生态环境学报 ›› 2025, Vol. 34 ›› Issue (3): 474-483.DOI: 10.16258/j.cnki.1674-5906.2025.03.014
收稿日期:
2024-08-18
出版日期:
2025-03-18
发布日期:
2025-03-24
通讯作者:
*毛雪飞。E-mail: maoxuefei@caas.cn; mxf08@163.com作者简介:
陈琳(2000年生),女,硕士研究生,主要研究方向为食品质量与安全研究、污染物检测。E-mail: chenlin000914@163.com
基金资助:
CHEN Lin(), LAN Guanyu, XU Yan, LI Xue, MAO Xuefei(
)
Received:
2024-08-18
Online:
2025-03-18
Published:
2025-03-24
摘要:
随着现代工农业的快速发展,环境污染问题正引起国际社会的广泛关注,其中重金属、农兽药残留、气体污染物等会对人体健康和生态安全造成潜在危害。近年来,氢键有机框架(HOFs)作为一种新兴材料,具有环境友好、合成条件温和、生物相容性高、重复性和再生性好等特性,在环境污染物检测与治理方面展现出巨大的应用潜力。该文首先综述了HOFs的合成方法,通过选择合适的有机构建块、调节孔隙度和结构合成功能化HOFs材料。其次,综述了HOFs的结构稳定策略,由于其氢键相互作用难以维持结构稳定性,相关研究通过π-π堆叠、静电相互作用、互穿结构和化学交联等策略,有效提高了HOFs结构的稳定性。此外,还综述了HOFs在重金属、农兽药残留、气体污染物和温室气体等环境污染物中吸附和检测的研究进展。在污染物吸附方面,HOFs具有比表面积大、可调节孔隙的特点,通过修饰HOFs框架中官能团的特异性位点,实现环境污染物的特异性高效吸附。在污染物检测方面,具有高效吸附能力的HOFs可用作分析物富集材料,通过固相萃取等技术提高分析仪器的检测能力;同时,利用HOFs自身的电化学发光(ECL)、荧光等特性,可构建高灵敏传感器,实现环境污染物的多元化检测。最后,对HOFs在环境污染物吸附和检测领域的未来应用进行了展望,特别是在HOFs的合成简便性、结构稳定性以及识别特异性等方面,仍需加强进一步探索和研究。
中图分类号:
陈琳, 兰冠宇, 徐妍, 李雪, 毛雪飞. 氢键有机框架材料在环境污染物吸附和检测中的研究进展[J]. 生态环境学报, 2025, 34(3): 474-483.
CHEN Lin, LAN Guanyu, XU Yan, LI Xue, MAO Xuefei. Advances in Hydrogen-bonded Organic Framework Materials for Adsorption and Detection of Environmental Pollutants[J]. Ecology and Environment, 2025, 34(3): 474-483.
图4 MP HOFs自组装和选择性富集和检测百草枯和矮壮素过程示意图(Lü et al.,2022)
Figure 4 Schematic representation of the process of self-assembly and selective enrichment and detection of paraquat and chlormequat by MP HOFs (Lü et al., 2022)
图5 BPNN模型在荧光识别2-CP浓度中的应用(Li et al.,2024)
Figure 5 Application of the BPNN model in fluorescence identification of 2-CP concentrations (Li et al., 2024)
[1] | BILAL M, BAGHERI A R, BHATT P, et al., 2021. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds[J]. Journal of Environmental Management, 291: 112685. |
[2] | CAO S, LI B, ZHU R M, et al., 2019. Design and synthesis of covalent organic frameworks towards energy and environment fields[J]. Chemical Engineering Journal, 355: 602-623. |
[3] | CHEN L F, ZHANG B Y, CHEN L L, et al., 2022a. Hydrogen-bonded organic frameworks: Design, applications, and prospects[J]. Materials advances, 3(9): 3680-3708. |
[4] | CHEN Y, YANG Y S, WANG Y, et al., 2022b. Ultramicroporous hydrogen-bonded organic framework material with a thermoregulatory gating effect for record propylene separation[J]. Journal of the American Chemical Society, 144(37): 17033-17040. |
[5] |
CÔTÉ A P, BENIN A I, OCKWIG N W, et al., 2005. Porous, crystalline, covalent organic frameworks[J]. Science, 310(5751): 1166-1170.
PMID |
[6] |
CRIPPA M, SOLAZZO E, GUIZZARDI D, et al., 2022. Air pollutant emissions from global food systems are responsible for environmental impacts, crop losses and mortality[J]. Nature Food, 3: 942-956.
DOI PMID |
[7] | DOMÍNGUEZ-GONZÁLEZ R, ROJAS-LEÓN I, MARTÍNEZ-AHUMADA E, et al., 2019. UNAM-1: a robust CuIand CuIIcontaining 3D-hydrogen-bonded framework with permanent porosity and reversible SO2sorption[J]. Journal of Materials Chemistry A, 7(47): 26812-26817. |
[8] | DUCHAMP D J, MARSH R E, 1969. The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid)[J]. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 25: 5-19. |
[9] | FENG J F, LIU T F, CAO R, 2020a. An electrochromic hydrogen‐bonded organic framework film[J]. Angewandte Chemie International Edition, 132(50): 22578-22582. |
[10] | FENG S, SHANG Y X, WANG Z K, et al., 2020b. Fabrication of a hydrogen‐bonded organic framework membrane through solution processing for pressure‐regulated gas separation[J]. Angewandte Chemie International Edition, 59(10): 3840-3845. |
[11] | HE Y B, XIANG S C, CHEN B L. 2011. A Microporous Hydrogen-Bonded Organic Framework for Highly Selective C2H2/C2H4 Separation at Ambient Temperature[J]. Journal of the American Chemical Society, 133(37): 14570-14573. |
[12] | HISAKI I, SUZUKI Y, GOMEZ E, et al., 2018. Docking strategy to construct thermostable, single‐crystalline, hydrogen‐bonded organic framework with high surface area[J]. Angewandte Chemie International Edition, 57(39): 12650-12655. |
[13] | HU Y L, LI Y Y, SHI Y R, et al., 2023a. A robust and ultra-high-surface hydrogen-bonded organic framework promoting high-efficiency solid phase microextraction of multiple persistent organic pollutants from beverage and tea[J]. Food Chemistry, 415: 135790. |
[14] | HU Y L, LIU Y F, KUANG Y X, et al., 2023b. Melamine-participant hydrogen-bonded organic frameworks with strong hydrogen bonds and hierarchical micropores driving extraction of nitroaromatic compounds[J]. Analytica Chimica Acta, 1277: 341652. |
[15] | HU Z Q, YAN B, 2024. A sustainable, eco-friendly Tb/Eu-modified HOFs for ultrasensitive detection and efficient adsorption of carcinogens in complex water environments[J]. Journal of Hazardous Materials, 474: 134742. |
[16] | HUANG J L, LI Y B, ZHANG H, et al., 2023. A microporous hydrogen‐bonded organic framework based on hydrogen‐bonding tetramers for efficient Xe/Kr separation[J]. Angewandte Chemie International Edition, 135(52): e202315987. |
[17] | KAUSHIK A, MARVANIYA K, KULKARNI Y, et al., 2022b. Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater[J]. Chem, 8(10): 2749-2765. |
[18] | KAUSHIK P, KHANDELWAL R, RAWAT N, et al., 2022a. Environmental hazards of heavy metal pollution and toxicity: A review[J]. Flora and Fauna, 28: 315-327. |
[19] |
KE Z J, CHEN K X, LI Z Z, et al., 2021. Dual-functional hydrogen-bonded organic frameworks for aniline and ultraviolet sensitive detection[J]. Chinese Chemical Letters, 32(10): 3109-3112.
DOI |
[20] | LAI X X, LIU X X, YANG Y, et al., 2024. In situ generated dimethylamine constructs a robust hydrogen-bonded organic framework for selective fluorescence detection[J]. CrystEngComm, 26(13): 1876-83. |
[21] | LI G H, LIU S, BIAN Y L, et al., 2024. In Situ Fabrication of photoluminescent hydrogen-bonded organic framework-functionalized Ca(II) hydrogel film for the tetracyclines visual sensor and information security[J]. ACS Applied Materials & Interfaces, 16(8): 10522-10531. |
[22] | LI P H, LI P, RYDER M R, et al., 2019. Interpenetration isomerism in triptycene‐based hydrogen‐bonded organic frameworks[J]. Angewandte Chemie International Edition, 58(6): 1664-1669. |
[23] | LI P, HE Y B, GUANG J, et al., 2014a. A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols[J]. Journal of the American Chemical Society, 136(2): 547-549. |
[24] | LI P, HE Y B, ZHAO Y F, et al., 2014b. A rod‐packing microporous hydrogen‐bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie International Edition, 54(2): 574-577. |
[25] | LI Y B, WANG X, ZHANG H, et al., 2023a. A microporous hydrogen bonded organic framework for highly selective separation of carbon dioxide over acetylene[J]. Angewandte Chemie International Edition, 62(39): e202311419. |
[26] | LI Y L, ALEXANDROV E V, YIN Q, et al., 2020. Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors[J]. Journal of the American Chemical Society, 142(15): 7218-7224. |
[27] | LI Y L, WANG H L, CHEN Z C, et al., 2023b. Lanthanoid hydrogen-bonded organic frameworks: Enhancement of luminescence by the coordination-promoted antenna effect and applications in heavy-metal ion sensing and sterilization[J]. Chemical Engineering Journal, 451(2): 138880. |
[28] |
LIN Y X, JIANG X F, KIM S T, et al., 2017. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water[J]. Journal of the American Chemical Society, 139(21): 7172-7175.
DOI PMID |
[29] | LIN Z J, QIN J Y, ZHAN X P, et al., 2022. Robust mesoporous functional hydrogen-bonded organic framework for hypochlorite detection[J]. ACS Applied Materials & Interfaces, 14(18): 21098-21105. |
[30] | LIU B T, PAN X H, NIE D Y, et al., 2020. Ionic hydrogen‐bonded organic frameworks for ion‐responsive antimicrobial membranes[J]. Advanced Materials, 32(48): 2005912. |
[31] | LIU P F, LI X R, ZHANG C L, et al., 2023. It is time to reduce atmospheric pollutant emissions from agricultural and residential activities in rural china for the sustainable improvement of air quality[J]. Environmental Science & Technology, 57(48): 19102-19105. |
[32] | LIU X M, LIU G L, FU T, et al., 2024a. Structural design and energy and environmental applications of hydrogen-bonded organic frameworks: A systematic review[J]. Advanced Science, 11(22): 2400101. |
[33] | LIU Y H, ZHU K, YAN B, 2024b. Food and environmental safety monitoring platform based on Tb(III) functionalized HOF hybrids for ultrafast detection of thiabendazole and 2-chlorophenol[J]. Talanta, 272: 125829. |
[34] | LÜ Y X, QIN X H, HU K, et al., 2022. Microporous hydrogen-bond organic frameworks-based SALDI-TOF MS for simultaneous enrichment and high sensitivity detection of paraquat and chlormequat[J]. Sensors and Actuators B: Chemical, 353: 131132. |
[35] | LUO Y H, ZHANG L, FANG W X, et al., 2021. 2D hydrogen-bonded organic frameworks: in-site generation and subsequent exfoliation[J]. Chemical Communications, 57(48): 5901-5904. |
[36] | MA K, LI P, XIN J H, et al., 2020. Ultrastable mesoporous hydrogen-bonded organic framework-based fiber composites toward mustard gas detoxification[J]. Cell Reports Physical Science, 1(2): 100024. |
[37] | MASTALERZ M, OPPEL I M, 2012. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area[J]. Angewandte Chemie International Edition, 51(21): 5252-5255. |
[38] | MOHAMMED A K, RAYA J, PANDIKASSALA A, et al., 2023. Chemically gradient hydrogen-bonded organic framework crystal film[J]. Angewandte Chemie International Edition, 62(29): e202304313. |
[39] | MOHAN B, SINGH G, GUPTA R K, et al., 2024. Hydrogen-bonded organic frameworks (HOFs): Multifunctional material on analytical monitoring[J]. Trends in Analytical Chemistry, 170: 117436. |
[40] |
NICKS J, BOER S A, WHITE N G, et al., 2021. Monolayer nanosheets formed by liquid exfoliation of charge-assisted hydrogen-bonded frameworks[J]. Chemical Science, 12(9): 3322-3327.
DOI PMID |
[41] | QIN W K, SI D H, YIN Q, et al., 2022. Reticular Synthesis of hydrogen‐bonded organic frameworks and their derivatives via mechanochemistry[J]. Angewandte Chemie International Edition, 134(27): e202202089. |
[42] | RAD S M, RAY A K, BARGHI S, 2022. Water pollution and agriculture pesticide[J]. Clean Technologies, 4(4): 1088-1102. |
[43] | SHEN K Y, ZHAN J L, SHEN L, et al., 2023. Hydrogen bond organic frameworks as radical reactors for enhancement in ECL efficiency and their ultrasensitive biosensing[J]. Analytical Chemistry, 95(10): 4735-4743. |
[44] | SUKU S, RAVINDRAN R, 2021. Synthesis, characterization and dielectric properties of porous hydrogen-bonded organic framework of pyridine-2,6-dicarboxylic acid with 4-methoxyaniline and its Bi(III) complex[J]. Journal of Molecular Structure, 1226(Part B): 129314. |
[45] | TAN X H, WANG S, HAN N, 2023. Metal organic frameworks derived functional materials for energy and environment related sustainable applications[J]. Chemosphere, 313: 137330. |
[46] | TANG F H M, LENZEN M, MCBRATNEY A, et al., 2021. Risk of pesticide pollution at the global scale[J]. Nature Geoscience, 14: 206-210. |
[47] | WANG B, HE R, XIE L H, et al., 2020b. A microporous hydrogen-bonded organic framework for highly efficient turn-up fluorescent sensing of aniline[J]. Journal of the American Chemical Society, 142(28): 12478-12485. |
[48] | WANG S Q, LIU J, FENG S W, et al., 2024. Anionic hydrogen‐bonded frameworks showing tautomerism and colorful luminescence for the ultrasensitive detection of acetone[J]. Angewandte Chemie International Edition, 63(13): e202400742. |
[49] | WANG Y J, ZHANG M H, YANG Q Q, et al., 2020a. Single-crystal-to-single-crystal transformation and proton conductivity of three hydrogen-bonded organic frameworks[J]. Chemical Communications, 56(99): 15529-15532. |
[50] |
WEISSKOPF L, SCHULZ S, GARBEVA P, 2021. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions[J]. Nature Reviews Microbiology, 19: 391-404.
DOI PMID |
[51] | WU P, YIN X Y, ZHAO Y F, et al., 2023. Porphyrin-based hydrogen-bonded organic framework for visible light driven photocatalytic removal of U(VI) from real low-level radioactive wastewater[J]. Journal of Hazardous Materials, 459: 132179. |
[52] | XIA F, ZHAO Z F, NIU X, et al., 2024. Integrated pollution analysis, pollution area identification and source apportionment of heavy metal contamination in agricultural soil[J]. Journal of Hazardous Materials, 465: 133215. |
[53] | YANG C Y, ZHU K, YAN B, 2024a. Efficient multi-stimulus-responsive luminescent Eu(III)-modified HOFs materials: detecting thiram and caffeic acid and constructing a flexible substrate anti-counterfeiting platform[J]. ACS Applied Materials & Interfaces, 16(16): 20744-20754. |
[54] | YANG J Y, WANG J K, ZHANG X N, et al., 2022b. Exploration of hydrogen-bonded organic framework (HOF) as highly efficient adsorbent for rhodamine B and methyl orange[J]. Microporous and Mesoporous Materials, 330: 111624. |
[55] | YANG J Y, ZHANG X N, CHEN M, et al., 2022a. Versatile hydrogen-bonded organic framework (HOF) platform for simultaneous detection and efficient removal of heavy metal ions[J]. Journal of Environmental Chemical Engineering, 10(6): 108983. |
[56] | YANG L J, YUAN J W, WANG G, et al., 2023. Construction of tri-functional HOFs material for efficient selective adsorption and photodegradation of bisphenol A and hydrogen production[J]. Advanced Functional Materials, 33(28): 2300954. |
[57] |
YANG W B, GREENAWAY A, LIN X, et al., 2010. Exceptional thermal stability in a supramolecular organic framework: Porosity and gas storage[J]. Journal of the American Chemical Society, 132(41): 14457-14469.
DOI PMID |
[58] | YANG W, WANG J W, WANG H L, et al., 2017. Highly interpenetrated robust microporous hydrogen-bonded organic framework for gas separation[J]. Crystal Growth & Design, 17(11): 6132-6137. |
[59] | YANG Y K, ZHANG X Y, WANG X M, et al., 2024b. Self-powered molecularly imprinted photoelectrochemical sensor based on Ppy/QD/ HOF heterojunction for the detection of bisphenol A[J]. Food Chemistry, 443: 138499. |
[60] | YIN Q, ZHAO P, SA R J, et al., 2018. An ultra‐robust and crystalline redeemable hydrogen‐bonded organic framework for synergistic chemo‐photodynamic therapy[J]. Angewandte Chemie International Edition, 57(26): 7691-7696. |
[61] | ZHANG N, WANG X T, XIONG Z P, et al., 2021b. Hydrogen bond organic frameworks as a novel electrochemiluminescence luminophore: Simple synthesis and ultrasensitive biosensing[J]. Analytical Chemistry, 93(51): 17110-17118. |
[62] | ZHANG X, WANG J X, LI L B, et al., 2021a. A rod‐packing hydrogen‐bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation[J]. Angewandte Chemie International Edition, 60(18): 10304-10310. |
[63] | ZHANG Y, LI Y L, FANG Z B, et al., 2022. Facile preparation of hydrogen-bonded organic framework/Cu2O heterostructure films via electrophoretic deposition for efficient CO2 photoreduction[J]. ACS Applied Materials & Interfaces, 14(18): 21050-21058. |
[64] | ZHANG Y, TIAN M F, MAJEED Z, et al., 2023. Application of hydrogen-bonded organic frameworks in environmental remediation: Recent advances and future trends[J]. Separations, 10(3): 196. |
[65] | ZHOU H, YE Q, WU X Y, et al., 2015. A thermally stable and reversible microporous hydrogen-bonded organic framework: Aggregation induced emission and metal ion-sensing properties[J]. Journal of Materials Chemistry C, 3(45): 11874-11880. |
[66] | ZIĘBA S, GZELLA A, DUBIS A T, et al., 2021. Combination of negative, positive, and near-zero thermal expansion in bis (imidazolium) terephthalate with a helical hydrogen-bonded network[J]. Crystal Growth & Design, 21(7): 3838-3849. |
[67] | 池立欣, CLARISSE NTAMPAKA D, 孙中华, 等, 2023. 氨基酸类衍生物MOFs的制备及吸附降解有机染料研究[J]. 离子交换与吸附, 39(6): 489-500. |
CHI L X, CLARISSE NTAMPAKA D, SUN Z H, et al., 2023. Preparation of amino acid derivatives MOFs and study on adsorption degradation of organic dyes[J]. Ion Exchange and Adsorption, 39(6): 489-500. | |
[68] | 巩伟, 2019. 基于螺环骨架的手性晶态多孔材料的设计合成与不对称催化性能[D]. 上海: 上海交通大学. |
GONG W, 2019. Design, synthesis and asymmetric catalytic properties of chiral crystalline porous materials based on spirobiindane[D]. Shanghai: Shanghai Jiao Tong University. | |
[69] | 侯耀, 杨莹, 熊仁萱, 2024. 零价钨活化高碘酸盐降解水中双酚A的研究[J]. 四川环境, 43(2): 159-166. |
HOU Y, YANG Y, XIONG R X, 2024. Study on degradation of bisphenol A in water through periodate activated by zero-valent tungsten[J]. Sichuan Environment, 43(2): 159-166. |
[1] | 王斌, 曾兆荷, 董璐, 岳林. 内梅罗指数法在地下水水质评价中的修正探讨与实践效果[J]. 生态环境学报, 2025, 34(2): 293-301. |
[2] | 张传华, 刘力, 代杰, 李曼曼, 张凤太, 邓凌. 基于土壤重金属污染和累积性评价的耕地环境质量类别划分与风险管控[J]. 生态环境学报, 2025, 34(2): 311-320. |
[3] | 常春英, 王刚, 曹浩轩, 邓一荣, 陶亮. 模拟干湿过程对稳定化修复土壤中重金属Ni和Pb的影响[J]. 生态环境学报, 2025, 34(1): 118-125. |
[4] | 韩军超, 郑茂坤, 涂晨, 刘颖, 曹振宇, 邢倩雯, 申卫收, 骆永明. 趋磁细菌在环境污染修复中的应用研究进展与展望[J]. 生态环境学报, 2025, 34(1): 145-155. |
[5] | 曹振宇, 涂晨, 刘颖, 韩军超, 邢倩雯, 骆永明. 趋磁细菌Magnetospirillum gryphiswaldense MSR-1对镉的生物吸附初步研究[J]. 生态环境学报, 2025, 34(1): 99-107. |
[6] | 丛鑫, 张怀迪, 张荣, 赵琛, 陈坤, 刘寒冰. 基于Meta分析的近10年中国农田土壤重金属污染特征与风险解析[J]. 生态环境学报, 2024, 33(9): 1451-1459. |
[7] | 刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470. |
[8] | 欧阳美凤, 尹宇莹, 张金谌, 刘清霖, 谢意南, 方平. 洞庭湖典型水域重金属含量的空间分布与来源解析[J]. 生态环境学报, 2024, 33(8): 1269-1278. |
[9] | 吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801. |
[10] | 王室苹, 李梅, 安娅, 秦好丽. 镁改性增强小麦秸秆生物炭对镉的吸附能力:表面络合模型研究[J]. 生态环境学报, 2024, 33(4): 617-625. |
[11] | 肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449. |
[12] | 李高帆, 徐文卓, 卫昊明, 晏再生, 尤佳, 江和龙, 黄娟. 三维多孔生物炭吸附剂的制备及其对菲的吸附行为[J]. 生态环境学报, 2024, 33(2): 261-271. |
[13] | 江润海, 温绍福, 朱城强, 张梅, 杨润玲, 王春雪, 侯秀丽. 铅污染矿区中耐铅解磷菌对玉米的促生及根际铅的固化效应[J]. 生态环境学报, 2024, 33(2): 291-300. |
[14] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[15] | 李璞君, 唐丽, 赵博, 邸东柳, 陈岩, 肖江, 陈光才. 生物炭基土壤改良剂对锑矿区土壤质量及亮叶桦生长的影响[J]. 生态环境学报, 2024, 33(12): 1953-1963. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||