生态环境学报 ›› 2025, Vol. 34 ›› Issue (1): 26-35.DOI: 10.16258/j.cnki.1674-5906.2025.01.004
卢德浩(), 郑峰霖, 古佳玮, 帅晓迈, 杨佳曼, 李程, 蔡梦真, 陈红跃*(
)
收稿日期:
2024-01-03
出版日期:
2025-01-18
发布日期:
2025-01-21
通讯作者:
* 陈红跃。E-mail: chenyue@scau.edu.cn作者简介:
卢德浩(1998年生),男,硕士,主要从事森林经营方向研究。E-mail: 875363261@qq.com
基金资助:
LU Dehao(), ZHENG Fenglin, GU Jiawei, SHUAI Xiaomai, YANG Jiaman, LI Cheng, CAI Mengzhen, CHEN Hongyue*(
)
Received:
2024-01-03
Online:
2025-01-18
Published:
2025-01-21
摘要:
以广东省佛山市云勇林场的马尾松纯林(Pinus massoniana)、加勒比松纯林(Pinus caribaea)、杉木纯林(Cunninghamia lanceolata)和杉阔混交林为研究对象,通过野外调查和室内浸泡法,探究不同林分类型凋落物和土壤的水源涵养能力。结果表明,1)4种林分的凋落物总量介于4.42—6.72 t∙hm−2之间,其中杉阔混交林最大,马尾松林最小,且各林分半分解层的凋落物总量均大于未分解层。相比于杉木纯林,杉阔混交林凋落物最大持水量和有效拦蓄量分别提高了4.83%和13.57%。在3种针叶林中,杉木林的最大持水量和有效拦蓄量最大(7.12、6.00 t∙hm−2)。凋落物最大持水量、有效拦蓄量与凋落物厚度、现存量均为显著正相关(p<0.05)。2)加勒比松林的土壤饱和持水量、毛管持水量和非毛管持水量分别是其他3种林分的1.18—1.44倍。杉阔混交林的土壤饱和持水量、毛管持水量和非毛管持水量相比于杉木林分别增加了10.79、3.94、6.84 t∙hm−2。土壤饱和持水量和毛管持水量主要与土壤总孔隙度、毛管孔隙度、容重和有机碳质量分数显著相关(p<0.05),土壤非毛管持水量主要与土壤非毛管孔隙度和容重显著相关(p<0.05)。3)冗余分析表明,土壤孔隙度和有机碳质量分数对不同林分类型土壤持水能力的变化具有重要影响,而凋落物厚度和有机碳质量分数是导致不同林分类型凋落物持水能力产生差异的关键因素。4个林分的综合水源涵养能力大小排序依次为:杉阔混交林>加勒比松林>杉木林>马尾松林。针阔混交林在水源涵养方面是研究区域的理想选择,在3种针叶纯林中,加勒比松林的水源涵养能力表现最佳。建议未来在营建水源涵养林时,可以考虑将加勒比松作为混交树种之一。
中图分类号:
卢德浩, 郑峰霖, 古佳玮, 帅晓迈, 杨佳曼, 李程, 蔡梦真, 陈红跃. 不同林分类型凋落物和土壤水源涵养能力分析与评价[J]. 生态环境学报, 2025, 34(1): 26-35.
LU Dehao, ZHENG Fenglin, GU Jiawei, SHUAI Xiaomai, YANG Jiaman, LI Cheng, CAI Mengzhen, CHEN Hongyue. Analysis and Evaluation of Litter and Soil Water Conservation Capacity of Different Stand Types[J]. Ecology and Environment, 2025, 34(1): 26-35.
林分类型 | 海拔/m | 坡向 | 坡度/(°) | 林龄/a | 地貌 | 林分平均胸径/cm | 林分密度/(plant∙hm−2) |
---|---|---|---|---|---|---|---|
马尾松林 (MP) | 122.33±1.44 | 半阳坡 | 24.33±1.52 | 28 | 低山 | 22.23±0.62 | 891.67±44.62 |
加勒比松 (CP) | 194.33±1.66 | 半阳坡 | 25.00±0.47 | 31 | 低山 | 19.86±1.10 | 808.33±156.94 |
杉阔混交林 (MFB) | 110.00±2.36 | 半阳坡 | 25.00±1.25 | 26 | 低山 | 13.63±0.26 | 2016.67±186.46 |
杉木林 (CL) | 183.33±7.08 | 半阳坡 | 27.00±0.94 | 26 | 低山 | 17.31±0.35 | 1208.33±100.23 |
表1 样地概况
Table 1 General situation of sample site
林分类型 | 海拔/m | 坡向 | 坡度/(°) | 林龄/a | 地貌 | 林分平均胸径/cm | 林分密度/(plant∙hm−2) |
---|---|---|---|---|---|---|---|
马尾松林 (MP) | 122.33±1.44 | 半阳坡 | 24.33±1.52 | 28 | 低山 | 22.23±0.62 | 891.67±44.62 |
加勒比松 (CP) | 194.33±1.66 | 半阳坡 | 25.00±0.47 | 31 | 低山 | 19.86±1.10 | 808.33±156.94 |
杉阔混交林 (MFB) | 110.00±2.36 | 半阳坡 | 25.00±1.25 | 26 | 低山 | 13.63±0.26 | 2016.67±186.46 |
杉木林 (CL) | 183.33±7.08 | 半阳坡 | 27.00±0.94 | 26 | 低山 | 17.31±0.35 | 1208.33±100.23 |
林分类型 | 厚度/cm | w(OM)/(g∙kg−2) | 现存量/(t∙hm−2) | |||||
---|---|---|---|---|---|---|---|---|
未分解层 | 半分解层 | 未分解层 | 半分解层 | 未分解层 | 半分解层 | |||
MP | 2.58±0.33b | 2.96±0.31a | 519.47±2.34a | 492.96±0.31a | 2.11±0.01b | 2.31±0.11b | ||
CP | 2.85±0.21ab | 3.34±0.34a | 493.81±4.25a | 472.89±1.02ab | 2.47±0.48ab | 2.79±0.32ab | ||
MFB | 3.36±0.48a | 3.11±0.51a | 417.94±18.62b | 424.70±21.91ab | 3.23±0.11a | 3.49±0.15a | ||
CL | 3.12±0.16ab | 3.35±0.42a | 435.17±8.13ab | 388.28±40.71b | 3.00±0.12ab | 3.06±0.24ab |
表2 不同林分类型凋落物性质
Table 2 Litter properties of different stand types
林分类型 | 厚度/cm | w(OM)/(g∙kg−2) | 现存量/(t∙hm−2) | |||||
---|---|---|---|---|---|---|---|---|
未分解层 | 半分解层 | 未分解层 | 半分解层 | 未分解层 | 半分解层 | |||
MP | 2.58±0.33b | 2.96±0.31a | 519.47±2.34a | 492.96±0.31a | 2.11±0.01b | 2.31±0.11b | ||
CP | 2.85±0.21ab | 3.34±0.34a | 493.81±4.25a | 472.89±1.02ab | 2.47±0.48ab | 2.79±0.32ab | ||
MFB | 3.36±0.48a | 3.11±0.51a | 417.94±18.62b | 424.70±21.91ab | 3.23±0.11a | 3.49±0.15a | ||
CL | 3.12±0.16ab | 3.35±0.42a | 435.17±8.13ab | 388.28±40.71b | 3.00±0.12ab | 3.06±0.24ab |
林分 类型 | 未分解层 | 半分解层 | |||
---|---|---|---|---|---|
拟合方程 | r2 | 拟合方程 | r2 | ||
MP | Q=3.7010lnt+45.2950 | 0.9450 | Q=3.5280lnt+46.7775 | 0.9402 | |
CP | Q=3.0130lnt+45.1698 | 0.9643 | Q=2.7836lnt+47.2893 | 0.9890 | |
MFB | Q=3.4851lnt+52.2210 | 0.9720 | Q=3.5372lnt+50.3278 | 0.9720 | |
CLH | Q=3.0885lnt+50.1500 | 0.9531 | Q=2.8097lnt+51.9631 | 0.9396 |
表3 不同分解状态凋落物持水量和浸泡时间的拟合方程
Table 3 Fitting equations of water retention and soaking time of litter in different decomposition states
林分 类型 | 未分解层 | 半分解层 | |||
---|---|---|---|---|---|
拟合方程 | r2 | 拟合方程 | r2 | ||
MP | Q=3.7010lnt+45.2950 | 0.9450 | Q=3.5280lnt+46.7775 | 0.9402 | |
CP | Q=3.0130lnt+45.1698 | 0.9643 | Q=2.7836lnt+47.2893 | 0.9890 | |
MFB | Q=3.4851lnt+52.2210 | 0.9720 | Q=3.5372lnt+50.3278 | 0.9720 | |
CLH | Q=3.0885lnt+50.1500 | 0.9531 | Q=2.8097lnt+51.9631 | 0.9396 |
林分类型 | 土层/cm | 容重/(g∙cm−3) | 非毛管孔隙度/% | 毛管孔隙度/% | 总孔隙度/% | w(OM)/(g∙kg−1) | pH | w(TN)/(g∙kg−1) | w(TP)/(g∙kg−1) | w(TK)/(g∙kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
MP | 0−20 | 1.32±0.03a | 4.86±0.13b | 40.02±1.27b | 44.88±1.37a | 21.27±1.41b | 4.01±0.04b | 0.79±0.05b | 0.22±0.01b | 16.81±2.36b |
20−40 | 1.34±0.01a | 4.83±0.09a | 40.48±0.79b | 45.31±0.77a | 16.50±1.29ab | 4.04±0.05b | 0.62±0.03ab | 0.20±0.01b | 15.91±2.30b | |
40−60 | 1.39±0.01ab | 5.07±0.18b | 40.62±1.15ab | 45.69±0.98b | 13.13±1.13b | 4.11±0.04b | 0.55±0.05ab | 0.21±0.01b | 17.51±2.47b | |
均值 | 1.36±0.02a | 4.92±0.13b | 40.37±1.07b | 45.29±1.04b | 16.96±1.02b | 4.06±0.04b | 0.65±0.03b | 0.21±0.01b | 16.74±2.37b | |
CP | 0−20 | 1.14±0.07b | 5.58±0.16a | 48.63±1.32a | 54.21±1.27a | 37.90±0.86a | 3.96±0.04b | 1.27±0.05a | 0.18±0.01b | 6.23±0.29c |
20−40 | 1.19±0.06b | 5.54±0.15a | 47.95±1.02a | 53.49±0.87a | 25.48±1.55a | 3.92±0.04b | 0.90±0.07a | 0.18±0.01b | 7.49±0.81c | |
40−60 | 1.25±0.01b | 6.23±0.20a | 48.19±0.50a | 54.42±0.60a | 20.35±1.63a | 4.04±0.03b | 0.75±0.06a | 0.19±0.02b | 8.05±0.78c | |
均值 | 1.19±0.05b | 5.78±0.17a | 48.26±0.95a | 54.04±0.91a | 27.91±1.16a | 3.97±0.03b | 0.97±0.04a | 0.18±0.01b | 7.26±0.61c | |
MFB | 0−20 | 1.22±0.06ab | 5.62±0.05a | 42.47±0.37b | 48.09±0.39a | 17.29±0.60bc | 4.43±0.04a | 0.72±0.04b | 0.78±0.24a | 34.41±5.62a |
20−40 | 1.25±0.05ab | 5.53±0.34a | 42.29±0.43b | 47.82±0.76a | 12.95±0.85b | 4.50±0.11a | 0.58±0.02ab | 0.81±0.25a | 33.44±5.04a | |
40−60 | 1.31±0.01ab | 5.98±0.33ab | 40.93±0.32b | 46.91±0.64b | 12.03±0.80b | 4.46±0.09a | 0.55±0.02ab | 0.90±0.22a | 33.12±2.80a | |
均值 | 1.26±0.04ab | 5.71±0.24a | 41.90±0.37b | 47.61±0.60b | 14.09±0.69bc | 4.47±0.07a | 0.62±0.02b | 0.83±0.24a | 33.65±4.37a | |
CL | 0−20 | 1.34±0.09a | 5.28±0.18ab | 39.24±0.63b | 44.51±0.61a | 12.89±2.08c | 4.26±0.04ab | 0.54±0.04b | 0.25±0.01b | 32.61±2.29a |
20−40 | 1.43±0.04a | 5.19±0.19a | 40.25±0.97b | 45.45±0.79a | 10.93±2.46b | 4.26±0.08ab | 0.46±0.05b | 0.24±0.01b | 31.75±0.99a | |
40−60 | 1.45±0.02a | 5.46±0.16ab | 40.11±0.68ab | 45.57±0.53b | 8.69±0.76c | 4.28±0.05ab | 0.43±0.01b | 0.24±0.01b | 32.73±2.23a | |
均值 | 1.41±0.05a | 5.31±0.18ab | 39.87±0.76b | 45.18±0.64b | 10.84±1.76c | 4.26±0.05ab | 0.48±0.03b | 0.24±0.01b | 32.36±1.81a |
表4 不同林分类型土壤理化性质
Table 4 Soil physicochemical properties of different stand types
林分类型 | 土层/cm | 容重/(g∙cm−3) | 非毛管孔隙度/% | 毛管孔隙度/% | 总孔隙度/% | w(OM)/(g∙kg−1) | pH | w(TN)/(g∙kg−1) | w(TP)/(g∙kg−1) | w(TK)/(g∙kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
MP | 0−20 | 1.32±0.03a | 4.86±0.13b | 40.02±1.27b | 44.88±1.37a | 21.27±1.41b | 4.01±0.04b | 0.79±0.05b | 0.22±0.01b | 16.81±2.36b |
20−40 | 1.34±0.01a | 4.83±0.09a | 40.48±0.79b | 45.31±0.77a | 16.50±1.29ab | 4.04±0.05b | 0.62±0.03ab | 0.20±0.01b | 15.91±2.30b | |
40−60 | 1.39±0.01ab | 5.07±0.18b | 40.62±1.15ab | 45.69±0.98b | 13.13±1.13b | 4.11±0.04b | 0.55±0.05ab | 0.21±0.01b | 17.51±2.47b | |
均值 | 1.36±0.02a | 4.92±0.13b | 40.37±1.07b | 45.29±1.04b | 16.96±1.02b | 4.06±0.04b | 0.65±0.03b | 0.21±0.01b | 16.74±2.37b | |
CP | 0−20 | 1.14±0.07b | 5.58±0.16a | 48.63±1.32a | 54.21±1.27a | 37.90±0.86a | 3.96±0.04b | 1.27±0.05a | 0.18±0.01b | 6.23±0.29c |
20−40 | 1.19±0.06b | 5.54±0.15a | 47.95±1.02a | 53.49±0.87a | 25.48±1.55a | 3.92±0.04b | 0.90±0.07a | 0.18±0.01b | 7.49±0.81c | |
40−60 | 1.25±0.01b | 6.23±0.20a | 48.19±0.50a | 54.42±0.60a | 20.35±1.63a | 4.04±0.03b | 0.75±0.06a | 0.19±0.02b | 8.05±0.78c | |
均值 | 1.19±0.05b | 5.78±0.17a | 48.26±0.95a | 54.04±0.91a | 27.91±1.16a | 3.97±0.03b | 0.97±0.04a | 0.18±0.01b | 7.26±0.61c | |
MFB | 0−20 | 1.22±0.06ab | 5.62±0.05a | 42.47±0.37b | 48.09±0.39a | 17.29±0.60bc | 4.43±0.04a | 0.72±0.04b | 0.78±0.24a | 34.41±5.62a |
20−40 | 1.25±0.05ab | 5.53±0.34a | 42.29±0.43b | 47.82±0.76a | 12.95±0.85b | 4.50±0.11a | 0.58±0.02ab | 0.81±0.25a | 33.44±5.04a | |
40−60 | 1.31±0.01ab | 5.98±0.33ab | 40.93±0.32b | 46.91±0.64b | 12.03±0.80b | 4.46±0.09a | 0.55±0.02ab | 0.90±0.22a | 33.12±2.80a | |
均值 | 1.26±0.04ab | 5.71±0.24a | 41.90±0.37b | 47.61±0.60b | 14.09±0.69bc | 4.47±0.07a | 0.62±0.02b | 0.83±0.24a | 33.65±4.37a | |
CL | 0−20 | 1.34±0.09a | 5.28±0.18ab | 39.24±0.63b | 44.51±0.61a | 12.89±2.08c | 4.26±0.04ab | 0.54±0.04b | 0.25±0.01b | 32.61±2.29a |
20−40 | 1.43±0.04a | 5.19±0.19a | 40.25±0.97b | 45.45±0.79a | 10.93±2.46b | 4.26±0.08ab | 0.46±0.05b | 0.24±0.01b | 31.75±0.99a | |
40−60 | 1.45±0.02a | 5.46±0.16ab | 40.11±0.68ab | 45.57±0.53b | 8.69±0.76c | 4.28±0.05ab | 0.43±0.01b | 0.24±0.01b | 32.73±2.23a | |
均值 | 1.41±0.05a | 5.31±0.18ab | 39.87±0.76b | 45.18±0.64b | 10.84±1.76c | 4.26±0.05ab | 0.48±0.03b | 0.24±0.01b | 32.36±1.81a |
林分 类型 | 土层/ cm | 饱和持水量/ (t∙hm−2) | 毛管持水量/ (t∙hm−2) | 非毛管持水量/ (t∙hm−2) |
---|---|---|---|---|
MP | 0−20 | 663.59±20.76b | 591.71±19.76b | 71.88±1.22b |
2−40 | 656.46±11.69b | 586.52±12.03b | 69.95±1.23b | |
40−60 | 681.36±10.76b | 605.47±13.88b | 75.89±3.19b | |
均值 | 667.14±14.40b | 594.57±15.22b | 72.57±1.88b | |
CP | 0−20 | 928.38±16.67a | 832.82±16.34a | 95.56±3.75a |
20−40 | 879.56±30.75a | 788.4±28.09a | 91.17±4.88a | |
40−60 | 930.17±48.32a | 823.31±39.77a | 106.86±8.58a | |
均值 | 912.70±31.91a | 814.84±28.07a | 97.86±5.74a | |
MFB | 0−20 | 665.36±23.48b | 584.08±20.3b | 81.27±3.27ab |
20−40 | 642.18±22.73b | 564.70±17.82b | 77.47±5.47ab | |
40−60 | 656.37±22.16b | 568.85±18.11b | 87.52±5.21ab | |
均值 | 654.64±22.79b | 572.54±18.74b | 82.09±4.65ab | |
CL | 0−20 | 630.80±23.12b | 556.32±23.00b | 74.48±0.92ab |
20−40 | 642.35±31.81b | 569.41±29.69b | 72.94±4.08ab | |
40−60 | 658.40±31.57b | 580.06±30.81b | 78.34±1.10b | |
均值 | 643.85±28.83b | 568.60±27.83b | 75.25±2.05b |
表5 不同林分类型土壤持水能力
Table 5 Soil water holding capacity of different stand types
林分 类型 | 土层/ cm | 饱和持水量/ (t∙hm−2) | 毛管持水量/ (t∙hm−2) | 非毛管持水量/ (t∙hm−2) |
---|---|---|---|---|
MP | 0−20 | 663.59±20.76b | 591.71±19.76b | 71.88±1.22b |
2−40 | 656.46±11.69b | 586.52±12.03b | 69.95±1.23b | |
40−60 | 681.36±10.76b | 605.47±13.88b | 75.89±3.19b | |
均值 | 667.14±14.40b | 594.57±15.22b | 72.57±1.88b | |
CP | 0−20 | 928.38±16.67a | 832.82±16.34a | 95.56±3.75a |
20−40 | 879.56±30.75a | 788.4±28.09a | 91.17±4.88a | |
40−60 | 930.17±48.32a | 823.31±39.77a | 106.86±8.58a | |
均值 | 912.70±31.91a | 814.84±28.07a | 97.86±5.74a | |
MFB | 0−20 | 665.36±23.48b | 584.08±20.3b | 81.27±3.27ab |
20−40 | 642.18±22.73b | 564.70±17.82b | 77.47±5.47ab | |
40−60 | 656.37±22.16b | 568.85±18.11b | 87.52±5.21ab | |
均值 | 654.64±22.79b | 572.54±18.74b | 82.09±4.65ab | |
CL | 0−20 | 630.80±23.12b | 556.32±23.00b | 74.48±0.92ab |
20−40 | 642.35±31.81b | 569.41±29.69b | 72.94±4.08ab | |
40−60 | 658.40±31.57b | 580.06±30.81b | 78.34±1.10b | |
均值 | 643.85±28.83b | 568.60±27.83b | 75.25±2.05b |
指标 | SW | SC | SNC | BD | STP | SCP | SNP | SOC | pH | STN | STP | STK |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SW1) | 1*** | |||||||||||
SC2) | 0.986*** | 1*** | ||||||||||
SNC3) | 0.657*13) | 0.601* | 1*** | |||||||||
BD4) | −0.935***15) | −0.939*** | −0.666* | 1*** | ||||||||
STP5) | 0.846*** | 0.839*** | 0.510 | −0.676* | 1*** | |||||||
SCP6) | 0.888*** | 0.881*** | 0.510 | −0.736**14) | 0.986*** | 1*** | ||||||
SNP7) | 0.329 | 0.266 | 0.846*** | −0.242 | 0.427 | 0.357 | 1*** | |||||
SOC8) | 0.622* | 0.650* | 0.406 | −0.648* | 0.476 | 0.545 | 0.133 | 1*** | ||||
pH9) | −0.455 | −0.469 | −0.224 | 0.483 | −0.357 | −0.427 | 0.021 | −0.776** | 1*** | |||
TN10) | 0.587* | 0.629* | 0.490 | −0.701* | 0.399 | 0.469 | 0.182 | 0.951*** | −0.685* | 1*** | ||
TP11) | −0.545 | −0.545 | −0.231 | 0.634* | −0.301 | −0.385 | 0.126 | −0.713** | 0.874*** | −0.664* | 1*** | |
TK12) | −0.573 | −0.580* | −0.252 | 0.599* | −0.441 | −0.497 | 0.014 | −0.874*** | 0.902*** | −0.783** | 0.916*** | 1*** |
表6 土壤性质与持水能力的相关性分析
Table 6 Correlation analysis between soil properties and water holding capacity
指标 | SW | SC | SNC | BD | STP | SCP | SNP | SOC | pH | STN | STP | STK |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SW1) | 1*** | |||||||||||
SC2) | 0.986*** | 1*** | ||||||||||
SNC3) | 0.657*13) | 0.601* | 1*** | |||||||||
BD4) | −0.935***15) | −0.939*** | −0.666* | 1*** | ||||||||
STP5) | 0.846*** | 0.839*** | 0.510 | −0.676* | 1*** | |||||||
SCP6) | 0.888*** | 0.881*** | 0.510 | −0.736**14) | 0.986*** | 1*** | ||||||
SNP7) | 0.329 | 0.266 | 0.846*** | −0.242 | 0.427 | 0.357 | 1*** | |||||
SOC8) | 0.622* | 0.650* | 0.406 | −0.648* | 0.476 | 0.545 | 0.133 | 1*** | ||||
pH9) | −0.455 | −0.469 | −0.224 | 0.483 | −0.357 | −0.427 | 0.021 | −0.776** | 1*** | |||
TN10) | 0.587* | 0.629* | 0.490 | −0.701* | 0.399 | 0.469 | 0.182 | 0.951*** | −0.685* | 1*** | ||
TP11) | −0.545 | −0.545 | −0.231 | 0.634* | −0.301 | −0.385 | 0.126 | −0.713** | 0.874*** | −0.664* | 1*** | |
TK12) | −0.573 | −0.580* | −0.252 | 0.599* | −0.441 | −0.497 | 0.014 | −0.874*** | 0.902*** | −0.783** | 0.916*** | 1*** |
图4 凋落物和土壤水源涵养能力冗余分析 LT:凋落物厚度;LS:凋落物现存量;LE:凋落物有效拦蓄量;LM:凋落物最大持水量;LOC:凋落物有机碳质量分数
Figure 4 Redundancy analysis of litter and soil water conservation capacity
林分类型 | 凋落物现存量 | 凋落物最大持水量 | 凋落物有效拦蓄量 | 土壤饱和持水量 | 土壤毛管持水量 | 土壤非毛管持水量 | 综合评价 | 综合排序 |
---|---|---|---|---|---|---|---|---|
MP | 0.39 | 0.14 | 0.32 | 0.26 | 0.24 | 0.35 | 1.70 | 4 |
CP | 0.27 | 0.22 | 0.45 | 0.07 | 0.06 | 0.12 | 1.19 | 2 |
MFB | 0.08 | 0.03 | 0.04 | 0.30 | 0.32 | 0.26 | 1.03 | 1 |
CL | 0.16 | 0.08 | 0.16 | 0.34 | 0.35 | 0.32 | 1.41 | 3 |
表7 不同林分类型凋落物和土壤水源涵养能力综合评价
Table 7 Comprehensive evaluation of water conservation capacity of litter and soil of different stand types
林分类型 | 凋落物现存量 | 凋落物最大持水量 | 凋落物有效拦蓄量 | 土壤饱和持水量 | 土壤毛管持水量 | 土壤非毛管持水量 | 综合评价 | 综合排序 |
---|---|---|---|---|---|---|---|---|
MP | 0.39 | 0.14 | 0.32 | 0.26 | 0.24 | 0.35 | 1.70 | 4 |
CP | 0.27 | 0.22 | 0.45 | 0.07 | 0.06 | 0.12 | 1.19 | 2 |
MFB | 0.08 | 0.03 | 0.04 | 0.30 | 0.32 | 0.26 | 1.03 | 1 |
CL | 0.16 | 0.08 | 0.16 | 0.34 | 0.35 | 0.32 | 1.41 | 3 |
[1] | EDWARDS D P, TOBIAS J A, SHE D, et al., 2014. Maintaining ecosystem function and services in logged tropical forests[J]. Trends in Ecology &. Evolution, 29(9):511-520. |
[2] | GERRITS M, SAVENIJE H, HOFFMANN L, et al., 2007. New technique to measure forest floor interception-an application in a beech forest in Luxembourg[J]. Hydrology and Earth Systems Sciences, 11(74):695-701. |
[3] | GU Z J, WU X X, ZHOU F, et al., 2013. Estimating the effect of Pinus massoniana Lamb plots on soil and water conservation during rainfall events using vegetation fractional coverage[J]. Catena, 109:225-233. |
[4] | HORODECKI P, NOWINSKI M, JAGODZINSKI A, 2018. Advantages of mixed tree stands in restoration of upper soil layers on postmining sites: A five-year leaf litter decomposition experiment[J]. Land Degradation and Development, 30(1):3-13. |
[5] | LUO X, ZHANG Y C, 2015. Interdecadal change in the seasonality of rainfall variation in South China[J]. Theoretical and Applied Climatology, 119(1-2):1-11. |
[6] | WANG B R, ZHAO X D, LIU Y, et al., 2019. Using soil aggregate stability and erodibility to evaluate the sustainability of large-scale afforestation of Robinia pseudoacacia and Caragana korshinskii in the Loess Plateau[J]. Forest Ecology and Management, 450:117491. |
[7] | XIE J S, GUO J F, YANG Z J, et al., 2013. Rapid accumulation of carbon on severely eroded red soils through afforestation in subtropical China[J]. Forest Ecology and Management, 300:53-59. |
[8] | ZHU G Y, SHANGGUAN Z P, DENG L, 2017. Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau[J]. Catena, 149(Part 1):253-260. |
[9] | ZHU X, LIU W J, CHEN H, et al., 2019. Effects of forest transition on litterfall, standing litter and related nutrient returns: implications for forest management in tropical China[J]. Geoderma, 333:123-134. |
[10] | 白云星, 周运超, 张薰元, 等, 2021. 马尾松针阔混交人工林凋落物和土壤水源涵养能力[J]. 林业科学, 57(11):24-36. |
BAI Y X, ZHOU Y C, ZHANG X Y, et al., 2021. Water conservation capacity of litter and soil in mixed plantation of Pinus massoniana and broadleaved trees[J]. Scientia Silvae Sinicae, 57(11):24-36. | |
[11] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Agrochemical analysis of soils[M]. Beijing: China Agriculture Press. | |
[12] | 曹智, 文仕知, 何功秀, 等, 2024. 南方红壤丘陵区水土保持林对枯落物和土壤养分的影响[J]. 西北林学院学报, 39(1):154-161. |
CAO Z, WEN S Z, HE G X, et al., 2024. Effects of soil and water conservation forest on litter and soil nutrients in red hilly region of Southern China[J]. Journal of Northwest Forestry University, 39(1):154-161. | |
[13] | 陈晶亮, 杨慧, 刘超, 等, 2023. 宁夏罗山自然保护区3种典型林分凋落物和土壤层水源涵养能力综合评估[J]. 生态学报, 43(19):7987-7997. |
CHEN J L, YANG H, LIU C, et al., 2023. Comprehensive evaluation of the water conservation capacity of litter and soil layers in three typical forest types in the Luoshan Nature Reserve, Ningxia[J]. Acta Ecologica Sinica, 43(19):7987-7997. | |
[14] | 何圣嘉, 谢锦升, 杨智杰, 等, 2011. 南方红壤丘陵区马尾松林下水土流失现状、成因及防治[J]. 中国水土保持科学, 9(6):65-70. |
HE S J, XIE J S, YANG Z J, et al., 2011. Status, causes and prevention of soil and water loss in Pinus massoniana woodland in hilly red soil region of southern China. Science of Soil and Water Conservation, 9(6):65-70. | |
[15] | 李阳, 万福绪, 2019. 黄浦江中游5种典型林分枯落物和土壤水源涵养能力研究[J]. 水土保持学报, 33(2):264-271. |
LI Y, WAN F X, 2019. Water conservation capacities of litters and soils in five typical stands in the middle reaches of Huangpu River[J]. Journal of Soil and Water Conservation, 33(2):264-271. | |
[16] | 林立文, 邓羽松, 李佩琦, 等, 2020. 桂北地区不同密度杉木林枯落物与土壤水文效应[J]. 水土保持学报, 34(5):200-207, 215. |
LIN L W, DENG Y S, LI P Q, et al., 2020. Study on the effects of litter and soil hydrology of different density Cunninghamia lanceolata forests in Northern Guangxi[J]. Journal of Soil and Water Conservation, 34(5):200-207, 215. | |
[17] |
马佳明, 赵鹏, 刘雪莹, 等, 2021. 崇陵流域不同林分类型枯落物水文效应研究[J]. 生态环境学报, 30(4):691-699.
DOI |
MA J M, ZHAO P, LIU X Y, et al., 2021. Research on the hydrological effects of litters of different forest types in Chongling Watershed[J]. Ecology and Environmental Sciences, 30(4):691-699. | |
[18] | 聂泽旭, 齐实, 马曦瑶, 等, 2020. 华蓥市山区典型林分水源涵养功能评价[J]. 水土保持学报, 34(2):276-282. |
NIE Z X, QI S, MA X Y, et al., 2020. Evaluation of water conservation function of typical stands in mountainous areas of Huaying City[J]. Journal of Soil and Water Conservation, 34(2):276-282. | |
[19] | 潘春翔, 李裕元, 彭亿, 等, 2012. 湖南乌云界自然保护区典型生态系统的土壤持水性能[J]. 生态学报, 32(2):538-547. |
PAN C X, LI Y Y, PENG Y, et al., 2012. Soil water holding capacity under four typical ecosystems in Wuyunjie Nature Reserve of Hunan Province[J]. Acta Ecologica Sinica, 32(2):538-547. | |
[20] | 蒲嘉霖, 刘亮, 2019. 亚热带森林凋落物分解特征及水文效应[J]. 水土保持研究, 26(6):165-170. |
PAN J L, LIU L, 2019. Hydrology functions and decomposition characteristics of litter in subtropical forest[J]. Research of Soil and Water Conservation, 26(6):165-170. | |
[21] | 申卫军, 彭少麟, 周国逸, 等, 2001. 马占相思 (Acacia mangium) 与湿地松 (Pinus elliotii) 人工林枯落物层的水文生态功能[J]. 生态学报, 21(5):846-850. |
SHEN W J, PENG S L, ZHOU G Y, et al., 2001. Ecohydrological functions of litter in man-made Acacia mangium and Pinus elliotii plantations[J]. Acta Ecologica Sinica, 21(5):846-850. | |
[22] | 孙欧文, 蔡建国, 吴家森, 等, 2019. 浙江省典型森林类型枯落物及林下土壤水文特性[J]. 水土保持研究, 26(1):118-123. |
SUN O W, CAI J G, WU J S, et al., 2019. Hydrological characteristics of litter and forest soil of typical forest types in Zhejiang Province[J]. Research of Soil and Water Conservation, 26(1):118-123. | |
[23] | 王飞, 白青蒙, 曹秀文, 等, 2023. 甘南白龙江3种次生林叶片-凋落物-土壤生态化学计量特征[J]. 中南林业科技大学学报, 43(12):116-125. |
WANG F, BAI Q M, CAO X W, et al., 2023. Ecological stoichiometry of leaf-litter-soil continuum of three secondary forests in Bailongjiang, southern Gansu province[J]. Journal of Central South University of Forestry & Technology, 43(12):116-125. | |
[24] | 王棣, 吕皎, 2001. 油松混交林的水土保持及水源涵养功能研究[J]. 水土保持学报, 15(4):44-46. |
WANG D, LÜ J, 2001. Function of water and soil conservation of mixed forest of Pinus tabulaef ormis[J]. Journal of Soil and Water Conservation, 15(4):44-46. | |
[25] | 王利, 于立忠, 张金鑫, 等, 2015. 浑河上游水源地不同林型水源涵养功能分析[J]. 水土保持学报, 29(3):249-255. |
WANG L, YU L Z, ZHANG J X, et al., 2015. Analysis of water conservation functions of different forest types in the upper reaches of Hunhe River[J]. Journal of Soil and Water Conservation, 29(3):249-255. | |
[26] | 韦宇静, 梁士楚, 黄雅丽, 等, 2014. 巨尾桉与几种阔叶树和针叶树碳储量的比较研究[J]. 广西科学院学报, 30(4):229-232. |
WEI Y J, LIANG S C, HUANG Y L, et al., 2014. Comparative study on the carbon storage between Eucalyptus grandis×E. urophylla and some conifer and broad-leaved tree species[J]. Journal of Guangxi Academy of Sciences, 30(4):229-232. | |
[27] | 魏宏征, 肖战峰, 何小军, 等, 2020. 甘肃子午岭林区不同林分水源涵养能力研究[J]. 林业资源管理 (4):87-94. |
WEI H Z, XIAO Z F, HE X J, et al., 2020. A study on the conservation capacity of different forest water sources in Ziwu Mountain of Gansu Province[J]. Forest Resources Management (4):87-94. | |
[28] | 伍倩, 闫文德, 梁小翠, 等, 2015. 亚热带4种典型人工林凋落物持水特性[J]. 中南林业科技大学学报, 35(12):76-81, 94. |
WU Q, YAN W D, LIANG X C, et al., 2015. Water holding characteristics of litters in 4 plantations in subtropical zone[J]. Journal of Central South University of Forestry & Technology, 35(12):76-81, 94. | |
[29] | 颜耀, 张辉, 黄智军, 等, 2020. 补植阔叶树种对红壤侵蚀区马尾松林水源涵养功能的影响[J]. 福建农林大学学报(自然科学版), 49(1):67-73. |
YAN Y, ZHANG H, HUANG Z J, et al., 2020. Effects of replanting broad-leaved tree species on water conservation of Pinus massoniana plantation in red soil eroded region[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 49(1):67-73. | |
[30] | 杨静, 张耀艺, 谭思懿, 等, 2020. 亚热带不同树种土壤水源涵养功能[J]. 生态学报, 40(13):4594-4604. |
YANG J, ZHANG Y Y, TAN S Y, et al., 2020. Soil water conservation functions of different plantations in subtropical forest[J]. Acta Ecologica Sinica, 40(13):4594-4604. | |
[31] | 赵敏, 戴全厚, 严友进, 等, 2024. 喀斯特山地典型植被类型凋落物和土壤水文效应[J]. 水土保持研究, 31(1):241-249. |
ZHAO M, DAI Q H, YAN Y J, et al., 2024. Litter and soil hydrological effects of typical vegetation types in Karst Mountains[J]. Research of Soil and Water Conservation, 31(1):241-249. | |
[32] | 张万儒, 杨光滢, 屠星南, 2000. 森林土壤分析方法[M]. 北京: 中国标准出版社. |
ZHANG W R, YANG G Y, TU X N, et al., 2000. Forest Soil Analysis Methods[M]. Beijing: Standards Press of China. | |
[33] | 张益, 林毅雁, 张杰铭, 等, 2023. 北京山区典型植被枯落物和土壤层水文功能[J]. 水土保持研究, 30(4):160-168. |
ZHANG Y, LIN Y Y, ZHANG J M, et al., 2023. Hydrological function of litter and soil layer of typical vegetation in Beijing mountainous area[J]. Research of Soil and Water Conservation, 30(4):160-168. | |
[34] | 赵芸, 赵文涛, 杨宁, 等, 2022. 青岛市主要树种含碳量及森林生态系统碳储量变化分析[J]. 林业科技, 47(3):54-57. |
ZHAO Y, ZHAO W T, YANG N, et al., 2022. Change analysis of carbon content of main tree species and carbon storage of forest ecosystem in Qingdao[J]. Forestry Science & Technology, 47(3):54-57. | |
[35] | 朱少木, 2012. 杉木深山含笑混交林分生物量结构研究[J]. 安徽农学通报, 18(13):121-123. |
ZHU S M, 2012. Study on biomass structure of mixed forest of Chinese fir in deep mountain[J]. Anhui Agricultural Science Bulletin, 18(13):121-123. |
[1] | 许铭宇, 俞龙生. 农林废弃有机材料对离子型稀土矿尾砂的土壤改良效应[J]. 生态环境学报, 2025, 34(1): 126-134. |
[2] | 黄连喜, 王泽煌, 田利华, 赵景鹏, 陈伟盛, 林启美, 黄庆, 魏岚. 广东省江门市耕地土壤矿质养分特征及差异[J]. 生态环境学报, 2025, 34(1): 46-55. |
[3] | 侯金龙, 马志强, 杨澄, 葛双双, 何迪, 董璠. 京津冀地区植被碳源/汇的时空变化特征及影响因素分析[J]. 生态环境学报, 2024, 33(9): 1329-1338. |
[4] | 李建付, 黄志霖, 和成忠, 姜昕, 宋琳, 刘佳鑫, 陈利顶. 滇东喀斯特断陷盆地土壤有机碳空间分布特征及其关键影响因子[J]. 生态环境学报, 2024, 33(9): 1339-1352. |
[5] | 李彦林, 陈杨洋, 杨霜溶, 刘菊梅. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371. |
[6] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
[7] | 朱乐洋, 张西哲, 陶江, 王秀, 韩艳英, 叶彦辉. 氮添加对色季拉山急尖长苞冷杉林土壤呼吸的影响[J]. 生态环境学报, 2024, 33(9): 1384-1396. |
[8] | 吴东阳, 吴家欢, 李伟志, 黄志杰, 杨春亚, 陈火君. 蚓粪、猪粪配施化肥对土壤质量、辣椒生长及品质的影响[J]. 生态环境学报, 2024, 33(9): 1416-1425. |
[9] | 丛鑫, 张怀迪, 张荣, 赵琛, 陈坤, 刘寒冰. 基于Meta分析的近10年中国农田土壤重金属污染特征与风险解析[J]. 生态环境学报, 2024, 33(9): 1451-1459. |
[10] | 刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470. |
[11] | 庞波, 海香, 张海芳, 张艳军, 王慧, 刘红梅, 杨殿林. 藜芦扩散对山地草甸草地植被特征和土壤理化性质的影响[J]. 生态环境学报, 2024, 33(8): 1174-1181. |
[12] | 王文静, 翟水晶, 王赛. 闽江下游湿地土壤硅的沿程分布特征及影响因素[J]. 生态环境学报, 2024, 33(8): 1182-1191. |
[13] | 范贝贝, 丁帅, 张田田, 张帅, 魏露露, 陈清. 周期性淹水-落干和施用秸秆对白云石改良棕壤磷素流失风险的模拟研究[J]. 生态环境学报, 2024, 33(8): 1203-1213. |
[14] | 张京磊, 王国良, 吴波, 贾春林, 张进红, 周圆, 马冰. 滨海盐碱地苜蓿-小黑麦轮作对土壤细菌和真菌群落多样性与网络结构的影响[J]. 生态环境学报, 2024, 33(7): 1048-1062. |
[15] | 林于蓝, 陈厚朴, 于文豪, 王宝英, 张杨, 张金波, 蔡祖聪, 赵军. 强还原处理对土壤中常见抗生素及其抗性基因的影响研究[J]. 生态环境学报, 2024, 33(7): 1107-1116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||