[1] |
ABDOLALI A, NGO H H, GUO W, et al., 2015. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies[J]. Bioresource Technology, 193:477-487.
DOI
PMID
|
[2] |
AFROOZ M R, MOGHADAS B K, TAMJIDI S, 2022. Performance of functionalized bacterial as bio-adsorbent for intensifying heavy metal uptake from wastewater: A review study[J]. Journal of Alloys and Compounds, 893:162321.
|
[3] |
AMIRNIA S, RAY M B, MARGARITIS A, 2015. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system[J]. Chemical Engineering Journal, 264(1):863-872.
|
[4] |
ARAUJO A C V, ABREU F, SILVA K T, et al., 2015. Magnetotactic bacteria as potential sources of bioproducts[J]. Marine Drugs, 13(1):389-430.
DOI
PMID
|
[5] |
ARIVALAGAN P, SINGARAJ D, HARIDASS V, et al., 2014. Removal of cadmium from aqueous solution by batch studies using Bacillus cereus[J]. Ecological Engineering, 71:728-735.
|
[6] |
BAZYLINSKI D A, FRANKEL R B, 2004. Magnetosome formation in prokaryotes[J]. Nature Reviews Microbiology, 2:217-230.
PMID
|
[7] |
BLAKEMORE R, 1975. Magnetotactic bacteria[J]. Science, 190:377-379.
PMID
|
[8] |
CHAKRAVARTY R, BANERJEE P C, 2008. Morphological changes in an acidophilic bacterium induced by heavy metals[J]. Extremophiles, 12:279-284.
DOI
PMID
|
[9] |
CHANDRANGSU P, RENSING C, HELMANN J D, 2017. Metal homeostasis and resistance in bacteria[J]. Nature Reviews Microbiology, 15(6):338-350.
DOI
PMID
|
[10] |
CHOIŃSKA-PULIT A, SOBOLCZYK-BEDNAREK J, ŁABA W, 2018. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design[J]. Ecotoxicology and Environmental Safety, 149:275-283.
|
[11] |
DENG M, LI K, YAN Y J, et al., 2022. Enhanced cadmium removal by growing Bacillus cereus RC-1 immobilized on different magnetic biochars through simultaneous adsorption and bioaccumulation[J]. Environmental Science and Pollution Research, 29:18495-18507.
|
[12] |
HASSAN M, NAIDU R, DU J, et al., 2020. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment[J]. Science of The Total Environment, 702:134893.
|
[13] |
HE N, RAN M, HU L, et al., 2023. Periplasmic space is the key location for Pb(II) biomineralization by Burkholderia cepacian[J]. Journal of Hazardous Materials, 445:130465.
|
[14] |
HOSSAIN S T, MALLICK I, MUKHERJEE S K, 2012. Cadmium toxicity in Escherichia coli: Cell morphology, Z-ring formation and intracellular oxidative balance[J]. Ecotoxicology and Environmental Safety, 86:54-59.
|
[15] |
HUANG F, DANG Z, GUO C L, et al., 2013. Biosorption of Cd(Ⅱ) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil[J]. Colloids and Surfaces B: Biointerfaces, 107:11-18.
|
[16] |
HUANG F, WANG Z H, CAI Y X, et al., 2018. Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions[J]. Ecotoxicology and Environmental Safety, 157:216-226.
|
[17] |
LI D D, XU X J, YU H R, et al., 2017. Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China[J]. Journal of Environmental Management, 196:8-15.
|
[18] |
LIMCHAROENSUK T, SOOKSAWAT N, SUMARNROTE A, et al., 2015. Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand[J]. Ecotoxicology and Environmental Safety, 122:322-330.
|
[19] |
LIU S N, WIATROWSKI H A, 2018. Reduction of Hg(Ⅱ) to Hg(0) by biogenic magnetite from two magnetotactic bacteria[J]. Geomicrobiology Journal, 35(3):198-208.
|
[20] |
LÜ B B, YANG C L, TAN Z X, et al., 2023. Association between cadmium exposure and pulmonary function reduction: Potential mediating role of telomere attrition in chronic obstructive pulmonary disease patients[J]. Ecotoxicology and Environmental Safety, 251:114548.
|
[21] |
MARKOU G, MITROGIANNIS D, ÇELEKLI A, et al., 2015. Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions[J]. Chemical Engineering Journal, 259:806-813.
|
[22] |
MOHITE B V, KOLI S H, PATIL S V, 2018. Heavy metal stress and its consequences on exopolysaccharide (EPS)-Producing Pantoea agglomerans[J]. Applied Biochemistry and Biotechnology, 186(Part C):199-216.
|
[23] |
PABST M W, MILLER C D, DIMKPA C O, et al., 2010. Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida[J]. Chemosphere, 81:904-910.
|
[24] |
PARK J H, CHON H T, 2016. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine[J]. Environmental Science and Pollution Research, 23:11814-11822.
|
[25] |
PENG D H, QIAO S Y, LUO Y, et al., 2020. Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil[J]. Journal of Hazardous Materials, 400:123116.
|
[26] |
PHAM V H T, KIM J, CHANG S, et al., 2022. Bacterial biosorbents, an efficient heavy metals green clean-up strategy: prospects, challenges, and opportunities[J]. Microorganisms, 10(3):610.
|
[27] |
PRIYADARSHANEE M, DAS S, 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review[J]. Journal of Environmental Chemical Engineering, 9(1):104686.
|
[28] |
QU Y M, ZHANG X M, XU J, et al., 2014. Removal of hexavalent chromium from wastewater using magnetotactic bacteria[J]. Separation and Purification Technology, 136:10-17.
|
[29] |
SANNIGRAHI S, SUTHINDHIRAN K, 2019. Metal recovery from printed circuit boards by magnetotactic bacteria[J]. Hydrometallurgy, 187:113-124.
DOI
|
[30] |
SATARUG S, VESEY D A, GOBE G C, et al., 2023. Estimation of health risks associated with dietary cadmium exposure[J]. Archives of Toxicology, 97(2):329-358.
DOI
PMID
|
[31] |
SOHBATZADEH H, KESHTKAR A R, SAFDARI J, et al., 2017. Insights into the biosorption mechanisms of U(Ⅵ) by chitosan bead containing bacterial cells: A supplementary approach using desorption eluents, chemical pretreatment and PIXE-RBS analyses[J]. Chemical Engineering Journal, 323:492-501.
|
[32] |
SONG H P, LI X G, SUN J S, et al., 2008. Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(Ⅲ) from contaminated wastewater with a magnetic separator[J]. Chemosphere, 72(4):616-621.
|
[33] |
SREEDEVI P R, SURESH K, JIANG G, 2022. Bacterial bioremediation of heavy metals in wastewater: A review of processes and applications[J]. Journal of Water Process Engineering, 48:102884.
|
[34] |
SUN X F, WANG S G, ZHANG X M, et al., 2009. Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules[J]. Journal of Colloid and Interface Science, 335(1):11-17.
|
[35] |
TAJER-MOHAMMAD-GHAZVINI P, KASRA-KERMANSHAHI R, NOZAD-GOLIKAND A, et al., 2016. Cobalt separation by Alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation[J]. Bioprocess and Biosystems Engineering, 39(12):1899-1911.
|
[36] |
UEBE R, SCHÜLER D, 2016. Magnetosome biogenesis in magnetotactic bacteria[J]. Nature Reviews Microbiology, 14:621-637.
DOI
PMID
|
[37] |
WANG Y H, GAO H, SUN J S, et al., 2011. Selective reinforced competitive biosorption of Ag(Ⅰ) and Cu(Ⅱ) on Magnetospirillum gryphiswaldense[J]. Desalination, 270(1-3):258-263.
|
[38] |
WU G, KANG H B, ZHANG X, et al., 2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities[J]. Journal of Hazardous Materials, 174(1-3):1-8.
DOI
PMID
|
[39] |
WU S C, HSIAO W C, ZHAO Y C, et al., 2023. Hexavalent chromate bioreduction by a magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1 and the effect of magnetosome synthesis[J]. Chemosphere, 330:138739.
|
[40] |
YAN L, ZHANG S, CHEN P, et al., 2012. Magnetotactic bacteria, magnetosomes and their application[J]. Microbiological Research, 167(9):507-519.
DOI
PMID
|
[41] |
ZHAO L Z, WU D, WU L F, et al., 2007. A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer[J]. Journal of Biochemical and Biophysical Methods, 70(3):377-383.
DOI
PMID
|
[42] |
陈宇婷, 盛光遥, 谢康颖, 等, 2021. 枯草芽孢杆菌耐镉能力驯化及镉吸附特性研究[J]. 工业水处理, 41(2):97-102.
DOI
|
|
CHEN Y T, SHENG G Y, XIE K Y, et al., 2021. Acclimation of cadmium tolerance and cadmium adsorption characteristics of Bacillus subtilis[J]. Industrial Water Treatment, 41(2):97-102.
|
[43] |
韩秀英, 郭瑞雪, 邵美丽, 等, 2013. 响应面分析法优化磁螺菌 (M. gryphiswaldense MSR-1) 的培养条件[J]. 安徽农业科学, 41(12):5179-5182, 5232.
|
|
HAN X Y, GUO R X, SHAO M L, et al., 2013. Optimization of growth condition of Magnetospirillum gryphiswaldense MSR-1 via response surface methodology[J]. Journal of Anhui Agricultural Science, 41(12):5179-82, 232.
|
[44] |
李卓阳, 曹苗苗, 周登博, 等, 2022. 高耐镉细菌Burkholderia sp. DF3-1对镉的吸附特性及机理[J]. 热带作物学报, 43(3):589-596.
DOI
|
|
LI Z Y, CAO M M, ZHOU D B, et al., 2022. Adsorption characteristics and mechanism of high cadmium-tolerant bacteria Burkholder sp. DF-1 to cadmium[J]. Chinese Journal of Tropical Crops, 43(3):589-96.
|
[45] |
宋慧平, 李鑫钢, 孙津生, 等, 2007. Biosorption equilibrium and kinetics of Au(Ⅲ) and Cu(Ⅱ) on magnetotactic Bacteria[J]. 中国化学工程学报: 英文版, 15(6):847-854.
|
|
SONG H P, LI X G, SUN J S, et al., 2007. Biosorption equilibrium and kinetics of Au(Ⅲ) and Cu(Ⅱ) on magnetotactic Bacteria[J]. Chinese Journal of Chemical Engineering, 15(6):847-854.
|
[46] |
邵鑫, 孙凯, 熊婧, 等, 2017. 耐镉乳酸菌对重金属镉的吸附机制[J]. 食品与发酵工业, 43(3):48-53, 60.
|
|
SHAO X, SUN K, XIONG J, et al., 2017. The cadmium removal mechanism of lactobacillus strains[J]. Food and Fermentation Industries, 43(3):48-53, 60.
|
[47] |
燕传明, 贺卓, 葛占标, 等, 2018. 两株重金属抗性细菌对铅镉吸附特性的比较研究[J]. 环境科学学报, 38(9):3597-3604.
|
|
YAN C M, HE Z, GE Z B, et al., 2018. Comparative study on adsorption characteristics of lead and cadmium by two heavy metal resistant bacteria[J]. Acta Scientiae Circumstantiae, 38(9):3597-3604.
|
[48] |
张楠, 杨洁秋, 蔡思恒, 等, 2023. Sphingopyxis sp.YF1吸附镉的特性及其机制[J]. 微生物学通报, 50(8):3330-3344.
|
|
ZHANG N, YANG J Q, CAI X H, et al., 2023. Characteristics and mechanisms of cadmium adsorption by Sphingopyxis sp. YF1[J]. Microbiology China, 50(8):3330-3344.
|