,并总结本领域内的研究现状和不足。主要的研究不足包括对经过降解等过程形成的次级NPs的毒性效应尚未深入开展,NPs对真实生物体的影响研究仍具有局限性,针对环境-NPs-生物-污染物的交互耦合机制对土壤环境的毒害效应仍需进一步探究。针对这些研究不足开展相应的科研探究工作能为全面科学地评价NPs的生态风险提供理论支撑。
中图分类号:
刘安, 吴昊, 何贝贝. 陆地环境中纳米塑料毒性效应的研究进展[J]. 生态环境学报, 2023, 32(11): 2030-2040.
LIU An, WU Hao, HE Beibei. Toxic Effects of Nanoplastics on Terrestrial Environment: A Review[J]. Ecology and Environment, 2023, 32(11): 2030-2040.
影响部位 | 影响效果 | 参考文献 |
---|---|---|
血管 | NPs很可能通过血液转移至其他组织或器官,尺寸较大的NPs可能会聚集或沉积,从而堵塞毛细血管,影响血液运输氧气 | Lett et al., Leslie et al., |
睾丸 | NPs会使睾丸萎缩、精子上皮的蒸泡化、Sertoli细胞屏障(血睾丸屏障)的混乱/破坏或渗透性增加;诱使精子头畸形、无尾、小头、杂交体丢失、卷曲或精子肿胀;引发促炎症和促氧化事件,以及雄性和雌性动物性激素水平失衡 | Marcelino et al., |
免疫系统 | 碱性磷酸酶(ACP)、酸性磷酸酶(AKP)、苯并氧化酶(PO)等免疫相关酶的活性下降,NPs会抑制溶酶体释放ACP和AKP,并影响免疫防御。随着NPs浓度的增加,外部应激程度超过幼虾免疫防御系统的能力,免疫酶活性下降,免疫系统受损。ROS水平升高。高ROS水平会导致脂质过氧化和膜损伤,脂质过氧化会抑制抗氧化相关基因的表达,并破坏抗氧化防御系统 | Li et al., |
肝脏 | 造成肝细胞坏死、浸润和脂质飞沫,引起肝脏炎症和脂质积累;扰乱了肝脏的代谢组谱,改变脂质代谢和能量代谢过程,使体内胆碱、磷胆碱和胆固醇含量发生改变,从而影响动物的脂肪累积 | Lu et al., |
胎盘 | NPs可能会改变胎盘中的几种细胞调节途径,如怀孕期间的免疫机制、胚胎和子宫之间的信号传导,以及正常怀孕期间子宫树突状细胞、T细胞和巨噬细胞的转运。这些影响都可能导致不良妊娠结局,包括子痫前期和胎儿生长限制 | Ragusa et al., |
心肌细胞 | NPs对心肌细胞的兴奋-收缩偶联、血浆膜和线粒体功能有不利影响;NPs会显著降低细胞内钙水平、线粒体膜电位、细胞代谢和心肌细胞的收缩力,这最终可能导致体内致命的心力衰竭;PS-NPs会吸附到心肌细胞的血浆膜上,干扰Ca2+转移,影响细胞内外Ca2+平衡,从而影响心机收缩能力;PS-NPs破坏糖酵解稳态,使基底氧消耗率和ATP生产能力明显降低。此外,低线粒体膜电位可能会降低肌质网(SR)Ca2+-ATP酶活性,这可能导致SR内部Ca2+含量和心脏收缩性降低 | Roshanzadeh et al., |
神经系统 | NPs分散在小鼠大脑中,包括皮层、海马体、SNC和纹状体;PS-NPs会使神经元细胞繁殖能力下降,甚至凋亡;诱发神经元线粒体功能障碍和能量代谢障碍 | Jung et al., Liang et al., |
表1 NPs的易位及对各个器官的毒理效应
Table 1 Translocation of NPs and toxic effects on organs
影响部位 | 影响效果 | 参考文献 |
---|---|---|
血管 | NPs很可能通过血液转移至其他组织或器官,尺寸较大的NPs可能会聚集或沉积,从而堵塞毛细血管,影响血液运输氧气 | Lett et al., Leslie et al., |
睾丸 | NPs会使睾丸萎缩、精子上皮的蒸泡化、Sertoli细胞屏障(血睾丸屏障)的混乱/破坏或渗透性增加;诱使精子头畸形、无尾、小头、杂交体丢失、卷曲或精子肿胀;引发促炎症和促氧化事件,以及雄性和雌性动物性激素水平失衡 | Marcelino et al., |
免疫系统 | 碱性磷酸酶(ACP)、酸性磷酸酶(AKP)、苯并氧化酶(PO)等免疫相关酶的活性下降,NPs会抑制溶酶体释放ACP和AKP,并影响免疫防御。随着NPs浓度的增加,外部应激程度超过幼虾免疫防御系统的能力,免疫酶活性下降,免疫系统受损。ROS水平升高。高ROS水平会导致脂质过氧化和膜损伤,脂质过氧化会抑制抗氧化相关基因的表达,并破坏抗氧化防御系统 | Li et al., |
肝脏 | 造成肝细胞坏死、浸润和脂质飞沫,引起肝脏炎症和脂质积累;扰乱了肝脏的代谢组谱,改变脂质代谢和能量代谢过程,使体内胆碱、磷胆碱和胆固醇含量发生改变,从而影响动物的脂肪累积 | Lu et al., |
胎盘 | NPs可能会改变胎盘中的几种细胞调节途径,如怀孕期间的免疫机制、胚胎和子宫之间的信号传导,以及正常怀孕期间子宫树突状细胞、T细胞和巨噬细胞的转运。这些影响都可能导致不良妊娠结局,包括子痫前期和胎儿生长限制 | Ragusa et al., |
心肌细胞 | NPs对心肌细胞的兴奋-收缩偶联、血浆膜和线粒体功能有不利影响;NPs会显著降低细胞内钙水平、线粒体膜电位、细胞代谢和心肌细胞的收缩力,这最终可能导致体内致命的心力衰竭;PS-NPs会吸附到心肌细胞的血浆膜上,干扰Ca2+转移,影响细胞内外Ca2+平衡,从而影响心机收缩能力;PS-NPs破坏糖酵解稳态,使基底氧消耗率和ATP生产能力明显降低。此外,低线粒体膜电位可能会降低肌质网(SR)Ca2+-ATP酶活性,这可能导致SR内部Ca2+含量和心脏收缩性降低 | Roshanzadeh et al., |
神经系统 | NPs分散在小鼠大脑中,包括皮层、海马体、SNC和纹状体;PS-NPs会使神经元细胞繁殖能力下降,甚至凋亡;诱发神经元线粒体功能障碍和能量代谢障碍 | Jung et al., Liang et al., |
植物 | 塑料类型 | 塑料尺寸/nm | 影响效果 | 参考文献 |
---|---|---|---|---|
绿豆 | PS | 28 | 叶子质量降低;平均根直径降低 | Chae et al., |
大白菜 | PS | 50‒100 | 光合作用色素含量(叶绿素a、叶绿素b和胡萝卜素)降低; | Zhang et al., |
水稻 | PS | 20‒200 | 种子萌发率降低;随着NPs浓度的增加,根长逐渐显著减少;染色体断裂、粘稠,染色质受损 | Spano et al., |
PS | 80 <1000 | 损伤植物的运输系统,影响水稻对营养物的吸收和转运作用 | Liu et al., | |
生菜 | PS | 45‒60 | PS使生菜干重、植株高度,叶面积和植物色素含量显著降低了;电解质泄漏率升高;总抗氧化能力降低;微量营养素和必需氨基酸的显著减少 | Lian et al., |
小麦 | PS-Cd | 100 | PS-NPs可以缓解小麦中Cd诱导的毒性;PS-NPs提高了碳水化合物和氨基酸代谢 | Lian et al., |
PS | 79‒95 | 发芽率没有收到影响,但显著提高了小麦幼苗的生长。生长参数和叶绿素含量大大增加。PS-NPs降低了芽与根生物量比和微量营养素含量。PS-NPs改变了小麦叶片的代谢物含量 | Lian et al., | |
PS | 70 | 小麦幼苗直径、根茎质量均有明显增大;提高了根的氮吸收能力和代谢水平 | Ren et al., | |
黄瓜 | PS | 100、300、 500、700 | PS-NPs的粒度会影响黄瓜植物的生物量和新陈代谢; PS-NPs影响黄瓜叶片的光合作用、抗氧化和糖代谢系统 | Li et al., |
玉米 | PS-NH2 或PS-COOH | 22‒24 | PS-COOH使幼苗叶质量降低;PS-NH2对植物生长具有更大的抑制作用;PS-NH2和PS-COOH均使植株叶绿素含量降低;PS-NH2激活了氧化防御机制,对叶片产生了氧化损伤 | Sun et al., |
PS | 100、300、500 | 100 nm和300 nm的PS-NPs显著增加了玉米SOD和GSH-PX活性;500 nm PS-NPs显著提高了玉米CAT活性;300 nm和500 nm的PS-NPs使植物细胞壁受损;不同粒度的PS-NPs都诱导了植物根代谢的增加 | Zhang et al., | |
拟南芥 | PS-SO3H 或PS-NH2 | 55‒77 | NPs显著降低了植株的根系长度;阻止根毛的水分运输,从而降低植株鲜质量;过氧化产物产量提高;抗病基因下调 | Sun et al., |
表2 NPs对各类植物的毒理效应
Table 2 Toxic effects of NPs on plants
植物 | 塑料类型 | 塑料尺寸/nm | 影响效果 | 参考文献 |
---|---|---|---|---|
绿豆 | PS | 28 | 叶子质量降低;平均根直径降低 | Chae et al., |
大白菜 | PS | 50‒100 | 光合作用色素含量(叶绿素a、叶绿素b和胡萝卜素)降低; | Zhang et al., |
水稻 | PS | 20‒200 | 种子萌发率降低;随着NPs浓度的增加,根长逐渐显著减少;染色体断裂、粘稠,染色质受损 | Spano et al., |
PS | 80 <1000 | 损伤植物的运输系统,影响水稻对营养物的吸收和转运作用 | Liu et al., | |
生菜 | PS | 45‒60 | PS使生菜干重、植株高度,叶面积和植物色素含量显著降低了;电解质泄漏率升高;总抗氧化能力降低;微量营养素和必需氨基酸的显著减少 | Lian et al., |
小麦 | PS-Cd | 100 | PS-NPs可以缓解小麦中Cd诱导的毒性;PS-NPs提高了碳水化合物和氨基酸代谢 | Lian et al., |
PS | 79‒95 | 发芽率没有收到影响,但显著提高了小麦幼苗的生长。生长参数和叶绿素含量大大增加。PS-NPs降低了芽与根生物量比和微量营养素含量。PS-NPs改变了小麦叶片的代谢物含量 | Lian et al., | |
PS | 70 | 小麦幼苗直径、根茎质量均有明显增大;提高了根的氮吸收能力和代谢水平 | Ren et al., | |
黄瓜 | PS | 100、300、 500、700 | PS-NPs的粒度会影响黄瓜植物的生物量和新陈代谢; PS-NPs影响黄瓜叶片的光合作用、抗氧化和糖代谢系统 | Li et al., |
玉米 | PS-NH2 或PS-COOH | 22‒24 | PS-COOH使幼苗叶质量降低;PS-NH2对植物生长具有更大的抑制作用;PS-NH2和PS-COOH均使植株叶绿素含量降低;PS-NH2激活了氧化防御机制,对叶片产生了氧化损伤 | Sun et al., |
PS | 100、300、500 | 100 nm和300 nm的PS-NPs显著增加了玉米SOD和GSH-PX活性;500 nm PS-NPs显著提高了玉米CAT活性;300 nm和500 nm的PS-NPs使植物细胞壁受损;不同粒度的PS-NPs都诱导了植物根代谢的增加 | Zhang et al., | |
拟南芥 | PS-SO3H 或PS-NH2 | 55‒77 | NPs显著降低了植株的根系长度;阻止根毛的水分运输,从而降低植株鲜质量;过氧化产物产量提高;抗病基因下调 | Sun et al., |
研究课题 | 研究现状 | 研究不足 |
---|---|---|
NPs对植物的毒害效应 | NPs对植物生长量(植株高度、根茎直径、叶子质量)的影响;NPs对植物体产生氧化应激效应,植物体内的ROS含量和抗氧化酶活性的变化,反映出植物氧化受损的情况;NPs叶绿素、植物激素、微量营养素和必需氨基酸等植物生长指标含量的影响;NPs在植物体内的内化、运输和积累 | 降解过程及环境中与其他污染物的是否存在协同毒性?降解后的NPs在实际环境中对植物的毒害效应有何差异?考虑NPs对土壤的污染,从而对植物产生的间接毒害作用,研究NPs对土壤环境-陆生植物体系的综合效应而非单独地研究NPs对植物体的影响。针对更多的NPs种类,如聚氯乙烯(PVC)、聚乙烯(PE)等以评定各类NPs的毒理效应 |
NPs对陆生动物的毒害效应 | NPs进入动物体内的途径;NPs在体内的累积;NPS的易位及对相应部位的毒理效应;NPs对细胞产生氧化损伤的程度 | NPs如何对各组织和器官造成毒害影响的机理?NPs在各组织和器官累积量的多少?对NPs如何引发生物的应激反应?NPs通过何种途径在生物体内运输的过程均未被探明? |
NPs对土壤环境的影响 | NPs对土壤物理性质的影响;NPs对土壤中微生物活性、无机盐含量与比例的影响;NPs对土壤性能的短期影响 | 在实际土壤环境中,NPs的浓度是多少?NPs对土壤性能的长期影响有何区别?在研究NPs对土壤毒害效应时,没有考虑NPs、植物体、土壤、土壤中的微生物、土壤中的污染物的协同作用。开发准确的方法进行土壤样本中的NPs定量和定性分析。揭示NPs在土壤中的移动和累积机制。探索NPs与环境污染物的吸附机理等 |
表3 NPs领域的研究现状和不足
Table 3 Current research trends and knowledge gaps of NPs
研究课题 | 研究现状 | 研究不足 |
---|---|---|
NPs对植物的毒害效应 | NPs对植物生长量(植株高度、根茎直径、叶子质量)的影响;NPs对植物体产生氧化应激效应,植物体内的ROS含量和抗氧化酶活性的变化,反映出植物氧化受损的情况;NPs叶绿素、植物激素、微量营养素和必需氨基酸等植物生长指标含量的影响;NPs在植物体内的内化、运输和积累 | 降解过程及环境中与其他污染物的是否存在协同毒性?降解后的NPs在实际环境中对植物的毒害效应有何差异?考虑NPs对土壤的污染,从而对植物产生的间接毒害作用,研究NPs对土壤环境-陆生植物体系的综合效应而非单独地研究NPs对植物体的影响。针对更多的NPs种类,如聚氯乙烯(PVC)、聚乙烯(PE)等以评定各类NPs的毒理效应 |
NPs对陆生动物的毒害效应 | NPs进入动物体内的途径;NPs在体内的累积;NPS的易位及对相应部位的毒理效应;NPs对细胞产生氧化损伤的程度 | NPs如何对各组织和器官造成毒害影响的机理?NPs在各组织和器官累积量的多少?对NPs如何引发生物的应激反应?NPs通过何种途径在生物体内运输的过程均未被探明? |
NPs对土壤环境的影响 | NPs对土壤物理性质的影响;NPs对土壤中微生物活性、无机盐含量与比例的影响;NPs对土壤性能的短期影响 | 在实际土壤环境中,NPs的浓度是多少?NPs对土壤性能的长期影响有何区别?在研究NPs对土壤毒害效应时,没有考虑NPs、植物体、土壤、土壤中的微生物、土壤中的污染物的协同作用。开发准确的方法进行土壤样本中的NPs定量和定性分析。揭示NPs在土壤中的移动和累积机制。探索NPs与环境污染物的吸附机理等 |
[1] |
ALLEN S, ALLEN D, PHOENIX V R, et al., 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 12: 339-344.
DOI |
[2] |
ALOMAR C, ESTARELLAS F, DEUDERO S, 2016. Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size[J]. Marine Environmental Research, 115: 1-10.
DOI PMID |
[3] |
AMATO-LOURENCO L F, CARVALHO-OLIVEIRA R, JUNIOR G R, et al., 2021. Presence of airborne microplastics in human lung tissue[J]. Journal of Hazardous Materials, 416(Part 3): 126124.
DOI URL |
[4] |
BAKIR A, ROWLAND S J, THOMPSON R C, 2014. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environmental Pollution, 185: 16-23.
DOI PMID |
[5] |
BERENSTEIN G, HUGHES E A, ZALTS A, et al., 2022. Environmental fate of dibutylphthalate in agricultural plastics: Photodegradation, migration and ecotoxicological impact on soil[J]. Chemosphere, 290: 133221.
DOI URL |
[6] | BERRUTI A, LUMINI E, BALESTRINI R, et al., 2015. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes[J]. Frontiers in Microbiology, 6: 1559. |
[7] |
BŁOŃSKA E, PIASZCZYK W, STASZEL K, et al., 2021. Enzymatic activity of soils and soil organic matter stabilization as an effect of components released from the decomposition of litter[J]. Applied Soil Ecology, 157: 103723.
DOI URL |
[8] |
BROWNE M A, CRUMP P, NIVEN S J, et al., 2011. Accumulation of microplastic on shorelines woldwide: Sources and sinks[J]. Environmental Science & Technology, 45(21): 9175-9179.
DOI URL |
[9] |
CAI H W, XU G B, DU F N, et al., 2021. Analysis of environmental nanoplastics: Progress and challenges[J]. Chemical Engineering Journal, 410: 128208.
DOI URL |
[10] |
CAI J, ZANG X W, WU Z Z, et al., 2019. Translocation of transition metal oxide nanoparticles to breast milk and offspring: The necessity of bridging mother-offspring-integration toxicological assessments[J]. Environment International, 133(Part A): 105153.
DOI URL |
[11] |
CASTLE L, 1994. Recycled and re-used plastics for food packaging[J]. Packaging Technology and Science, 7: 291-297.
DOI URL |
[12] |
CEDERVALL T, HANSSON L A, LARD M, et al., 2012. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish[J]. PLoS One, 7(2): e32254.
DOI URL |
[13] |
CHAE Y, AN Y J, 2020. Nanoplastic ingestion induces behavioral disorders in terrestrial snails: Trophic transfer effectsviavascular plants[J]. Environmental Science: Nano, 7: 975-983.
DOI URL |
[14] |
CHEN J, ZHOU H C, WANG C, et al., 2015. Short-term enhancement effect of nitrogen addition on microbial degradation and plant uptake of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove soil[J]. Journal of Hazardous Materials, 300: 84-92.
DOI PMID |
[15] |
CHEN Z Y, LIU J H, CHEN C Y, et al., 2020. Sedimentation of nanoplastics from water with Ca/Al dual flocculants: Characterization, interface reaction, effects of pH and ion ratios[J]. Chemosphere, 252: 126450.
DOI URL |
[16] |
CLARK N J, KHAN F R, MITRANO D M, et al., 2022. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac[J]. Environment International, 159: 106994.
DOI URL |
[17] |
COLE M, GALLOWAY T S, 2015. Ingestion of nanoplastics and microplastics by Pacific Oyster Larvae[J]. Environmental Science & Technology, 49: 14625-14632.
DOI URL |
[18] | DAM B, MISRA A, BANERJEE S, 2019. Role of gut microbiota in combating oxidative stress[C]// CHAKRABORTI S, CHAKRABORTI T, CHATTOPADHYAY D, Oxidative Stress in Microbial Diseases. Singapore: Springer Singapore: 43-82. |
[19] |
DAVARPANAH E, GUILHERMINO L, 2015. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii[J]. Estuarine, Coastal and Shelf Science, 167: 269-275.
DOI URL |
[20] |
DE SOUZA MACHADO A A, KLOAS W, ZARFL C, et al., 2018. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Chang Biology, 24(4): 1405-1416.
DOI URL |
[21] |
DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al., 2019. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 53(10): 6044-6052.
DOI URL |
[22] |
DELLA TORRE C, BERGAMI E, SALVATI A, et al., 2014. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus[J]. Environmental Science & Technology, 48(20): 12302-12311.
DOI URL |
[23] | DEVILLE S, PENJWEINI R, SMISDOM N, et al., 2015. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking[J]. Biochim Biophys Acta, 1853(10 Part A): 2411-2419. |
[24] |
DING T D, WEI L Y, HOU Z M, et al., 2022. Microplastics altered contaminant behavior and toxicity in natural waters[J]. Journal of Hazardous Materials, 425: 127908.
DOI URL |
[25] |
DOMINGUEZ-JAIMES L P, CEDILLO-GONZALEZ E I, LUEVANO-HIPOLITO E, et al., 2021. Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures[J]. Journal of Hazardous Materials, 413: 125452.
DOI URL |
[26] |
DONG C D, CHEN C W, CHEN Y C, et al., 2020. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment[J]. Journal of Hazardous Materials, 385: 121575.
DOI URL |
[27] |
DRIS R, GASPERI J, MIRANDE C, et al., 2017. A first overview of textile fibers, including microplastics, in indoor and outdoor environments[J]. Environmental Pollution, 221: 453-458.
DOI PMID |
[28] |
DRIS R, GASPERI J, SAAD M, et al., 2016. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment[J]. Marine Pollution Bulletin, 104(1-2): 290-293.
DOI URL |
[29] |
EL HADRI H, GIGAULT J, MAXIT B, et al., 2020. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments[J]. NanoImpact, 17: 100206.
DOI URL |
[30] |
FEI Y F, HUANG S Y, ZHANG H B, et al., 2020. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of The Total Environment, 707: 135634.
DOI URL |
[31] |
FENDALL L S, SEWELL M A, 2009. Contributing to marine pollution by washing your face: Microplastics in facial cleansers[J]. Marine Pollution Bulletin, 58(8): 1225-1228.
DOI PMID |
[32] |
FINCHEIRA P, QUIROZ A, 2018. Microbial volatiles as plant growth inducers[J]. Microbiological Research, 208: 63-75.
DOI PMID |
[33] |
FRASER M A, CHEN L, ASHAR M, et al., 2020. Occurrence and distribution of microplastics and polychlorinated biphenyls in sediments from the Qiantang River and Hangzhou Bay, China[J]. Ecotoxicology and Environmental Safety, 196: 110536.
DOI URL |
[34] |
GEYER R, JAMBECK J R, LAW K L, 2017. Production, use, and fate of all plastics ever made[J]. Science Advances, 3(7): e1700782.
DOI URL |
[35] |
GIGAULT J, HALLE A T, BAUDRIMONT M, et al., 2018. Current opinion: What is a nanoplastic[J]. Environmental Pollution, 235: 1030-1034.
DOI URL |
[36] |
HAHLADAKIS J N, VELIS C A, WEBER R, et al., 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 344: 179-199.
DOI PMID |
[37] |
HE S, LI D, WANG F, et al., 2022. Parental exposure to sulfamethazine and nanoplastics alters the gut microbial communities in the offspring of marine madaka (Oryzias melastigma)[J]. Journal of Hazardous Materials, 423(Part A): 127003.
DOI URL |
[38] |
HOLMES L A, TURNER A, THOMPSON R C, 2012. Adsorption of trace metals to plastic resin pellets in the marine environment[J]. Environmental Pollution, 160: 42-48.
DOI PMID |
[39] |
HUANG D L, WANG X Y, YIN L S, et al., 2022. Research progress of microplastics in soil-plant system: Ecological effects and potential risks[J]. Science of The Total Environment, 812: 151487.
DOI URL |
[40] |
HUANG Y, ZHAO Y R, WANG J, et al., 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 254(Part A): 112983.
DOI URL |
[41] |
JIA C M, DAS P, KIM I, et al., 2022. Applications, treatments, and reuse of plastics from electrical and electronic equipment[J]. Journal of Industrial and Engineering Chemistry, 110: 84-99.
DOI URL |
[42] |
JUNG B K, HAN S W, PARK S H, et al., 2020. Neurotoxic potential of polystyrene nanoplastics in primary cells originating from mouse brain[J]. Neurotoxicology, 81: 189-196.
DOI URL |
[43] | KOELMANS A A, BESSELING E, SHIM W J, 2015. Nanoplastics in the aquatic environment. Critical review[C]// BERGMANN M, GUTOW L, KLAGES M. Marine Anthropogenic Litter. Singapore: Springer International Publishing: 325-340. |
[44] |
KOSUTH M, MASON S A, WATTENBERG E V, 2018. Anthropogenic contamination of tap water, beer, and sea salt[J]. PLoS One, 13(4): e0194970.
DOI URL |
[45] |
LEHNER R, WEDER C, PETRI-FINK A, et al., 2019. Emergence of nanoplastic in the environment and possible impact on human health[J]. Environmental Science & Technology, 53(4): 1748-1765.
DOI URL |
[46] |
LESLIE H A, VAN VELZEN M J M, BRANDSMA S H, et al., 2022. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 163: 107199.
DOI URL |
[47] |
LETT Z, HALL A, SKIDMORE S, et al., 2021. Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system[J]. Environmental Pollution, 291: 118190.
DOI URL |
[48] |
LI B Q, DING Y F, CHENG X, et al., 2020a. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice[J]. Chemosphere, 244: 125492.
DOI URL |
[49] |
LI H W, LI S X, WANG Z S, et al., 2020b. Abscisic acid-mimicking ligand AMF4 induced cold tolerance in wheat by altering the activities of key carbohydrate metabolism enzymes[J]. Plant Physiol Biochem, 157: 284-290.
DOI URL |
[50] |
LI J, SONG Y, CAI Y B, 2020c. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks[J]. Environmental Pollution, 257: 113570.
DOI URL |
[51] |
LI K, 2022. Medicine, health, and plastics: A conundrum[J]. Sustainability and Climate Change, 15: 92-97.
DOI URL |
[52] |
LI L Z, XU Y, LI S X, et al., 2022. Molecular modeling of nanoplastic transformations in alveolar fluid and impacts on the lung surfactant film[J]. Journal of Hazardous Materials, 427: 127872.
DOI URL |
[53] |
LI S X, WANG T Y, GUO J H, et al., 2021a. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley[J]. Journal of Hazardous Materials, 415: 125614.
DOI URL |
[54] |
LI Y M, LIU Z Q, LI M F, et al., 2020d. Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense[J]. Journal of Hazardous Materials, 398: 122990.
DOI URL |
[55] |
LI Z X, LI Q F, LI R J, et al., 2021b. The distribution and impact of polystyrene nanoplastics on cucumber plants[J]. Environmental Science and Pollution Research, 28(13): 16042-16053.
DOI |
[56] |
LI Z X, LI R J, LI Q F, et al., 2020e. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution[J]. Chemosphere, 255: 127041.
DOI URL |
[57] |
LIAN J P, LIU W T, MENG L Z, et al., 2021. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.)[J]. Environmental Pollution, 280: 116978.
DOI URL |
[58] |
LIAN J P, WU J N, XIONG H X, et al., 2020a. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 385: 121620.
DOI URL |
[59] |
LIAN J P, WU J N, ZEB A, et al., 2020b. Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L.)?[J]. Environmental Pollution, 263(Part A): 114498.
DOI URL |
[60] |
LIANG B X, HUANG Y J, ZHONG Y Z, et al., 2022. Brain single-nucleus transcriptomics highlights that polystyrene nanoplastics potentially induce Parkinson’s disease-like neurodegeneration by causing energy metabolism disorders in mice[J]. Journal of Hazardous Materials, 430: 128459.
DOI URL |
[61] |
LIU J, ZHANG T, TIAN L L, et al., 2019. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand[J]. Environmental Science & Technology, 53(10): 5805-5815.
DOI URL |
[62] |
LIU P, LU K, LI J L, et al., 2020. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates[J]. Journal of Hazardous Materials, 384: 121193.
DOI URL |
[63] |
LIU S, HUANG J H, ZHANG W, et al., 2022a. Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects[J]. Journal of Environmental Management, 302: 113995.
DOI URL |
[64] |
LIU Y Y, GUO R, ZHANG S W, et al., 2022b. Uptake and translocation of nano/microplastics by rice seedlings: Evidence from a hydroponic experiment[J]. Journal of Hazardous Materials, 421: 126700.
DOI URL |
[65] |
LU Y F, ZHANG Y, DENG Y F, et al., 2016. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 50(7): 4054-4060.
DOI URL |
[66] |
MACNEE W, 2001. Oxidative stress and lung inflammation in airways disease[J]. European Journal of Pharmacology, 429(1-3): 195-207.
PMID |
[67] |
MAI L, BAO L J, SHI L, et al., 2018. Polycyclic aromatic hydrocarbons affiliated with microplastics in surface waters of Bohai and Huanghai Seas, China[J]. Environmental Pollution, 241: 834-840.
DOI PMID |
[68] |
MARCELINO R C, CARDOSO R M, DOMINGUES E, et al., 2022. The emerging risk of microplastics and nanoplastics on the microstructure and function of reproductive organs in mammals: A systematic review of preclinical evidence[J]. Life Sciences, 295: 120404.
DOI URL |
[69] |
MATTSSON K, EKVALL M T, HANSSON L A, et al., 2015. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles[J]. Environmental Science & Technology, 49(1): 553-561.
DOI URL |
[70] |
MITTLER R, VANDERAUWERA S, SUZUKI N, et al., 2011. ROS signaling: the new wave?[J]. Trends in Plant Science, 16(6): 300-309.
DOI PMID |
[71] |
MOFIJUR M, AHMED S F, RAHMAN S M A, et al., 2021. Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: Socio-economic impact and management strategies[J]. Environmental Research, 195: 110857.
DOI URL |
[72] |
MOORE M, GOSSMANN N, DIETZ K J, 2016. Redox regulation of cytosolic translation in plants[J]. Trends in Plant Science, 21(5): 388-397.
DOI PMID |
[73] |
NAM S H, KIM D, AN Y J, 2022. Soil algae as a potential carrier for nanoplastics: Adsorption and internalization of nanoplastics in algal cells[J]. Science of The Total Environment, 837: 155678
DOI URL |
[74] |
NARANCIC T, VERSTICHEL S, REDDY CHAGANTI S, et al., 2018. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution[J]. Environmental Science & Technology, 52: 10441-10452.
DOI URL |
[75] |
NYIKA J, DINKA M, 2022. Recycling plastic waste materials for building and construction materials: A minireview[J]. Materials Today: Proceedings, 62(Part 6): 3257-3262.
DOI URL |
[76] |
O'CONNOR D, PAN S, SHEN Z, et al., 2019. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 249: 527-534.
DOI PMID |
[77] |
PIDATALA V R, LI K, SARKAR D, et al., 2016. Identification of biochemical pathways associated with lead tolerance and detoxification in Chrysopogon zizanioides L. Nash (Vetiver) by metabolic profiling[J]. Environmental Science & Technology, 50(5): 2530-2537.
DOI URL |
[78] |
PIVNENKO K, ERIKSEN M K, MARTIN-FERNANDEZ J A, et al., 2016. Recycling of plastic waste: Presence of phthalates in plastics from households and industry[J]. Waste Management, 54: 44-52.
DOI PMID |
[79] |
PRATA J C, 2018. Airborne microplastics: Consequences to human health?[J]. Environmental Pollution, 234: 115-126.
DOI PMID |
[80] |
QI Y L, OSSOWICKI A, YANG X M, et al., 2020. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 387: 121711.
DOI URL |
[81] |
QI Y L, YANG X M, PELAEZ A M, et al., 2018. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of The Total Environment, 645: 1048-1056.
DOI URL |
[82] |
RAGUSA A, SVELATO A, SANTACROCE C, et al., 2021. Plasticenta: First evidence of microplastics in human placenta[J]. Environment International, 146: 106274.
DOI URL |
[83] |
REISSER J, SHAW J, HALLEGRAEFF G, et al., 2014. Millimeter-sized marine plastics: A new pelagic habitat for microorganisms and invertebrates[J]. PLoS One, 9(6): e100289.
DOI URL |
[84] |
REN X W, WANG L, TANG J C, et al., 2022. Combined effects of degradable film fragments and micro/nanoplastics on growth of wheat seedling and rhizosphere microbes[J]. Environmental Pollution, 294: 118516.
DOI URL |
[85] |
RILLIG M C, 2012. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 46(12): 6453-6454.
DOI URL |
[86] | ROCHMAN C, ANDRADY A, DUDAS S, et al., 2016. Sources, fate and effects of microplastics in the marine environment: Part 2 of a global assessment[M]. London: Joint Group of Experts on the Scientific Aspects of Marine Envrionmental Protection. |
[87] |
ROSHANZADEH A, OYUNBAATAR N E, GANJBAKHSH S E, et al., 2021. Exposure to nanoplastics impairs collective contractility of neonatal cardiomyocytes under electrical synchronization[J]. Biomaterials, 278: 121175.
DOI URL |
[88] |
RUBIO L, MARCOS R, HERNÁNDEZ A, 2020. Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models[J]. Journal of toxicology and environmental health, Part B. Critical reviews, 23(1-4): 51-68.
DOI URL |
[89] |
SPANO C, MUCCIFORA S, RUFFINI CASTIGLIONE M, et al., 2022. Polystyrene nanoplastics affect seed germination, cell biology and physiology of rice seedlings in-short term treatments: Evidence of their internalization and translocation[J]. Plant Physiology and Biochemistry, 172: 158-166.
DOI PMID |
[90] |
SRIDHARAN S, KUMAR M, BOLAN N S, et al., 2021. Are microplastics destabilizing the global network of terrestrial and aquatic ecosystem services?[J]. Environmental Research, 198: 111243.
DOI URL |
[91] |
SUN H F, LEI C L, XU J H, et al., 2021. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants[J]. Journal of Hazardous Materials, 416: 125854.
DOI URL |
[92] |
SUN X D, YUAN X Z, JIA Y, et al., 2020. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology, 15: 755-760.
DOI |
[93] |
TER HALLE A, JEANNEAU L, MARTIGNAC M, et al., 2017. Nanoplastic in the North Atlantic Subtropical Gyre[J]. Environmental Science & Technology, 51(23): 13689-13697.
DOI URL |
[94] |
THOMPSON R C, OLSEN Y S, MITCHELL R P, et al., 2004. Lost at Sea: Where Is All the Plastic?[J]. Science, 304(5672): 838-838.
PMID |
[95] |
TONG H Y, HU X S, ZHONG X C, et al., 2021. Adsorption and desorption of triclosan on biodegradable polyhydroxybutyrate microplastics[J]. Environmental Toxicology and Chemistry, 40(1): 72-78.
DOI PMID |
[96] |
TONG H Y, ZHONG X C, DUAN Z H, et al., 2022. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: Formation, aging factors, and toxicity[J]. Science of The Total Environment, 833: 155275.
DOI URL |
[97] |
TOPCU E N, TONAY A M, DEDE A, et al., 2013. Origin and abundance of marine litter along sandy beaches of the Turkish Western Black Sea Coast[J]. Marine Environmental Research, 85: 21-28.
DOI PMID |
[98] |
VAN WEERT S, REDONDO-HASSELERHARM P E, DIEPENS N J, et al., 2019. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes[J]. Science of The Total Environment, 654: 1040-1047.
DOI URL |
[99] |
VOM SAAL F S, HUGHES C, 2005. An extensive new literature concerning low-dose effects of bisphenol a shows the need for a new risk assessment[J]. Environmental Health Perspectives, 113(8): 926-933.
PMID |
[100] |
WAGNER M, SCHERER C, ALVAREZ-MUÑOZ D, et al., 2014. Microplastics in freshwater ecosystems: What we know and what we need to know[J]. Environmental Sciences Europe, 26(1): 12.
DOI PMID |
[101] |
WANG Z, AN C J, CHEN X J, et al., 2021. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering[J]. Journal of Hazardous Materials, 417: 126036.
DOI URL |
[102] |
WU X L, LU J L, DU M H, et al., 2021. Particulate plastics-plant interaction in soil and its implications: A review[J]. Science of The Total Environment, 792: 148337.
DOI URL |
[103] |
WU X, LIU Y, YIN S S, et al., 2020. Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics[J]. Environmental Pollution, 266(Part 1): 115159.
DOI URL |
[104] |
YAN X Y, YANG X Y, TANG Z, et al., 2020. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes[J]. Environmental Pollution, 262: 114270.
DOI URL |
[105] |
YANG S, CHENG Y P, CHEN Z Z, et al., 2021. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model[J]. Ecotoxicology and Environmental Safety, 226: 112837.
DOI URL |
[106] |
YI M L, ZHOU S H, ZHANG L L, et al., 2021. The effects of three different microplastics on enzyme activities and microbial communities in soil[J]. Water Environment Research, 93(1): 24-32.
DOI URL |
[107] |
YOUSIF E, HADDAD R, 2013. Photodegradation and photostabilization of polymers, especially polystyrene: Review[J]. SpringerPlus, 2: 398.
DOI PMID |
[108] |
YU Y, FLURY M, 2021a. Current understanding of subsurface transport of micro- and nanoplastics in soil[J]. Vadose Zone Journal, 20: e20108.
DOI URL |
[109] |
YU Y X, GRIFFIN-LAHUE D E, MILES C A, et al., 2021b. Are micro- and nanoplastics from soil-biodegradable plastic mulches an environmental concern?[J]. Journal of Hazardous Materials Advances, 4: 100024.
DOI URL |
[110] |
ZHANG H, LIANG J, LUO Y, et al., 2022a. Comparative effects of polystyrene nanoplastics with different surface charge on seedling establishment of Chinese cabbage (Brassica rapa L.)[J]. Chemosphere, 292: 133403.
DOI URL |
[111] |
ZHANG S L, WANG J Q, LIU X, et al., 2019. Microplastics in the environment: A review of analytical methods, distribution, and biological effects[J]. TrAC Trends in Analytical Chemistry, 111: 62-72.
DOI URL |
[112] |
ZHANG Y L, DIEHL A, LEWANDOWSKI A, et al., 2020. Removal efficiency of micro- and nanoplastics (180 nm-125 μm) during drinking water treatment[J]. Science of The Total Environment, 720: 137383.
DOI URL |
[113] |
ZHANG Y, YANG X, LUO Z X, et al., 2022b. Effects of polystyrene nanoplastics (PSNPs) on the physiology and molecular metabolism of corn (Zea mays L.) seedlings[J]. Science of The Total Environment, 806: 150895.
DOI URL |
[114] |
ZHOU C Q, LU C H, MAI L, et al., 2021a. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 401: 123412.
DOI URL |
[115] |
ZHOU J, WEN Y, MARSHALL M R, et al., 2021b. Microplastics as an emerging threat to plant and soil health in agroecosystems[J]. Science of The Total Environment, 787: 147444.
DOI URL |
[116] | 陈蕾, 高山雪, 徐一卢, 2021. 塑料添加剂向生态环境中的释放与迁移研究进展[J]. 生态学报, 41(8): 3315-3324. |
CHEN L, GAO S X, XU Y L, 2021. Progress on release and migration of plastic additives to ecological environment[J]. Acta Ecologica Sinica, 41(8): 3315-3324. | |
[117] |
陈瑶, 李云红, 邵英男, 等, 2022. 阔叶红松林物种多样性与土壤理化特征研究[J]. 生态环境学报, 31(4): 679-687.
DOI |
CHEN Y, LI Y H, SHAO Y N, et al., 2022. Study on Species diversity and soil physical and chemical characteristics of broad-leaved Pinus koraiensis forest[J]. Ecology and Environmental Sciences, 31(4): 679-687. | |
[118] | 韩超然, 何超, 洪松, 等, 2022. COVID-19疫情期间全球气温和主要大气污染物浓度变化的空间关联[J]. 生态环境学报, 31(4): 740-749. |
HAN C R, HE C, HONG S, 2022. Spatial correlation between changes in global temperature and major air pollutants during the COVID-19 pandemic[J]. Ecology and Environmental Sciences, 31(4): 740-749. | |
[119] |
胡靓达, 周海菊, 黄永珍, 等, 2022. 不同杉木林分类型植物多样性及其土壤碳氮关系的研究[J]. 生态环境学报, 31(3): 451-459.
DOI |
HU L D, ZHOU H J, HUANG Y Z, et al., 2022. A study on plant species diversity and soil carbon and nitrogen in different cunninghamia lanceolata stand types[J]. Ecology and Environmental Sciences, 31(3): 451-459. | |
[120] |
梁嘉伟, 余炜敏, 姚钰玲, 等, 2022. 生物有机肥对土壤质量及蔬菜产量的影响[J]. 生态环境学报, 31(3): 497-503.
DOI |
LIANG J W, YU W M, YAO Y L, et al., 2022. Effects of a bio-organic fertilizer on soil quality and vegetable yield[J]. Ecology and Environmental Sciences, 31(3): 497-503. | |
[121] |
王英成, 姚世庭, 金鑫, 等, 2022. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 31(4): 695-703.
DOI |
WANG Y C, YAO S T, JIN X, et al., 2022. Comparative study on soil bacterial diversity of degraded alpine meadow in the Sanjiangyuan Region[J]. Ecology and Environmental Sciences, 31(4): 695-703. | |
[122] |
易浪, 孙颖, 尹少华, 等, 2022. 生态安全格局构建: 概念、框架与展望[J]. 生态环境学报, 31(4): 845-856.
DOI |
YI L, SUN Y, YIN S H, et al., 2022. Construction of ecological security pattern: Concept, Framework and Prospect[J]. Ecology and Environmental Sciences, 31(4): 845-856. | |
[123] |
朱旭, 李海梅, 李彦华, 等, 2022. 8种灌木对大气颗粒物污染的生理响应[J]. 生态环境学报, 31(3): 535-545.
DOI |
ZHU X LI H M, LI Y H, et al., 2022. Physiological responses of eight shrubs to atmospheric particulate matter pollution[J]. Ecology and Environmental Sciences, 31(3): 535-545. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 李惠梅, 李荣杰, 晏旭昇, 武非非, 高泽兵, 谭永忠. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 2023, 32(7): 1185-1195. |
[3] | 王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732. |
[4] | 韩迁, 张玉娇, 赖承钺, 杨璐瑶, 孟旭. 成都市河流中四环素、喹诺酮类抗生素污染特征及生态风险评价[J]. 生态环境学报, 2023, 32(11): 1922-1932. |
[5] | 黄世聪, 陈丽珂, 张政杰, 陈科华, 陈澄宇, 曾巧云. 四环素对不同品种蔬菜毒性阈值及其敏感性分布[J]. 生态环境学报, 2023, 32(11): 1988-1995. |
[6] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[7] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[8] | 吉冰静, 刘艺, 吴杨, 高淑涛, 曾祥英, 于志强. 长江口及邻近东海沉积物中多环芳烃和含氧多环芳烃的分布特征、来源及生态风险[J]. 生态环境学报, 2022, 31(7): 1400-1408. |
[9] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[10] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[11] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[12] | 刘沙沙, 陈诺, 杨晓茵. 微塑料对有机污染物的吸附-解吸特性及其复合毒性效应研究进展[J]. 生态环境学报, 2022, 31(3): 610-620. |
[13] | 张云, 舒抒, 罗鑫, 钟琴, 邹华. 水环境中糖皮质激素的环境行为及生态风险研究进展[J]. 生态环境学报, 2022, 31(2): 400-408. |
[14] | 任珺, 潘佳璇, 陶玲, 仝云龙, 王若安, 孙新妮. 氢氧化钠改性坡缕石对Cd污染土壤的钝化修复效果[J]. 生态环境学报, 2022, 31(12): 2422-2430. |
[15] | 谢洁芬, 章家恩, 危晖, 刘自强, 陈璇. 土壤中微塑料复合污染研究进展与展望[J]. 生态环境学报, 2022, 31(12): 2431-2440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||