生态环境学报 ›› 2024, Vol. 33 ›› Issue (2): 261-271.DOI: 10.16258/j.cnki.1674-5906.2024.02.010
李高帆1,2(), 徐文卓1,2, 卫昊明2, 晏再生2,*(
), 尤佳1,2, 江和龙2, 黄娟1,*(
)
收稿日期:
2022-12-06
出版日期:
2024-02-18
发布日期:
2024-04-03
通讯作者:
黄娟。E-mail: 101010942@seu.edu.cn作者简介:
李高帆(1997年生),男,硕士研究生。E-mail: tmtsxmug@163.com
基金资助:
LI Gaofan1,2(), XU Wenzhuo1,2, WEI Haoming2, YAN Zaisheng2,*(
), YOU Jia1,2, JIANG Helong2, HUANG Juan1,*(
)
Received:
2022-12-06
Online:
2024-02-18
Published:
2024-04-03
摘要:
以生活中常见的丝瓜络为原材料,在氮气保护和不同温度(600、700、800、900 ℃)的条件下热解制备了三维多孔丝瓜络生物炭(LSBC600、LSBC700、LSBC800、LSBC900)。表征了丝瓜络生物炭的理化性质,通过动力学吸附实验和等温线吸附实验研究了不同热解温度条件下制备的丝瓜络生物炭对菲的吸附动力学特征和吸附等温线特征,探讨了可能的吸附机理,评估三维多孔生物炭对菲的去除能力,为水生态系统保护和饮用水安全提供科学依据。结果表明,热解温度会影响生物炭的表面官能团组成,进而影响其芳香性。丝瓜络生物炭呈现多管束堆叠的三维多孔结构,随着热解温度的升高,挥发性物质减少,丝瓜络生物炭的表面变得粗糙,比表面积增大,芳香结构增加;LSBC900的比表面积达到了467 m2∙g−1。吸附动力学结果说明,丝瓜络生物炭对菲的吸附是复杂和多阶段的,主导吸附速率的是液膜扩散过程,其次是颗粒内扩散过程。在600-900 ℃范围内,随着热解温度的升高,丝瓜络生物炭对菲的平衡吸附量升高,吸附速率加快。吸附等温线结果说明,热解温度升高可以提高丝瓜络生物炭对菲的吸附容量。根据Langmuir等温线模型,在吸附动力学实验(ρ0=5.00 mg∙L−1)中,LSBC900的平衡吸附量为16.3 mg∙g−1,初始吸附速率为9.60 mg∙L−1∙min−1,最大吸附量达到了26.0 mg∙g−1,超过了大部分已报道的材料。菲在丝瓜络生物炭上的吸附是一个自发的过程(ΔG<0),疏水相互作用和π-π电子供体受体相互作用可能是菲在丝瓜络生物炭上吸附的主要机制。这些发现证明三维多孔丝瓜络生物炭是有效和可行的,可用于水体中有机微污染物的去除。
中图分类号:
李高帆, 徐文卓, 卫昊明, 晏再生, 尤佳, 江和龙, 黄娟. 三维多孔生物炭吸附剂的制备及其对菲的吸附行为[J]. 生态环境学报, 2024, 33(2): 261-271.
LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene[J]. Ecology and Environment, 2024, 33(2): 261-271.
模型 | 参数 | LSBC600 | LSBC700 | LSBC800 | LSBC900 |
---|---|---|---|---|---|
伪一级动力学模型 | qe/(mg∙g−1) | 13.3222 | 14.2537 | 15.7122 | 16.2250 |
k1/(min−1) | 0.2341 | 0.2476 | 0.2537 | 0.2948 | |
r2 | 0.9983 | 0.9980 | 0.9985 | 0.9991 | |
伪二级动力学模型 | qe/(mg∙g−1) | 13.9005 | 14.8086 | 16.4262 | 16.9270 |
k2/(g∙mg−1∙min−1) | 0.0307 | 0.0324 | 0.0285 | 0.0335 | |
r2 | 0.9974 | 0.9977 | 0.9981 | 0.9987 | |
颗粒内扩散模型 | kp1/(mg∙g−1∙min−0.5) | 4.8299 | 5.0777 | 5.7019 | 6.0492 |
cp1/(mg∙g−1) | −1.8230 | −1.5146 | −1.7742 | −1.3990 | |
R2 | 0.9987 | 0.9989 | 1.0000 | 0.9927 | |
kp2/(mg∙g−1∙min−0.5) | 2.18838 | 2.19018 | 2.38295 | 2.1317 | |
cp2 (mg∙g−1) | 4.8856 | 5.8150 | 6.5993 | 8.2106 | |
R2 | 0.9678 | 0.9592 | 0.9435 | 0.9335 | |
kpa/(mg∙g−1∙min−0.5) | 0.0059 | 0.0027 | 0.0392 | 0.0353 | |
cpa/(mg∙g−1) | 13.1537 | 14.1329 | 15.3686 | 15.9934 | |
R2 | 0.1234 | 0.0124 | 0.3608 | 0.1687 | |
Elovich 动力学模型 | α/(mg∙g−1∙min−1) | 4.6603 | 5.7140 | 6.4396 | 8.6960 |
β/(g∙mg−1) | 0.1968 | 0.1970 | 0.1789 | 0.1916 | |
R2 | 0.9940 | 0.9939 | 0.9935 | 0.9917 | |
外扩散速率控制模型 | k3/(min−1) | 0.5077 | 0.5019 | 0.3890 | 0.4047 |
b | −1.2618 | −1.1961 | −0.7575 | −0.7166 | |
R2 | 0.9242 | 0.9343 | 0.9717 | 0.9768 | |
Bangham孔道扩散模型 | k4 | 17.4214 | 20.6419 | 22.7866 | 26.9997 |
a | 0.6643 | 0.6376 | 0.6648 | 0.6344 | |
R2 | 0.9842 | 0.9847 | 0.9837 | 0.9724 |
表1 丝瓜络生物炭对菲的吸附动力学拟合参数
Table 1 Fitting parameters of adsorption kinetics of PHE by LSBC
模型 | 参数 | LSBC600 | LSBC700 | LSBC800 | LSBC900 |
---|---|---|---|---|---|
伪一级动力学模型 | qe/(mg∙g−1) | 13.3222 | 14.2537 | 15.7122 | 16.2250 |
k1/(min−1) | 0.2341 | 0.2476 | 0.2537 | 0.2948 | |
r2 | 0.9983 | 0.9980 | 0.9985 | 0.9991 | |
伪二级动力学模型 | qe/(mg∙g−1) | 13.9005 | 14.8086 | 16.4262 | 16.9270 |
k2/(g∙mg−1∙min−1) | 0.0307 | 0.0324 | 0.0285 | 0.0335 | |
r2 | 0.9974 | 0.9977 | 0.9981 | 0.9987 | |
颗粒内扩散模型 | kp1/(mg∙g−1∙min−0.5) | 4.8299 | 5.0777 | 5.7019 | 6.0492 |
cp1/(mg∙g−1) | −1.8230 | −1.5146 | −1.7742 | −1.3990 | |
R2 | 0.9987 | 0.9989 | 1.0000 | 0.9927 | |
kp2/(mg∙g−1∙min−0.5) | 2.18838 | 2.19018 | 2.38295 | 2.1317 | |
cp2 (mg∙g−1) | 4.8856 | 5.8150 | 6.5993 | 8.2106 | |
R2 | 0.9678 | 0.9592 | 0.9435 | 0.9335 | |
kpa/(mg∙g−1∙min−0.5) | 0.0059 | 0.0027 | 0.0392 | 0.0353 | |
cpa/(mg∙g−1) | 13.1537 | 14.1329 | 15.3686 | 15.9934 | |
R2 | 0.1234 | 0.0124 | 0.3608 | 0.1687 | |
Elovich 动力学模型 | α/(mg∙g−1∙min−1) | 4.6603 | 5.7140 | 6.4396 | 8.6960 |
β/(g∙mg−1) | 0.1968 | 0.1970 | 0.1789 | 0.1916 | |
R2 | 0.9940 | 0.9939 | 0.9935 | 0.9917 | |
外扩散速率控制模型 | k3/(min−1) | 0.5077 | 0.5019 | 0.3890 | 0.4047 |
b | −1.2618 | −1.1961 | −0.7575 | −0.7166 | |
R2 | 0.9242 | 0.9343 | 0.9717 | 0.9768 | |
Bangham孔道扩散模型 | k4 | 17.4214 | 20.6419 | 22.7866 | 26.9997 |
a | 0.6643 | 0.6376 | 0.6648 | 0.6344 | |
R2 | 0.9842 | 0.9847 | 0.9837 | 0.9724 |
模型 | 参数 | LSBC600 | LSBC700 | LSBC800 | LSBC900 |
---|---|---|---|---|---|
Langmuir 模型 | qm/(mg∙g−1) | 16.9101 | 21.1568 | 27.1529 | 26.0305 |
kL/(L∙mg−1) | 0.9154 | 0.8212 | 0.7334 | 0.8954 | |
R2 | 0.9797 | 0.9993 | 0.9983 | 0.9969 | |
Freundlich 模型 | kF/(mg1−1/n∙g∙L1/n) | 7.6477 | 9.0069 | 10.9544 | 11.9168 |
n | 1.5940 | 1.6043 | 1.5111 | 1.5275 | |
R2 | 0.9927 | 0.9935 | 0.9881 | 0.9866 | |
Temkin 模型 | aT/(L∙mg−1) | 6.4957 | 7.6639 | 8.1650 | 9.0868 |
bT/(kJ∙mol−1) | 548.3644 | 514.5045 | 444.6570 | 435.6585 | |
R2 | 0.9365 | 0.9860 | 0.9880 | 0.9809 | |
线性模型 | kd /(L∙g−1) | 6.2115 | 7.3755 | 9.6158 | 10.6594 |
R2 | 0.9807 | 0.9674 | 0.9700 | 0.9656 | |
ΔG/(kJ∙mol−1) | −4.5273 | −4.9531 | −5.6106 | −5.8660 |
表2 丝瓜络生物炭对菲的吸附等温线拟合参数
Table 2 Fitting parameters of adsorption isotherms of PHE by LSBC
模型 | 参数 | LSBC600 | LSBC700 | LSBC800 | LSBC900 |
---|---|---|---|---|---|
Langmuir 模型 | qm/(mg∙g−1) | 16.9101 | 21.1568 | 27.1529 | 26.0305 |
kL/(L∙mg−1) | 0.9154 | 0.8212 | 0.7334 | 0.8954 | |
R2 | 0.9797 | 0.9993 | 0.9983 | 0.9969 | |
Freundlich 模型 | kF/(mg1−1/n∙g∙L1/n) | 7.6477 | 9.0069 | 10.9544 | 11.9168 |
n | 1.5940 | 1.6043 | 1.5111 | 1.5275 | |
R2 | 0.9927 | 0.9935 | 0.9881 | 0.9866 | |
Temkin 模型 | aT/(L∙mg−1) | 6.4957 | 7.6639 | 8.1650 | 9.0868 |
bT/(kJ∙mol−1) | 548.3644 | 514.5045 | 444.6570 | 435.6585 | |
R2 | 0.9365 | 0.9860 | 0.9880 | 0.9809 | |
线性模型 | kd /(L∙g−1) | 6.2115 | 7.3755 | 9.6158 | 10.6594 |
R2 | 0.9807 | 0.9674 | 0.9700 | 0.9656 | |
ΔG/(kJ∙mol−1) | −4.5273 | −4.9531 | −5.6106 | −5.8660 |
吸附剂 | 模型 | 吸附容量/(mg∙g−1) |
---|---|---|
LSBC900 | Langmuir模型 | 26.03 |
LSBC800 | Langmuir模型 | 27.15 |
LSBC700 | Langmuir模型 | 21.16 |
LSBC600 | Langmuir模型 | 16.91 |
柚皮生物炭 (Li et al., | Langmuir模型 | 68.26 |
稻壳生物炭 (Huang et al., | Langmuir模型 | 3.569 |
Fe3O4-SiO2-2DMDPS纳米复合材料 (Wei et al., | Langmuir 模型 | 47.32 |
CaO@AC纳米复合材料 (Aravind Kumar et al., | Langmuir 模型 | 21.39 |
磁性氧化石墨烯 (Huang et al., | Langmuir模型 | 13.65 |
CTAB改性聚苯乙烯微球 (Wang et al., | Langmuir 模型 | 12.14 |
碱改性向日葵秸秆生物炭 (程文远等, | Langmuir 模型 | 8.62 |
表3 不同材料对菲的最大吸附量比较
Table 3 Comparison of maximum adsorption capacity of different materials for PHE
吸附剂 | 模型 | 吸附容量/(mg∙g−1) |
---|---|---|
LSBC900 | Langmuir模型 | 26.03 |
LSBC800 | Langmuir模型 | 27.15 |
LSBC700 | Langmuir模型 | 21.16 |
LSBC600 | Langmuir模型 | 16.91 |
柚皮生物炭 (Li et al., | Langmuir模型 | 68.26 |
稻壳生物炭 (Huang et al., | Langmuir模型 | 3.569 |
Fe3O4-SiO2-2DMDPS纳米复合材料 (Wei et al., | Langmuir 模型 | 47.32 |
CaO@AC纳米复合材料 (Aravind Kumar et al., | Langmuir 模型 | 21.39 |
磁性氧化石墨烯 (Huang et al., | Langmuir模型 | 13.65 |
CTAB改性聚苯乙烯微球 (Wang et al., | Langmuir 模型 | 12.14 |
碱改性向日葵秸秆生物炭 (程文远等, | Langmuir 模型 | 8.62 |
[1] |
ABDEL-SHAFY H I, MANSOUR M S M,2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum, 25(1): 107-123.
DOI URL |
[2] |
ABEL S, AKKANEN J,2019. Novel, Activated Carbon-Based Material for in-Situ Remediation of Contaminated Sediments[J]. Environmental Science & Technology, 53(6): 3217-3224.
DOI URL |
[3] |
ALBADARIN A B,2017. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue[J]. Chemical Engineering Journal, 307: 264-272.
DOI URL |
[4] |
ALSBAIEE A, SMITH B J, XIAO L, et al.,2016. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer[J]. Nature, 529(7585): 190-194.
DOI |
[5] |
ARAVIND KUMAR J, KRITHIGA T, VIJAI ANAND K, et al.,2021. Kinetics and regression analysis of phenanthrene adsorption on the nanocomposite of CaO and activated carbon: Characterization, regeneration, and mechanistic approach[J]. Journal of Molecular Liquids, 334: 116080.
DOI URL |
[6] |
BAO Z Z, CHEN Z F, ZHONG Y H, et al.,2021. Adsorption of phenanthrene and its monohydroxy derivatives on polyvinyl chloride microplastics in aqueous solution: Model fitting and mechanism analysis[J]. Science of The Total Environment, 764: 142889.
DOI URL |
[7] |
BEHERA B K, DAS A, SARKAR D J, et al,2018. Polycyclic aromatic hydrocarbons (PAHs) in inland aquatic ecosystems: perils and remedies through biosensors and bioremediation[J]. Environmental Pollution, 241: 212-233.
DOI PMID |
[8] |
CAO H M, ZHANG P, JIA W L, et al.,2021. Adsorption of phenanthrene onto magnetic multi-walled carbon nanotubes (MMWCNTs) influenced by various fractions of humic acid from a single soil[J]. Chemosphere, 277: 130259.
DOI URL |
[9] |
CASTIGLIONI M, RIVOIRA L, INGRANDO I, et al.,2021. Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review[J]. Molecules, 26(16): 5063.
DOI URL |
[10] |
CHEN B L, ZHOU D D, ZHU L Z,2008. Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures[J]. Environmental Science & Technology, 42(14): 5137-5143.
DOI URL |
[11] |
CHENG Y Y, XIE H, YU F L, et al.,2021. Facile fabrication of three-dimensional porous carbon embedded with SnO2 nanoparticles as a high-performance anode for lithium-ion battery[J]. Ionics, 27(10): 4143-4151.
DOI |
[12] |
DA SILVA JUNIOR F C, FELIPE M B M C, CASTRO D E F de, et al.,2021. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs[J]. Environmental Pollution, 278: 116838.
DOI URL |
[13] |
GOLOVKO O, REHRL A L, KÖHLER S, et al.,2020. Organic micropollutants in water and sediment from Lake Mälaren, Sweden[J]. Chemosphere, 258: 127293.
DOI URL |
[14] |
HAO Z, WANG Q H, YAN Z S, et al.,2021. Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment[J]. Journal of Hazardous Materials, 401: 123859.
DOI URL |
[15] |
HUANG D, XU B L, WU J Z, et al.,2019. Adsorption and desorption of phenanthrene by magnetic graphene nanomaterials from water: Roles of pH, heavy metal ions and natural organic matter[J]. Chemical Engineering Journal, 368: 390-399.
DOI URL |
[16] |
HUANG Z Q, HU L C, TANG W, et al.,2020. Effects of biochar aging on adsorption behavior of phenanthrene[J]. Chemical Physics Letters, 759: 137948.
DOI URL |
[17] |
KLOSS S, ZEHETNER F, DELLANTONIO A, et al.,2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties[J]. Journal of Environmental Quality, 41(4): 990-1000.
DOI PMID |
[18] |
KUMAR M, BOLAN N S, HOANG S A, et al.,2021. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade?[J]. Journal of Hazardous Materials, 420: 126534.
DOI URL |
[19] |
LI B Q, ZHENG Z R, FANG J Z, et al.,2021. Comparison of adsorption behaviors and mechanisms of methylene blue, Cd2+, and phenanthrene by modified biochars derived from pomelo peel[J]. Environmental Science and Pollution Research, 28(25): 32517-32527.
DOI |
[20] |
LI F, CHEN J J, HU X, et al.,2020. Applications of carbonaceous adsorbents in the remediation of polycyclic aromatic hydrocarbon-contaminated sediments: A review[J]. Journal of Cleaner Production, 255: 120263.
DOI URL |
[21] |
LI Q Y, LIU J J, SUN X, et al.,2019. Hierarchically Porous Melamine-Formaldehyde Resin Microspheres for the Removal of Nanoparticles and Simultaneously As the Nanoparticle Immobilized Carrier for Catalysis[J]. ACS Sustainable Chemistry and Engineering, 7(1): 867-876.
DOI URL |
[22] |
LIU S, XU W H, LIU Y G, et al.,2017. Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water[J]. Science of The Total Environment, 592: 546-553.
DOI URL |
[23] |
LÓPEZ-LUNA J, RAMÍREZ-MONTES L E, MARTINEZ-VARGAS S, et al.,2019. Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles[J]. SN Applied Sciences, 1(8): 950.
DOI |
[24] |
LUO Z R, YAO B, YANG X, et al.,2022. Novel insights into the adsorption of organic contaminants by biochar: A review[J]. Chemosphere, 287(Part 2): 132113.
DOI URL |
[25] | MA J, YU F, ZHOU L, et al.,2012. Enhanced Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution by Alkali-Activated Multiwalled Carbon Nanotubes[J]. ACS Applied Materials & Interfaces, 4(11): 5749-5760. |
[26] |
MA Y F, QI Y, LU T M, et al.,2021. Highly efficient removal of imidacloprid using potassium hydroxide activated magnetic microporous loofah sponge biochar[J]. Science of The Total Environment, 765: 144253.
DOI URL |
[27] |
MALETIĆ S P, BELJIN J M, RONČEVIĆ S D, et al.,2019. State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques[J]. Journal of Hazardous Materials, 365: 467-482.
DOI PMID |
[28] |
MENG X Q, ZHANG C M, ZHUANG J, et al.,2020. Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction[J]. Chemosphere, 244: 125523.
DOI URL |
[29] |
VARJANI S, KUMAR G, RENE E R,2019. Developments in biochar application for pesticide remediation: Current knowledge and future research directions[J]. Journal of Environmental Management, 232: 505-513.
DOI PMID |
[30] |
VAUGHN S F, KENAR J A, THOMPSON A R, et al.,2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates[J]. Industrial Crops and Products, 51: 437-443.
DOI URL |
[31] |
WANG L C, CAO Y H,2018. Adsorption behavior of phenanthrene on CTAB-modified polystyrene microspheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 553: 689-694.
DOI URL |
[32] |
WANG X Q, GUO Z Z, HU Z, et al.,2020. Adsorption of phenanthrene from aqueous solutions by biochar derived from an ammoniation-hydrothermal method[J]. Science of The Total Environment, 733: 139267.
DOI URL |
[33] |
WEI Z W, MA X D, ZHANG Y Y, et al.,2022. High-efficiency adsorption of phenanthrene by Fe3O4-SiO2-dimethoxydiphenylsilane nanocomposite: Experimental and theoretical study[J]. Journal of Hazardous Materials, 422: 126948.
DOI URL |
[34] |
XU M M, AN Y J, WANG Q Q, et al.,2021. Construction of hydroxyl functionalized magnetic porous organic framework for the effective detection of organic micropollutants in water, drink and cucumber samples[J]. Journal of Hazardous Materials, 412: 125307.
DOI URL |
[35] |
XU X R, LI X Y,2010. Sorption and desorption of antibiotic tetracycline on marine sediments[J]. Chemosphere, 78(4): 430-436.
DOI URL |
[36] |
YANG D, YANG X N, LIU M, et al.,2022. Cucurbit[5]uril-based porous polymer material for removing organic micropollutants in water[J]. Microporous and Mesoporous Materials, 341: 112023.]
DOI URL |
[37] |
YU J D, JIANG C Y, GUAN Q Q, et al.,2018. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J]. Chemosphere, 195: 632-640.
DOI PMID |
[38] |
YUAN Y, ZHOU S G, LIU Y, et al.,2013. Nanostructured Macroporous Bioanode Based on Polyaniline-Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells[J]. Environmental Science & Technology, 47(24): 14525-14532.
DOI URL |
[39] |
ZHANG M, AHMAD M, LEE S S, et al.,2014. Sorption of Polycyclic Aromatic Hydrocarbons (PAHs) to Lignin: Effects of Hydrophobicity and Temperature[J]. Bulletin of Environmental Contamination and Toxicology, 93(1): 84-88.
DOI PMID |
[40] | ZHANG J, DENG F B, YIN X Q, et al.,2022. Adsorption of Oxytetracycline Hydrochloride and Chloramphenicol in Single and Binary Component Systems by Loofah Sponge-Based Biochar[J]. Water, Air, & Soil Pollution, 233(11): 427. |
[41] |
ZHANG X K, WANG H L, HE L Z, et al.,2013. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environmental Science and Pollution Research, 20(12): 8472-8483.
DOI URL |
[42] |
ZHAO Y L, DAI H, JI J Q, et al.,2022b. Resource utilization of luffa sponge to produce biochar for effective degradation of organic contaminants through persulfate activation[J]. Separation and Purification Technology, 288: 120650.
DOI URL |
[43] |
ZHAO T, WANG M L, YAO Y, et al.,2021. Selective elimination of the reactive groups of porous biochar 3D host for stable lithium anodes[J]. Electrochimica Acta, 388: 138632.
DOI URL |
[44] |
ZHAO Z H, YAO X L, DING Q Q, et al.,2022a. A comprehensive evaluation of organic micropollutants (OMPs) pollution and prioritization in equatorial lakes from mainland Tanzania, East Africa[J]. Water Research, 217: 118400.
DOI URL |
[45] | 常春, 王胜利, 郭景阳, 等,2016. 不同热解条件下合成生物炭对铜离子的吸附动力学研究[J]. 环境科学学报, 36(7): 2491-2502. |
CHANG C, WANG S L, GUO J Y, et al.,2016. Adsorption kinetics and mechanism of copper ion on biochar with different pyrolysis condition[J]. Acta Scientiae Circumstantiae, 36(7): 2491-2502. | |
[46] |
程文远, 李法云, 吕建华, 等,2022. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 31(4): 824-834.
DOI |
CHENG W Y, LI F Y, LÜ J H, et al.,2022. Sorption characteristics of polycyclic aromatic hydrocarbons phenanthrene on sunflower straw biochar modified with alkali[J]. Ecology and Environmental Sciences, 31(4): 824-834. | |
[47] |
丛鑫, 王宇, 李瑶, 等,2022. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 31(2): 326-334.
DOI |
CONG X, WANG Y, LI Y, et al.,2022. Adsorption characteristics of biochars and graphene oxide/biochar composites for antibiotics from aqueous solution[J]. Ecology and Environmental Sciences, 31(2): 326-334. | |
[48] | 邓赟, 王飞,2021. 腐植酸和黑炭的提取及其对菲和芘的吸附行为[J]. 环境工程, 39(8): 88-92, 107. |
DENG Y, WANG F,2021. Extraction of humic acid and black carbon and their adsorption behaviors for phenanthrene and pyrene[J]. Environmental Engineering, 39(8): 88-92, 107. | |
[49] | 黄青友, 全桂香, 沙永浩,2022. 改性硫酸铁铵丝瓜络生物炭对砷的吸附行为研究[J]. 生物化工, 8(1): 131-134. |
HUANG Q Y, QUAN G X, SHA Y H,2022. Arsenic adsorption behavior of loofah biochar modified with ammonium ferric sulfate[J]. Biological Chemical Engineering, 8(1): 131-134. | |
[50] | 秦伟, 白文荣, 周明月, 等,2019. 北运河表层水体中微量有机污染物分布特征及潜在风险[J]. 环境科学学报, 39(3): 649-658. |
QIN W, BAI W R, ZHOU M Y, et al.,2019. Potential risk and distribution characteristics of trace organic pollutants in surface water of Beiyun River[J]. Acta Scientiae Circumstantiae, 39(3): 649-658. | |
[51] | 张默, 贾明云, 卞永荣, 等,2015. 不同温度玉米秸秆生物炭对萘的吸附动力学特征与机理[J]. 土壤学报, 52(5): 1106-1115. |
ZHANG M, JIA M Y, BIAN Y R, et al.,2015. Sorption kinetics and mechanism of naphthalene on corn-stalkderived biochar with different pyrolysis temperature[J]. Acta Pedologica Sinica, 52(5): 1106-1115. |
[1] | 李丹怡, 黄显婷, 李继超, 李颖洁, 闫家普, 林慰. 氧化石墨烯及其复合材料去除水体抗生素的研究进展[J]. 生态环境学报, 2024, 33(1): 144-155. |
[2] | 杨梅焕, 姚明昊, 王涛, 李雅雯, 邓彦昊, 赵滢滢, 张政亮. 基于局地气候区的西安市城市热环境变化及其影响因素分析[J]. 生态环境学报, 2023, 32(9): 1644-1653. |
[3] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[4] | 李佳蔓, 王晓明, 胡欣蕊, 谢莹莹, 文震. 铁硫比对施氏矿物微观结构及吸附铬性能的影响[J]. 生态环境学报, 2023, 32(8): 1478-1486. |
[5] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[6] | 王丽华, 王磊, 许端平, 薛杨. 煤胶体对重金属铜与镉的吸附特征研究[J]. 生态环境学报, 2023, 32(7): 1293-1300. |
[7] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[8] | 杨奇丽, 窦韦丽, 刘之文, 郭景, 吕刚. 正构烷烃示源的阜新细河河道石油烃类污染特征及其影响因素分析[J]. 生态环境学报, 2023, 32(3): 599-608. |
[9] | 李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420. |
[10] | 郝丽宇, 何苗苗, 汤家喜. 河流水体全氟化合物的污染现状及修复技术研究进展[J]. 生态环境学报, 2023, 32(12): 2115-2127. |
[11] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[12] | 周永康, 余圣品, 李佳乐, 董一慧, 王萌, 赵齐灵, 李烨余. 土壤中抗生素的吸附行为与机理研究进展[J]. 生态环境学报, 2023, 32(11): 2072-2082. |
[13] | 侯冬梅, 张兰, 李春成, 陈露童, 王盼盼, 邹建平. 壳聚糖-生物铁锰氧化物去除水体中锑的性能及机理研究[J]. 生态环境学报, 2023, 32(10): 1842-1853. |
[14] | 樊艳翔, 雷社平, 解建仓. 广东省河流水体富营养化综合评价及分异特征——基于博弈论组合赋权法与VIKOR模型[J]. 生态环境学报, 2023, 32(10): 1811-1821. |
[15] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||