生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 722-732.DOI: 10.16258/j.cnki.1674-5906.2023.04.010
收稿日期:
2023-02-17
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*李有志(1981年生),男,教授,博士,博士研究生导师,主要从事湿地生态与环境研究。E-mail: liyouzhi2004@163.com作者简介:
王铁铮(1994年生),男,硕士,主要从事湿地生态研究。E-mail: 1210279394@qq.com
基金资助:
WANG Tiezheng(), QU Xinyue, LIU Chunxiang, LI Youzhi(
)
Received:
2023-02-17
Online:
2023-04-18
Published:
2023-07-12
摘要:
东江湖是长江中下游重要的人工湖泊之一,也是湖南省最大的饮用水源地,探究水质变化规律及其与流域土地利用关系,可为东江湖生态保护提供科学依据。基于2011-2022年东江湖2个国控断面及2021-2022年6条主要入湖河口水质监测数据,运用统计分析和Spearman秩相关系数法,阐明了东江湖水质时空变化规律及其与土地利用变化的关系。结果表明,(1)在近12年期间,东江湖水环境污染综合指数呈上升趋势,水质由地表Ⅰ类水下降到地表Ⅲ类水。东江湖主要入湖河口水质介于地表Ⅲ-Ⅳ类水之间,水环境污染综合指数呈现出枯水期高于丰水期特点。(2)东江湖流域各土地利用类型的面积呈现出林地>耕地>水域>建设用地>草地的特点,其中建设用地、耕地和草地面积随着时间的增加而增高,林地面积随着时间的增加而减少,水域面积呈现小幅减少。(3)东江湖国控断面的化学需氧量、高锰酸盐指数、电导率及水环境污染综合指数与流域内耕地和建设用地面积呈极显著正相关,而与林地面积呈显著负相关;然而,东江湖入湖河口水体的溶解氧与子流域内水域面积呈显著正相关。可见,在2011-2022年间,东江湖水质呈下降趋势,而流域内耕地、建设用地面积的增加和林地面积的减少是水质降低的主要原因。建议减少全流域化肥施用,推进城镇污水处理设施全覆盖,实施退耕还林还草,加强河湖消落带生态修复等措施,以减少入湖污染物,确保东江湖水质良好。
中图分类号:
王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732.
WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed[J]. Ecology and Environment, 2023, 32(4): 722-732.
图1 东江湖流域国控断面和入湖河口水质监测点位及子流域划分
Figure1 Monitoring position of water quality in national control sections and in estuaries and the sub-watersheds in the Dongjiang Lake basin
图2 2011-2022年东江湖头山和白廊两个国控断面水质参数变化
Figure 2 Variation in water quality parameters in the Toushan and Bailang sections in the Dongjiang Lake from 2011 to 2022
图3 2011-2022年东江湖头山和白廊两个国控断面水环境污染综合指数(P)变化
Figure 3 Variation in comprehensive index of water environmental pollution (P) in the Toushan and Bailang sections in the Dongjiang Lake from 2011 to 2022
类型 | TN | TP | NH3-N | COD | pH | CODMn | BOD5 | As | 电导率 | Pb | P |
---|---|---|---|---|---|---|---|---|---|---|---|
耕地 | 0.645 | 0.653 | −0.536 | 0.763** | 0.609 | 0.870** | −0.618 | −0.082 | 0.827** | −0.114 | 0.709* |
林地 | −0.645 | 0.653 | 0.536 | −0.763** | −0.609 | −0.870** | 0.618 | 0.082 | −0.827** | 0.114 | −0.709* |
草地 | 0.518 | −0.410 | −0.536 | 0.629 | −0.738** | 0.705* | −0.445 | −0.082 | 0.673 | 0.041 | 0.545 |
水域 | −0.364 | 0.222 | 0.620 | −0.798** | −0.679 | −0.709* | 0.241 | 0.323 | −0.633 | −0.046 | −0.346 |
建设用地 | 0.655 | −0.630 | −0.527 | 0.744** | 0.582 | 0.860** | −0.609 | −0.127 | 0.836** | −0.169 | 0.718* |
表1 东江湖头山和白廊国控断面水质参数与流域内土地利用面积相关性
Table 1 Correlation between parameters of water quality in Toushan and Bailang national controlled section in the Dongjiang Lake and the area of land use in the watershed
类型 | TN | TP | NH3-N | COD | pH | CODMn | BOD5 | As | 电导率 | Pb | P |
---|---|---|---|---|---|---|---|---|---|---|---|
耕地 | 0.645 | 0.653 | −0.536 | 0.763** | 0.609 | 0.870** | −0.618 | −0.082 | 0.827** | −0.114 | 0.709* |
林地 | −0.645 | 0.653 | 0.536 | −0.763** | −0.609 | −0.870** | 0.618 | 0.082 | −0.827** | 0.114 | −0.709* |
草地 | 0.518 | −0.410 | −0.536 | 0.629 | −0.738** | 0.705* | −0.445 | −0.082 | 0.673 | 0.041 | 0.545 |
水域 | −0.364 | 0.222 | 0.620 | −0.798** | −0.679 | −0.709* | 0.241 | 0.323 | −0.633 | −0.046 | −0.346 |
建设用地 | 0.655 | −0.630 | −0.527 | 0.744** | 0.582 | 0.860** | −0.609 | −0.127 | 0.836** | −0.169 | 0.718* |
类型 | DO | 电导率 | pH | TN | NH3-N | NO3-N | TP | PO43--P | P |
---|---|---|---|---|---|---|---|---|---|
耕地 | 0.543 | 0.486 | 0.314 | −0.086 | 0.029 | 0.020 | 0.657 | −0.371 | −0.086 |
林地 | 0.771 | 0.086 | 0.600 | −0.314 | −0.319 | −0.413 | 0.257 | −0.600 | −0.429 |
草地 | 0.714 | 0.600 | 0.257 | 0.086 | −0.058 | 0.314 | 0.543 | −0.429 | −0.200 |
水域 | 0.886* | 0.371 | 0.371 | 0.200 | 0.319 | 0.371 | 0.600 | 0.029 | 0.200 |
建设用地 | 0.543 | 0.486 | 0.314 | −0.086 | 0.029 | 0.200 | 0.657 | −0.371 | −0.086 |
表2 东江湖入湖河口水质参数与子流域内土地利用面积相关性
Table 2 Correlation between parameters of water quality in estuaries and the area of land use in sub-watershed in Dongjiang Lake
类型 | DO | 电导率 | pH | TN | NH3-N | NO3-N | TP | PO43--P | P |
---|---|---|---|---|---|---|---|---|---|
耕地 | 0.543 | 0.486 | 0.314 | −0.086 | 0.029 | 0.020 | 0.657 | −0.371 | −0.086 |
林地 | 0.771 | 0.086 | 0.600 | −0.314 | −0.319 | −0.413 | 0.257 | −0.600 | −0.429 |
草地 | 0.714 | 0.600 | 0.257 | 0.086 | −0.058 | 0.314 | 0.543 | −0.429 | −0.200 |
水域 | 0.886* | 0.371 | 0.371 | 0.200 | 0.319 | 0.371 | 0.600 | 0.029 | 0.200 |
建设用地 | 0.543 | 0.486 | 0.314 | −0.086 | 0.029 | 0.200 | 0.657 | −0.371 | −0.086 |
图5 东江湖主要河流入湖口水质参数(平均值±标准误)一周年变化
Figure 5 Annual variation of water quality parameters (means ± standard error) in the main river estuaries in Dongjiang Lake
续图5 东江湖主要河流入湖口水质参数(平均值±标准误)一周年变化
Continued Figure 5 Annual variation of water quality parameters (means ± standard error) in the main river estuaries in Dongjiang Lake
图6 东江湖主要河流入湖口水环境污染综合指数(P,平均值±标准误)一周年变化
Figure 6 Annual variation of comprehensive index of water environmental pollution (P, means±standard error) in the main river estuaries in Dongjiang Lake
子流域 | 耕地 | 林地 | 草地 | 水域 | 建设用地 |
---|---|---|---|---|---|
兴宁河W1 | 0.0873 | 0.143 | 0 | 0 | 0 |
石盈河W2 | 0.0686 | 0.445 | 0 | 0 | 0 |
杭溪W3 | 0.0278 | 0.421 | 0 | 0 | 0 |
浙水W4 | 1.57 | 6.12 | 0.0174 | 0.0149 | 0.145 |
沤江W5 | 1.27 | 15.3 | 0.0252 | 0.0244 | 0.0532 |
滁水W6 | 0.691 | 3.77 | 0.0119 | 0.0276 | 0.0282 |
表3 2021年东江湖各子流域土地利用类型面积
Table 3 The area of land use types in sub-watershed in Dongjiang Lake in 2021 102 km2
子流域 | 耕地 | 林地 | 草地 | 水域 | 建设用地 |
---|---|---|---|---|---|
兴宁河W1 | 0.0873 | 0.143 | 0 | 0 | 0 |
石盈河W2 | 0.0686 | 0.445 | 0 | 0 | 0 |
杭溪W3 | 0.0278 | 0.421 | 0 | 0 | 0 |
浙水W4 | 1.57 | 6.12 | 0.0174 | 0.0149 | 0.145 |
沤江W5 | 1.27 | 15.3 | 0.0252 | 0.0244 | 0.0532 |
滁水W6 | 0.691 | 3.77 | 0.0119 | 0.0276 | 0.0282 |
[1] | GENG M M, WANG K L, YANG N, et al., 2021. Is water quality better in wet years or dry years in river-connected lakes? A case study from Dongting Lake, China[J]. Environmental Pollution, 290: 115-118. |
[2] |
JI X H, ZHENG S X, SHI L H, et al., 2011. Systematic studies of nitrogen loss from paddy soils through leaching in the Dongting Lake area of China[J]. Pedosphere, 21(6): 753-762.
DOI URL |
[3] | LIU J G, DIAMOND J, 2005. China’s environment in a globalizing world[J]. Journal of Lake Sciences, 435(7046): 1179-1186. |
[4] |
PATHAK D, WHITEHEAD P G, FUTTER M N, et al., 2018. Water quality assessment andcatchment-scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model[J]. Science of the Total Environment, 631-632: 201-215.
DOI URL |
[5] |
YANG J, HUANG X, 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 13(8): 3907-3925.
DOI URL |
[6] | 曹芳芳, 李雪, 王东, 等, 2013. 新安江流域土地利用结构对水质的影响[J]. 环境科学, 34(7): 2582-2587. |
CAO F F, LI X, WANG D, et al., 2013. Effects of land use structure on water quality in Xin’an River Basin[J]. Environmental Science, 34(7): 2582-2587.
DOI URL |
|
[7] | 陈雷, 2016。 洪湖水质时间变异与空间格局分析[D]. 武汉: 湖北大学. |
CHEN L, 2016. Temporal variation and spatial pattern of water quality in Honghu[D]. Wuhan: Hubei University. | |
[8] | 陈利顶, 傅伯杰, 赵文武, 2006. “源”“汇”景观理论及其生态学意义[J]. 生态学报, 26(5): 1444-1449. |
CHEN L D, FU B J, ZHAO W W, 2006. The theory of “source” and “sink” landscape and its ecological significance[J]. Acta Ecologica Sinica, 26(5): 1444-1449. | |
[9] | 陈荣, 李雄华, 2015. 主因子分析法在东江湖水质评价中的应用[J]. 湖南文理学院学报 (自然科学版), 27(4): 64-68. |
CHEN R, LI X H, 2015. Application of principal factor analysis method in water quality assessment of Dongjiang Lake[J]. Journal of Hunan University of Arts and Science (Science and Technology), 27(4): 64-68. | |
[10] | 董锐, 汪银龙, 2022. 汾河下游土地利用类型对河流无机氮的影响[J]. 人民黄河, 44(3): 91-96. |
DONG R, WANG Y L, 2022. Effects of land use types on inorganic nitrogen in the lower reaches of Fenhe River[J]. Yellow River, 44(3): 91-96. | |
[11] | 国家环境保护总局, 2002. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社. |
STATE ENVIRONMENTAL PROTECTION ADMINISTRATION, 2002. Environmental quality standards for surface water: GB 3838—2002[S]. Beijing: China Environmental Science Press. | |
[12] | 郭翔, 2013. 东江湖流域农田氮磷污染负荷特征研究[D]. 湘潭: 湖南科技大学. |
GUO X, 2013. Research of the farmland nitrogen and phosphorus pollution load in Dongjiang Lake Watershed[D]. Xiangtan: Hunan University of Science and Technology. | |
[13] | 郝守宁, 董飞, 刘晓波, 等, 2020. 尼洋河流域土地利用结构对水质的关联分析[J]. 环境科学与技术, 43(1): 194-200. |
HAO S N, DONG F, LIU X B, et al., 2020. Correlation analysis of land use structure and water quality in Niyang River Basin[J]. Environmental Science and Technology, 43(1): 194-200. | |
[14] | 何望, 2012. 东江湖水环境及渔业可持续发展研究[D]. 长沙: 湖南农业大学. |
HE W, 2012. Study on Waters environment and sustainable fisheries development in Dongjiang Lake[D]. Changsha: Hunan Agricultural University. | |
[15] | 黄金良, 李青生, 洪华生, 等, 2011. 九龙江流域土地利用/景观格局-水质的初步关联分析[J]. 环境科学, 32(1): 64-72. |
HUANG J L, LI Q S, HONG H S, et al., 2011. Preliminary correlation analysis of land use/landscape pattern and water quality in Jiulong River Basin[J]. Environmental Science, 32(1): 64-72. | |
[16] | 贾亚男, 袁道先, 2003. 土地利用变化对水城盆地岩溶水水质的影响[J]. 地理学报, 58(6): 831-838. |
JIA Y N, YUAN D X, 2003. Effects of land use change on karst water quality in Shuicheng Basin[J]. Acta Geographica Sinica, 58(6): 831-838. | |
[17] | 李艳利, 杨梓睿, 尹希杰, 等, 2018. 太子河下游河流硝酸盐来源及其迁移转化过程[J]. 环境科学, 39(3): 1076-1084. |
LI Y L, YANG Z R, YIN X J, et al., 2018. Sources and migration and transformation of nitrate in the lower reaches of Taizi River[J]. Environmental Science, 39(3): 1076-1084. | |
[18] | 李晓科, 连炎清, 徐新涵, 等, 2023. 浐灞河中下游水质时空变化特征及其与土地利用类型的关系[J]. 水电能源科学, 41(1): 59-62, 54. |
LI X K, LIAN Y Q, XUE X H, et al., 2023. Spatiotemporal characteristics of water quality and its correlation with land use type in middle and lower reaches of Chan Ba River[J]. Water Resources and Power, 41(1): 59-62, 54. | |
[19] | 李延林, 郑灿, 邱小琮, 等, 2019. 宁夏腾格里湖水质及富营养化现状分析与评价[J]. 科学技术与工程, 19(15): 309-315. |
LI Y L, ZHENG C, QIU X C, et al., 2019. Analysis and evaluation of water quality and eutrophication of Tengger Lake in Ningxia[J]. Science Technology and Engineering, 19(15): 309-315. | |
[20] | 李赟, 2015. 东江湖旅游发展公司保护性开发项目的成本效益分析[D]. 长沙: 长沙理工大学. |
LI Y, 2015. The research on protective development project of Hunan Dongjiang Lake tourism development Co., Ltd[D]. Changsha: University of Science and Technology. | |
[21] | 刘丽娟, 李小玉, 何兴元, 2011. 流域尺度上的景观格局与河流水质关系研究进展[J]. 生态学报, 31(19): 5460-5465. |
LIU L J, LI X Y, HE X Y, 2011. Research progress on the relationship between landscape pattern and river water quality at catchment scale[J]. Acta Ecologica Sinica, 31(19): 5460-5465. | |
[22] | 吕乐婷, 高晓琴, 刘琦, 等, 2021. 东江流域景观格局对氮、磷输出的影响[J]. 生态学报, 41(5): 1758-1765. |
LÜ L T, GAO X Q, LIU Q, et al., 2021. Effects of landscape pattern on nitrogen and phosphorus output in Dongjiang Lake Basin[J]. Acta Ecologica Sinica, 41(5): 1758-1765. | |
[23] | 彭勃, 付永胜, 赵君凤, 等, 2019. 小流域土地利用景观格局对水质的影响[J]. 生态科学, 38(3): 90-99. |
PENG B, FU Y S, ZHAO J F, et al., 2019. Effects of landscape pattern of land use on water quality in small watershed[J]. Ecological Science, 38(3): 90-99. | |
[24] | 彭亚辉, 周科平, 2014. 东江湖流域产业结构变迁与水环境响应研究[J]. 江西农业大学学报, 36(5): 1152-1158. |
PENG Y H, ZHOU K P, 2014. Change of industrial structure and response of water environment in Dongjiang Lake Basin[J]. Acta Agriculturae Universitatis Jiangxiensis, 36(5): 1152-1158. | |
[25] | 唐廉, 胡晓辉, 权冠中, 等, 2018. 潭江流域水质时空分布特征及其与土地利用的相关性分析[J]. 地球与环境, 46(4): 364-372. |
TANG L, HU X H, QUAN G Z, et al., 2018. Spatial and temporal distribution of water quality and its correlation with land use in Tanjiang Basin[J]. Earth and Environment, 46(4): 364-372. | |
[26] | 汪昱昆, 程锐辉, 曾鹏, 等, 2019. 上海地区河网水质空间分异及对河岸带土地利用的响应[J]. 生态与农村环境学报, 35(7): 925-932. |
WANG Y K, CHENG R H, ZENG P, et al., 2019. Spatial differentiation of river network water quality and its response to riparian land use in Shanghai[J]. Journal of Ecology and Rural Environment, 35(7): 925-932. | |
[27] | 夏叡, 李云梅, 王桥, 等, 2010. 基于遥感的无锡市土地利用与过境水质响应关系的研究[J]. 地理科学, 30(1): 129-133. |
XIA R, LI Y M, WANG Q, et al., 2010. Wuxi city based on remote sensing of land use and transit response relationship of water quality research[J]. Scientia Geographica Sinica, 30(1): 129-133. | |
[28] | 项松, 万玲, 庞艳, 等, 2020. 土地利用驱动下洱海流域入湖河流水质时空分布规律[J]. 农业环境科学学报, 39(1): 160-170. |
XIANG S, WAN L, PANG Y, et al., 2020. Spatial and temporal distribution of water quality in lake entering river in Erhai Basin driven by land use[J]. Journal of Agro-Environment Science, 39(1): 160-170. | |
[29] | 徐洁, 肖玉, 谢高地, 等, 2016. 东江湖流域水供给服务时空格局分析[J]. 生态学报, 36(15): 4892-4906. |
XU J, XIAO Y, XIE G D, et al., 2016. Spatial and temporal patterns of water supply and service in Dongjiang Lake Basin[J]. Acta Ecologica Sinica, 36(15): 4892-4906. | |
[30] | 杨洁, 许有鹏, 高斌, 等, 2017. 城镇化下河流水质变化及其与景观格局关系分析——以太湖流域苏州市为例[J]. 湖泊科学, 29(4): 827-835. |
YANG J, XU Y P, GAO B, et al., 2017. Analysis of river water quality change and its relationship with landscape pattern under urbanization: A case study of Suzhou in Taihu Basin[J]. Journal of Lake Sciences, 29(4): 827-835.
DOI URL |
|
[31] | 杨柳, 马克明, 郭青海, 等, 2004. 城市化对水体非点源污染的影响[J]. 环境科学, 25(6): 32-39. |
YANG L, MA K M, GUO Q H, et al., 2004. Effects of urbanization on water non-point source pollution[J]. Environmental Science, 25(6): 32-39. | |
[32] | 殷超, 杨海全, 陈敬安, 等, 2020. 基于水化学和氮氧同位素的贵州草海丰水期水体硝酸盐来源辨析[J]. 湖泊科学, 32(4): 989-998. |
YIN C, YANG H Q, CHEN J A, et al., 2020. Source analysis of nitrate in water of Caohai, Guizhou Province based on water chemistry and nitrogen and oxygen isotopes[J]. Journal of Lake Sciences, 32(4): 989-998.
DOI URL |
|
[33] | 张飞, 王维维, 辛红云, 等, 2022. 新疆艾比湖流域河湖水质变化(2005-2020年)[J]. 湖泊科学, 34(2): 478-495. |
ZHANG F, WANG W W, XIN H Y, et al, 2022. Changes of river and lake water quality in Aibi Lake Basin, Xinjiang (2005-2020)[J]. Journal of Lake Sciences, 34(2): 478-495.
DOI URL |
|
[34] | 张华, 安琪, 赵树云, 等, 2017. 关于硝酸盐气溶胶光学特征和辐射强迫的研究进展[J]. 气象学报, 75(4): 539-551. |
ZHANG H, AN Q, ZHAO S Y, et al., 2017. Research progress on optical characteristics and radiative forcing of nitrate aerosols[J]. Acta Meteorologica Sinica, 75(4): 539-551. | |
[35] | 张利民, 王水, 韩敏, 等, 2010. 太湖流域望虞河西岸地区氮磷污染来源解析及控制对策[J]. 湖泊科学, 22(3): 315-320. |
ZHANG L M, WANG S, HAN M, et al., 2010. Source analysis and control measures of nitrogen and phosphorus pollution in the west bank of Wangyu River in Taihu Basin[J]. Journal of Lake Sciences, 22(3): 315-320. | |
[36] | 张柳柳, 刘睿, 张静, 等, 2022. 长江上游坡地景观特征对河流水质的影响[J]. 生态学报, 42(16): 6704-6717. |
ZHANG L L, LIU R, ZHANG J, et al., 2022. Effects of landscape characteristics on river water quality in the upper reaches of the Yangtze River[J]. Acta Ecologica Sinica, 42(16): 6704-6717. | |
[37] | 张殷俊, 陈爽, 相景昌, 2011. 河流近域土地利用格局与水质相关性分析——以巢湖流域为例[J]. 长江流域资源与环境, 20(9): 1054-1061. |
ZHANG Y J, CHEN S, XIANG J C, 2011. Analysis of the correlation between river near-area land use pattern and water quality: A case study of Chaohu Lake Basin[J]. Resources and Environment in the Yangtze Basin, 20(9): 1054-1061. | |
[38] | 赵晓亮, 李响, 卢洪斌, 等, 2022. 东江湖表层沉积物重金属污染特征与潜在生态风险评价[J]. 环境科学, 43(6): 3048-3057. |
ZHAO X L, LI X, LU H B, et al., 2022. Characteristics and potential ecological risk assessment of heavy metal pollution in surface sediments of Dongjiang Lake[J]. Environmental Science, 43(6): 3048-3057. | |
[39] | 邹忠义, 姚德华, 孙立仲, 等, 2011. 东江水库碳汇渔业与生态保护的初步研究[J]. 水生态学杂志, 32(4): 79-84. |
ZOU Z Y, YAO D H, SUN L Z, et al., 2011. Preliminary study on carbon sink fishery and ecological protection in Dongjiang Reservoir[J]. Journal of Hydroecology, 32(4): 79-84. |
[1] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[2] | 嵇晓燕, 王姗姗, 杨凯, 任蓓. 2016—2020年中国地表水中总氮浓度时空变化特征分析[J]. 生态环境学报, 2022, 31(6): 1184-1192. |
[3] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[4] | 陈金凤, 余世钦, 符加方, 徐国良, 于波, 赖晓群, 胡思源, 张开渠, 刘家华. 华南红层地貌区不同利用方式土壤质量特征及其影响因素——以南雄盆地为例[J]. 生态环境学报, 2022, 31(5): 918-930. |
[5] | 杨贤房, 陈朝, 郑林, 万智巍, 陈永林, 王远东. 稀土矿区不同土地利用类型土壤细菌群落特征及网络分析[J]. 生态环境学报, 2022, 31(4): 793-801. |
[6] | 王宇姝, 盛海彦, 罗莎莎, 胡月明, 余玲玲. 环青海湖4种生境土壤中原核微生物群落结构及分子网络特征[J]. 生态环境学报, 2021, 30(7): 1393-1403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||