生态环境学报 ›› 2023, Vol. 32 ›› Issue (9): 1663-1672.DOI: 10.16258/j.cnki.1674-5906.2023.09.013
陈鸿展1(), 区晖1, 叶四化2, 张倩华1, 周树杰1,*(
), 麦磊3,*(
)
收稿日期:
2023-03-23
出版日期:
2023-09-18
发布日期:
2023-12-11
通讯作者:
麦磊。E-mail: lei_mai@jnu.edu.cn作者简介:
陈鸿展(1982年生),男,高级工程师,主要从事环境污染物监测研究。E-mail: maishui2001@126.com
基金资助:
CHEN Hongzhan1(), OU Hui1, YE Sihua2, ZHANG Qianhua1, ZHOU Shujie1,*(
), MAI Lei3,*(
)
Received:
2023-03-23
Online:
2023-09-18
Published:
2023-12-11
摘要:
珠江河流微塑料入海通量在世界河流中处于中上水平,流经广州市区的珠江各支流带来的陆基微塑料是珠江入海微塑料的主要来源,其微塑料污染特征和潜在生态风险值得进一步研究。分别在秋季和冬季在珠江广州段的19个监测点的微塑料污染现状开展了调查,采用Manta拖网过滤法采集水体表面0-0.5 m深的微塑料样品。结果显示,珠江广州段河流水体微塑料丰度在秋季和冬季分别为0.092-26.4 piecesm−3和0.044-2.07 piecesm−3,在全国乃至全世界范围内处于中等水平。处于广州市中心区的采样点微塑料丰度远高于入海口,水体微塑料丰度的最高点(26.4 piecesm−3)出现在位于市内区域的采样点,该点位于广州市老城区,主要以生活区为主,人口密集,证实了人为活动对水体微塑料分布的影响。聚酰胺/尼龙、聚丙烯和聚乙烯这三类聚合物是检出的主要聚合物类型,占据所有微塑料样品的80%以上。在所有微塑料中,透明色和白色居多,其他颜色未发现明显的规律特征,粒径小于2 mm的小尺寸微塑料丰度占比高于大尺寸微塑料,碎片类和纤维类的微塑料在所有样品中均频繁检出,微塑料在颜色、尺寸和形态上的变化可能与微塑料在环境中的不断老化有关。综合考虑各采样点微塑料的类型和丰度评估珠江广州段水体微塑料的生态风险,其生态风险指数(H)和污染负荷指数(PL)分别为0.72-63.1和1.31-16.9。绝大多数采样点位的风险等级为I级,仅少数采样位点的风险等级为II级,且明显受到采样区域内人为活动的影响,亟需采取适当的微塑料管控措施来控制重点区域塑料垃圾的入河量。
中图分类号:
陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672.
CHEN Hongzhan, OU Hui, YE Sihua, ZHANG Qianhua, ZHOU Shujie, MAI Lei. Spatial-temporal Distribution and Ecological Risk Assessment of Microplastics in the Guangzhou Section of the Pearl River[J]. Ecology and Environment, 2023, 32(9): 1663-1672.
采样点位 | 编号 | 纬度 | 经度 | 丰度/(piecesm−3) | ||
---|---|---|---|---|---|---|
秋季 | 冬季 | |||||
背景点 | 流溪河水库 | BK | 23°45′42″ | 113°47′17″ | 0.092 | 0.411 |
分界点 | 九龙潭 | D1 | 23°28′17″ | 113°55′35″ | 0.224 | 0.044 |
九曲河 | D2 | 23°24′26″ | 113°0′8″ | 5.05 | 2.07 | |
大坳 | D3 | 23°17′52″ | 113°9′33″ | 0.379 | 1.12 | |
西南涌 | D4 | 23°15′49ʺ | 113°7′59″ | 0.175 | 0.167 | |
水口水 | D5 | 23°7′32″ | 113°10′55″ | 5.66 | 1.47 | |
石龙桥 | D6 | 23°7′38″ | 113°49′5″ | 1.62 | 0.266 | |
平洲水道 | D7 | 23°1′57″ | 113°12′30″ | 1.82 | 0.757 | |
乌洲 | D8 | 22°53′58″ | 113°16′1″ | 2.17 | 1.66 | |
市内点 | 流溪河口 | C1 | 23°14′53″ | 113°10′55″ | 0.396 | 0.223 |
西航道 | C2 | 23°7′30″ | 113°11′37″ | 26.4 | 0.324 | |
增江口 | C3 | 23°8′28″ | 113°45′25″ | 0.17 | 0.174 | |
墩头基 | C4 | 23°2′53″ | 113°30′39″ | 9.02 | 0.83 | |
南岗 | C5 | 23°2′29″ | 113°31′30″ | 2.83 | 0.67 | |
清流 | C6 | 22°53′59″ | 113°29′50″ | 0.396 | 0.094 | |
官坦 | C7 | 22°53′32″ | 113°29′53″ | 0.671 | 1.29 | |
入海口 | 虎门 | E1 | 22°51′43″ | 113°33′55″ | 0.32 | 0.72 |
洪奇沥 | E2 | 22°37′55″ | 113°34′37″ | 0.189 | 1.98 | |
蕉门 | E3 | 22°38′24″ | 113°38′49″ | 0.157 | 0.305 |
表1 不同采样季节水体微塑料在不同采样点的丰度
Table 1 Abundance of microplastics collected from different sampling sites in different seasons
采样点位 | 编号 | 纬度 | 经度 | 丰度/(piecesm−3) | ||
---|---|---|---|---|---|---|
秋季 | 冬季 | |||||
背景点 | 流溪河水库 | BK | 23°45′42″ | 113°47′17″ | 0.092 | 0.411 |
分界点 | 九龙潭 | D1 | 23°28′17″ | 113°55′35″ | 0.224 | 0.044 |
九曲河 | D2 | 23°24′26″ | 113°0′8″ | 5.05 | 2.07 | |
大坳 | D3 | 23°17′52″ | 113°9′33″ | 0.379 | 1.12 | |
西南涌 | D4 | 23°15′49ʺ | 113°7′59″ | 0.175 | 0.167 | |
水口水 | D5 | 23°7′32″ | 113°10′55″ | 5.66 | 1.47 | |
石龙桥 | D6 | 23°7′38″ | 113°49′5″ | 1.62 | 0.266 | |
平洲水道 | D7 | 23°1′57″ | 113°12′30″ | 1.82 | 0.757 | |
乌洲 | D8 | 22°53′58″ | 113°16′1″ | 2.17 | 1.66 | |
市内点 | 流溪河口 | C1 | 23°14′53″ | 113°10′55″ | 0.396 | 0.223 |
西航道 | C2 | 23°7′30″ | 113°11′37″ | 26.4 | 0.324 | |
增江口 | C3 | 23°8′28″ | 113°45′25″ | 0.17 | 0.174 | |
墩头基 | C4 | 23°2′53″ | 113°30′39″ | 9.02 | 0.83 | |
南岗 | C5 | 23°2′29″ | 113°31′30″ | 2.83 | 0.67 | |
清流 | C6 | 22°53′59″ | 113°29′50″ | 0.396 | 0.094 | |
官坦 | C7 | 22°53′32″ | 113°29′53″ | 0.671 | 1.29 | |
入海口 | 虎门 | E1 | 22°51′43″ | 113°33′55″ | 0.32 | 0.72 |
洪奇沥 | E2 | 22°37′55″ | 113°34′37″ | 0.189 | 1.98 | |
蕉门 | E3 | 22°38′24″ | 113°38′49″ | 0.157 | 0.305 |
采样点 | 编号 | 生态风险指数 (H) | 风险等级 | 污染负荷指数(PL) | 风险等级 |
---|---|---|---|---|---|
九龙潭 | D1 | 2.94 | I | 1.56 | I |
九曲河 | D2 | 3.63 | I | 7.41 | I |
大坳 | D3 | 63.1 | II | 2.03 | I |
西南涌 | D4 | 0.72 | I | 1.38 | I |
水口水 | D5 | 2.6 | I | 7.84 | I |
石龙桥 | D6 | 19.2 | II | 4.2 | I |
平洲水道 | D7 | 5.26 | I | 4.45 | I |
乌洲 | D8 | 0.81 | I | 4.86 | I |
分界区域 | 3.51 | I | |||
流溪河口 | C1 | 2.5 | I | 2.07 | I |
西航道 | C2 | 5.94 | I | 16.9 | II |
增江口 | C3 | 5.64 | I | 1.36 | I |
墩头基 | C4 | 7.1 | I | 9.9 | I |
南岗 | C5 | 3.63 | I | 5.55 | I |
清流 | C6 | 3.7 | I | 2.07 | I |
官坦 | C7 | 1.88 | I | 2.7 | I |
市内区域 | 3.94 | I | |||
虎门 | E1 | 3.44 | I | 1.87 | I |
洪奇沥 | E2 | 3.61 | I | 1.31 | I |
蕉门 | E3 | 1.91 | I | 1.43 | I |
入海口区域 | 1.52 | I |
表2 珠江广州段水体微塑料的生态风险指数(H)和污染负荷指数(PL)及风险等级
Table 2 Ecological risk index and pollution load index and the risk levels of microplastics collected from different sampling sites in the Pearl River Delta
采样点 | 编号 | 生态风险指数 (H) | 风险等级 | 污染负荷指数(PL) | 风险等级 |
---|---|---|---|---|---|
九龙潭 | D1 | 2.94 | I | 1.56 | I |
九曲河 | D2 | 3.63 | I | 7.41 | I |
大坳 | D3 | 63.1 | II | 2.03 | I |
西南涌 | D4 | 0.72 | I | 1.38 | I |
水口水 | D5 | 2.6 | I | 7.84 | I |
石龙桥 | D6 | 19.2 | II | 4.2 | I |
平洲水道 | D7 | 5.26 | I | 4.45 | I |
乌洲 | D8 | 0.81 | I | 4.86 | I |
分界区域 | 3.51 | I | |||
流溪河口 | C1 | 2.5 | I | 2.07 | I |
西航道 | C2 | 5.94 | I | 16.9 | II |
增江口 | C3 | 5.64 | I | 1.36 | I |
墩头基 | C4 | 7.1 | I | 9.9 | I |
南岗 | C5 | 3.63 | I | 5.55 | I |
清流 | C6 | 3.7 | I | 2.07 | I |
官坦 | C7 | 1.88 | I | 2.7 | I |
市内区域 | 3.94 | I | |||
虎门 | E1 | 3.44 | I | 1.87 | I |
洪奇沥 | E2 | 3.61 | I | 1.31 | I |
蕉门 | E3 | 1.91 | I | 1.43 | I |
入海口区域 | 1.52 | I |
[1] |
BALDWIN A K, CORSI S R, MASON S A, 2016. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology[J]. Environmental Science & Technology, 50(19): 10377-10385.
DOI URL |
[2] |
BARROWS A P W, CATHEY S E, PETERSEN C W, 2018. Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins[J]. Environmental Pollution, 237: 275-284.
DOI PMID |
[3] |
BELZAGUI F, CRESPI M, ÁLVAREZ A, et al., 2019. Microplastics′ emissions: Microfibers′ detachment from textile garments[J]. Environmental Pollution, 248: 1028-1035.
DOI URL |
[4] | BRAHNEY J, HALLERUD M, HEIM E, et al., 2020. Plastic rain in protected areas of the United States[J]. Science 368(6496): 1257. |
[5] |
CHEN Y X, LING Y, LI X Y, et al., 2020. Size-dependent cellular internalization and effects of polystyrene microplastics in microalgae P. helgolandica var. tsingtaoensis and S. quadricauda[J]. Journal of Hazardous Materials, 399: 123092.
DOI URL |
[6] |
CONSTANT M, LUDWIG W, KERHERVÉ P, et al., 2020. Microplastic fluxes in a large and a small Mediterranean river catchments: The Têt and the Rhône, Northwestern Mediterranean Sea[J]. Science of The Total Environment, 716: 136984.
DOI URL |
[7] |
CÓZAR A, ECHEVARRÍA F, GONZÁLEZ-GORDILLO J I, et al., 2014. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(28): 10239-10244.
DOI PMID |
[8] |
DE CARVALHO A R, RIEM-GALLIANO L, TER HALLE A, et al., 2022. Interactive effect of urbanization and flood in modulating microplastic pollution in rivers[J]. Environmental Pollution, 309: 119760.
DOI URL |
[9] |
EO S, HONG S H, SONG Y K, et al., 2019. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea[J]. Water Research, 160: 228-237.
DOI PMID |
[10] |
FAN Y F, ZHENG J L, DENG L G, et al., 2022. Spatiotemporal dynamics of microplastics in an urban river network area[J]. Water Research, 212(19): 118116.
DOI URL |
[11] | GEYER R, JAMBECK J R, LAW K L, 2017. Production, use, and fate of all plastics ever made[J]. Science Advances, 3(7): 1-5. |
[12] |
HAN M, NIU X R, TANG M, et al., 2020. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of The Total Environment, 707: 135601.
DOI URL |
[13] |
HUANG Y L, TIAN M, JIN F, et al., 2020. Coupled effects of urbanization level and dam on microplastics in surface waters in a coastal watershed of Southeast China[J]. Marine Pollution Bulletin, 154: 111089.
DOI URL |
[14] |
IBRAHIM Y S, HAMZAH S R, KHALIK W M A W M, et al., 2021. Spatiotemporal microplastic occurrence study of Setiu Wetland, South China Sea[J]. Science of The Total Environment, 788(21): 147809.
DOI URL |
[15] |
KAHANE-RAPPORT S R, CZAPANSKIY M F, FAHLBUSCH J A, et al., 2022. Field measurements reveal exposure risk to microplastic ingestion by filter-feeding megafauna[J]. Nature Communications, 13(1): 6327.
DOI |
[16] |
KATAOKA T, NIHEI Y, KUDOU K, et al., 2019. Assessment of the sources and inflow processes of microplastics in the river environments of Japan[J]. Environmental Pollution, 244: 958-965.
DOI PMID |
[17] |
KLASIOS N, DE FROND H, MILLER E, et al., 2021. Microplastics and other anthropogenic particles are prevalent in mussels from San Francisco Bay, and show no correlation with PAHs[J]. Environmental Pollution, 271: 116260.
DOI URL |
[18] |
LI R L, YU L Y, CHAI M W, et al., 2020. The distribution, characteristics and ecological risks of microplastics in the mangroves of Southern China[J]. Science of the Total Environment, 708: 135025.
DOI URL |
[19] |
LI S Y, WANG Y L, LIU L H, et al., 2021. Temporal and spatial distribution of microplastics in a coastal region of the Pearl River Estuary, China[J]. Water, 13(12): 1618.
DOI URL |
[20] |
LI T, LIU K, TANG R, et al., 2023. Environmental fate of microplastics in an urban river: Spatial distribution and seasonal variation[J]. Environmental Pollution, 322: 121227.
DOI URL |
[21] |
LIN L, ZUO L Z, PENG J P, et al., 2018. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China[J]. Science of The Total Environment, 644: 375-381.
DOI URL |
[22] |
LITHNER D, LARSSON Å, DAVE G, 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of The Total Environment, 409(18): 3309-3324.
DOI URL |
[23] |
LIU Y, ZHANG J D, CAI C Y, et al., 2020. Occurrence and characteristics of microplastics in the Haihe River: An investigation of a seagoing river flowing through a megacity in northern China[J]. Environmental Pollution, 262: 114261.
DOI URL |
[24] |
LWANGA E H, VAN ROSHUM I, MUNHOZ D R, et al., 2023. Microplastic appraisal of soil, water, ditch sediment and airborne dust: The case of agricultural systems[J]. Environmental Pollution, 316(Part 1): 120513.
DOI URL |
[25] |
MAI L, SUN X F, ZENG E Y, 2023. Country-specific riverine contributions to marine plastic pollution[J]. Science of The Total Environment, 874: 162552.
DOI URL |
[26] |
MAI L, SUN X F, XIA L L, et al., 2020. Global riverine plastic outflows[J]. Environmental Science & Technology, 54(16): 10049-10056.
DOI URL |
[27] |
MAI L, YOU S N, HE H, et al., 2019. Riverine microplastic pollution in the Pearl River Delta, China: Are modeled estimates accurate?[J]. Environmental Science & Technology, 53: 11810-11817.
DOI URL |
[28] |
MAI Y Z, PENG S Y, LAI Z N, et al., 2021. Measurement, quantification, and potential risk of microplastics in the mainstream of the Pearl River (Xijiang River) and its estuary, Southern China[J]. Environmental Science and Pollution Research, 28(38): 53127-53140.
DOI |
[29] |
MANI T, BURKHARDT-HOLM P, 2020. Seasonal microplastics variation in nival and pluvial stretches of the Rhine River - From the Swiss catchment towards the North Sea[J]. Science of The Total Environment, 707: 135579.
DOI URL |
[30] | MASURA J, BAKER J E, FOSTER G D, et al., 2015. Laboratory methods for the analysis of microplastics in the marine environment : recommendations for quantifying synthetic particles in waters and sediments[R]. National Oceanic and Atmospheric Administration. Technical Memorandum NOS-OR&R-48. |
[31] |
NAPPER I E, THOMPSON R C, 2016. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions[J]. Marine Pollution Bulletin, 112(1): 39-45.
DOI URL |
[32] |
OLIVERI CONTI G, FERRANTE M, BANNI M, et al., 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population[J]. Environmental Research, 187: 109677.
DOI URL |
[33] | PLASTICSEUROPE, 2022. Plastics - the Facts 2022. An analysis of European plastics production, demand and waste data[R]. Belgium: Plastic Europe. |
[34] |
QIAN Y R, SHANG Y X, ZHENG Y X, et al., 2023. Temporal and spatial variation of microplastics in Baotou section of Yellow River, China[J]. Journal of Environmental Management, 338: 117803.
DOI URL |
[35] |
SCHERER C, WEBER A, STOCK F, et al., 2020. Comparative assessment of microplastics in water and sediment of a large European river[J]. Science of The Total Environment, 738(2): 139866.
DOI URL |
[36] |
TAN X L, YU X B, CAI L Q, et al., 2019. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China[J]. Chemosphere 221: 834-840.
DOI PMID |
[37] |
WU P F, TANG Y Y, DANG M, et al., 2020. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area[J]. Science of The Total Environment, 717: 135187.
DOI URL |
[38] |
XIONG X, WU C X, ELSER J J, et al., 2019. Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River - From inland to the sea[J]. Science of The Total Environment, 659: 66-73.
DOI URL |
[39] |
YAN M T, NIE H Y, XU K H, et al., 2019. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China[J]. Chemosphere, 217: 879-886.
DOI PMID |
[40] |
YANG J, SONG K F, TU C, et al., 2023. Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China[J]. The Science of the Total Environment, 858(Part 2): 159774.
DOI URL |
[41] | ZHANG X, LENG Y F, LIU X N, et al., 2020. Microplastics′ pollution and risk assessment in an urban river: A case study in the Yongjiang River, Nanning city, South China[J]. Exposure and Health 12( 2): 141-151. |
[42] |
ZHAO S Y, WANG T, ZHU L X, et al., 2019. Analysis of suspended microplastics in the Changjiang Estuary: Implications for riverine plastic load to the ocean[J]. Water Research, 161: 560-569.
DOI PMID |
[43] |
樊珂宇, 高原, 赖子尼, 等, 2022. 珠三角河网鱼类微塑料污染特征研究[J]. 生态环境学报, 31(8): 1590-1598.
DOI |
FAN K Y, GAO Y, LAI Z N, et al., 2022. Characteristics of microplastic pollution in fish in the Pearl River Delta[J]. Ecology and Environmental Sciences, 31(8): 1590-1598. | |
[44] | 何文宣, 李垒, 李久义, 等, 2022. 密云水库中微塑料的污染特征及生态风险评估[J]. 环境科学学报, 42(12): 122-135. |
HE W X, LI L, LI J Y, et al., 2022. Pollution characteristics and ecological risk assessment of microplastics in the Miyun Reservoir[J]. Acta Scientiae Circumstantiae, 42(12): 122-135. | |
[45] | 李高俊, 熊雄, 詹晨熙, 等, 2022. 南渡江水体微塑料污染现状研究[J]. 环境科学学报, 42(2): 205-212. |
LI G J, XIONG X, ZHAN C X, et al., 2022. Occurrence of microplastics in the water of the Nandu Jiang River[J]. Acta Scientiae Circumstantiae, 42(2): 205-212. | |
[46] | 江桂斌, 郑明辉, 孙红文, 等, 2021. 环境化学前沿[M]. 第2版. 北京: 科学出版社: 288-329. |
JIANG G B, ZHENG M H, SUN H W, et al., 2021. Environmental Chemistry Advances[M]. Second edition. Beijing: Science Press: 288-329. | |
[47] | 门聪, 李頔, 左剑恶, 等, 2022. 北京市通州区河流中微塑料组成的空间分布及潜在来源解析[J]. 环境科学, 43(7): 3656-3663. |
MEN C, LI D, ZUO J E, et al., 2022. Spatial variation and potential sources of microplastics in rivers in Tongzhou District, Beijing[J]. Environmental Science, 43(7): 3656-3663.
DOI URL |
|
[48] | 天气预报, 2022. 广州市历史天气数据[2023-03-01] https://www.tianqi24.com/guangzhou/history202202.html. |
Weather Forecast, 2022. Historical weather data of Guangzhou[2023-03-01] https://www.tianqi24.com/guangzhou/history202202.html. | |
[49] | 万顺, 徐国策, 李清顺, 等, 2022. 大理河流域微塑料空间分布及其来源[J]. 环境科学学报, 42(8): 293-303. |
WAN S, XU G C, LI Q S, et al., 2022. Spatial distribution and source of microplastics in the Dali River Basin[J]. Acta Scientiae Circumstantiae, 42(8): 293-303. | |
[50] | 张成前, 时鹏, 张妍, 等, 2023. 渭河流域关中段河水和沉积物中微塑料的污染特征对比研究[J]. 环境科学学报, 43(2): 241-253. |
ZHANG C Q, SHI P, ZHANG Y, et al., 2023. Comparison of microplastics pollution in water and sediments in Guanzhong section of the Weihe River basin[J]. Acta Scientiae Circumstantiae, 43(2): 241-253. | |
[51] | 周刚, 徐晨烨, 沈忱思, 等, 2022. 微塑料在淀山湖水环境的污染分布、组成特征和生态风险[J]. 环境科学学报, 42(4): 214-224. |
ZHOU G, XU C Y, SHEN C S, et al., 2022. Distribution, composition and ecological risks of microplastics in surface water of the Dianshan Lake[J]. Acta Scientiae Circumstantiae, 42(4): 214-224. |
[1] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[2] | 杨奇丽, 窦韦丽, 刘之文, 郭景, 吕刚. 正构烷烃示源的阜新细河河道石油烃类污染特征及其影响因素分析[J]. 生态环境学报, 2023, 32(3): 599-608. |
[3] | 李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420. |
[4] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[5] | 肖以华, 付志高, 许涵, 史欣, 唐海明, 陈步峰. 城市化对珠江三角洲不同功能群植物叶片功能性状的影响[J]. 生态环境学报, 2022, 31(9): 1783-1793. |
[6] | 王默雷, 李智慧, 陈来国, 郭送军, 刘明, 王硕, 陆海涛. 城市垃圾焚烧厂烟气及周边土壤中多溴联苯醚的污染特征[J]. 生态环境学报, 2022, 31(8): 1582-1589. |
[7] | 樊珂宇, 高原, 赖子尼, 曾艳艺, 刘乾甫, 李海燕, 麦永湛, 杨婉玲, 魏敬欣, 孙金辉, 王超. 珠三角河网鱼类微塑料污染特征研究[J]. 生态环境学报, 2022, 31(8): 1590-1598. |
[8] | 苏泳松, 宋松, 陈叶, 叶子强, 钟润菲, 王昭尧. 珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 2022, 31(8): 1599-1609. |
[9] | 陈文裕, 夏丽华, 徐国良, 余世钦, 陈行, 陈金凤. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报, 2022, 31(7): 1306-1316. |
[10] | 朱丽, 闫怀忠, 孙友敏, 范晶, 刘光辉, 张桂芹. 山东典型重工业区降尘污染特征及成因分析[J]. 生态环境学报, 2022, 31(7): 1393-1399. |
[11] | 吉冰静, 刘艺, 吴杨, 高淑涛, 曾祥英, 于志强. 长江口及邻近东海沉积物中多环芳烃和含氧多环芳烃的分布特征、来源及生态风险[J]. 生态环境学报, 2022, 31(7): 1400-1408. |
[12] | 王晨茜, 张琼锐, 张若琪, 孙学超, 徐颂军. 广东省珠江流域景观格局对水质净化服务的影响[J]. 生态环境学报, 2022, 31(7): 1425-1433. |
[13] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[14] | 刘晓红, 刘柳青青, 栗敏, 刘强, 曹东东, 郑浩, 罗先香. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263-1271. |
[15] | 谢晨敏, 隆楚月, 黎大宁, 朱春友, 彭先芝, 孙毓鑫, 罗孝俊, 张黎, 麦碧娴. 南海永兴岛和东岛土壤中微塑料和卤代阻燃剂的分布特征[J]. 生态环境学报, 2022, 31(5): 1008-1014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||