生态环境学报 ›› 2024, Vol. 33 ›› Issue (8): 1174-1181.DOI: 10.16258/j.cnki.1674-5906.2024.08.002
庞波(), 海香, 张海芳, 张艳军, 王慧, 刘红梅*(
), 杨殿林*(
)
收稿日期:
2024-05-06
出版日期:
2024-08-18
发布日期:
2024-09-25
通讯作者:
杨殿林。E-mail: yangdianlin@caas.cn作者简介:
庞波(1997年生),女,硕士研究生,主要从事草地生态学和生物多样性方面的研究。E-mail: pbzxhdsgb@163.com
基金资助:
PANG Bo(), HAI Xiang, ZHANG Haifang, ZHANG Yanjun, WANG Hui, LIU Hongmei*(
), YANG Dianlin*(
)
Received:
2024-05-06
Online:
2024-08-18
Published:
2024-09-25
摘要:
藜芦(Veratrum nigrum)可作为草地退化的指示指标,其在天然草地中常为伴生种,随着草地退化程度的加剧,不可逆地取代本土植物演化为优势物种。然而,藜芦扩散对植被与土壤性质的影响机制仍不清楚。为探明藜芦扩散蔓延对山地草甸草地植被特征和土壤理化性质的影响,以及植被特征与土壤理化性质间的关系。以内蒙古山地草甸草地为研究对象,根据藜芦覆盖度等级设置对照C0(无藜芦)、轻度危害C1(盖度≤20%)、中度危害C2(20%<盖度≤40%)、重度危害C3(盖度>40%)4个危害度等级,调查分析不同藜芦危害程度下山地草甸草地植物群落组成和土壤理化变化特征。结果表明,与无藜芦对照C0相比,C3处理植物群落的物种丰富度、Shannon和Simpson指数均显著下降;总地上生物量随着藜芦危害度的增加呈现出先降低后增加的趋势;相比C0,C1、C2和C3处理除藜芦与优势植物以外的其他植物地上生物量分别显著下降9.93%、57.7%、46.9%;同时,随着藜芦危害度的增大,土壤pH显著下降,而土壤全氮、全磷、铵态氮、硝态氮和速效磷和速效钾含量在C3处理下均显著高于C0;相关性分析表明,土壤pH值、全磷、铵态氮、硝态氮和速效磷含量是影响藜芦地上生物量的重要环境因子;土壤pH值、全磷、硝态氮、铵态氮和速效磷含量是影响植被群落物种丰富度和Shannon多样性指数的重要环境因子。综上所述,藜芦通过增加土壤养分含量,降低土壤pH,同时降低草地植物群落丰富度与物种多样性,加速自身种群数量的扩散。
中图分类号:
庞波, 海香, 张海芳, 张艳军, 王慧, 刘红梅, 杨殿林. 藜芦扩散对山地草甸草地植被特征和土壤理化性质的影响[J]. 生态环境学报, 2024, 33(8): 1174-1181.
PANG Bo, HAI Xiang, ZHANG Haifang, ZHANG Yanjun, WANG Hui, LIU Hongmei, YANG Dianlin. Effects of Spread of Veratrum nigrum on Vegetation Characteristics and Soil Physicochemical Properties in Mountain Meadow Steppe[J]. Ecology and Environment, 2024, 33(8): 1174-1181.
物种 | 不同处理的植物地上生物量/(g∙m−2) | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
藜芦Veratrum nigrum | 0.00±0.00d | 67.8±10.7c | 110±2.80b | 319±37.0a |
日荫菅Carex pediformis | 80.7±15.4a | 27.2±11.2b | 33.7±6.52b | 41.8±7.29b |
羊草Leymus chinensis | 48.5±14.3bc | 60.1±11.9b | 33.0±11.3c | 80.6±14.3a |
二裂叶委陵菜Po-tentilla bifurca | 23.0±6.67b | 47.2±10.2a | 30.6±0.89b | 43.2±2.74a |
地榆Sanguisorba officinalis | 23.3±5.78a | 26.6±8.37a | 21.1±6.43a | 28.1±8.28a |
黄花菜Achnatherum sibiricum | 25.8±4.58a | 16.0±5.11b | 18.2±4.44b | 4.88±1.25c |
羽茅Achnatherum sibiricum | 25.8±7.77a | 30.8±8.87a | 10.3±4.22b | 16.1±2.54b |
早熟禾Poa attenuta | 23.6±8.48a | 10.8±5.50b | 2.16±0.98c | 1.96±0.71c |
唐松草Thalictrum aquilegiifolium | 22.3±1.87a | 12.6±6.07b | 11.2±3.95b | 16.0±3.29b |
蓬子菜Galium verum | 14.5±1.97b | 13.5±3.26b | 12.5±1.14b | 22.5±6.60a |
其他植物 | 57.4±6.32a | 51.7±6.15a | 24.3±9.04b | 30.5±4.55b |
总生物量 | 345±22.4b | 364±35.2b | 306±11.7c | 604±32.8a |
表1 植物群落物种地上生物量
Table 1 Aboveground biomass of plant community species
物种 | 不同处理的植物地上生物量/(g∙m−2) | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
藜芦Veratrum nigrum | 0.00±0.00d | 67.8±10.7c | 110±2.80b | 319±37.0a |
日荫菅Carex pediformis | 80.7±15.4a | 27.2±11.2b | 33.7±6.52b | 41.8±7.29b |
羊草Leymus chinensis | 48.5±14.3bc | 60.1±11.9b | 33.0±11.3c | 80.6±14.3a |
二裂叶委陵菜Po-tentilla bifurca | 23.0±6.67b | 47.2±10.2a | 30.6±0.89b | 43.2±2.74a |
地榆Sanguisorba officinalis | 23.3±5.78a | 26.6±8.37a | 21.1±6.43a | 28.1±8.28a |
黄花菜Achnatherum sibiricum | 25.8±4.58a | 16.0±5.11b | 18.2±4.44b | 4.88±1.25c |
羽茅Achnatherum sibiricum | 25.8±7.77a | 30.8±8.87a | 10.3±4.22b | 16.1±2.54b |
早熟禾Poa attenuta | 23.6±8.48a | 10.8±5.50b | 2.16±0.98c | 1.96±0.71c |
唐松草Thalictrum aquilegiifolium | 22.3±1.87a | 12.6±6.07b | 11.2±3.95b | 16.0±3.29b |
蓬子菜Galium verum | 14.5±1.97b | 13.5±3.26b | 12.5±1.14b | 22.5±6.60a |
其他植物 | 57.4±6.32a | 51.7±6.15a | 24.3±9.04b | 30.5±4.55b |
总生物量 | 345±22.4b | 364±35.2b | 306±11.7c | 604±32.8a |
植被特性 | 处理 | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
物种丰富度 | 24.3±1.53a | 20.00±1.73b | 18.00±1.00b | 16.3±2.52b |
Shannon-Wiener指数 | 2.49±0.08a | 2.45±0.14a | 2.30±0.11a | 2.02±0.08b |
Simpson指数 | 0.20±0.01a | 0.12±0.03c | 0.15±0.02b | 0.13±0.01bc |
Pielou指数 | 0.78±0.02a | 0.82±0.07a | 0.79±0.03a | 0.71±0.03a |
表2 群落物种丰富度和多样性指数
Table 2 Community species richness and diversity indices
植被特性 | 处理 | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
物种丰富度 | 24.3±1.53a | 20.00±1.73b | 18.00±1.00b | 16.3±2.52b |
Shannon-Wiener指数 | 2.49±0.08a | 2.45±0.14a | 2.30±0.11a | 2.02±0.08b |
Simpson指数 | 0.20±0.01a | 0.12±0.03c | 0.15±0.02b | 0.13±0.01bc |
Pielou指数 | 0.78±0.02a | 0.82±0.07a | 0.79±0.03a | 0.71±0.03a |
土壤理化 性质 | 处理 | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
pH | 6.17±0.03a | 6.14±0.02a | 6.11±0.04b | 5.94±0.02c |
w(有机质)/ (g·kg−1) | 50.86± 9.50b | 63.17± 5.26a | 62.15± 6.58a | 45.03± 3.68b |
w(铵态氮)/ (mg·kg−1) | 12.04± 0.97c | 17.45± 2.11b | 22.89± 5.01a | 21.02± 3.96a |
w(硝态氮)/ (mg·kg−1) | 13.51± 1.47c | 17.82± 0.25b | 17.88± 0.405b | 19.81± 0.71a |
w(速效磷)/ (mg·kg−1) | 11.39± 0.92c | 14.96± 1.64b | 15.08± 2.98b | 18.31± 0.68a |
w(全氮)/(g·kg−1) | 4.56±0.41b | 5.77±0.32a | 6.59±1.31a | 6.02±0.79a |
w(全磷)/(g·kg−1) | 0.61±0.07b | 0.62±0.03b | 0.67±0.03a | 0.68±0.02a |
w(速效钾)/ (mg·kg−1) | 408.27± 24.77b | 604.17± 20.79a | 610.43± 30.64a | 610.33± 24.97a |
表3 土壤理化性质
Table 3 Soil physicochemical properties
土壤理化 性质 | 处理 | |||
---|---|---|---|---|
C0 | C1 | C2 | C3 | |
pH | 6.17±0.03a | 6.14±0.02a | 6.11±0.04b | 5.94±0.02c |
w(有机质)/ (g·kg−1) | 50.86± 9.50b | 63.17± 5.26a | 62.15± 6.58a | 45.03± 3.68b |
w(铵态氮)/ (mg·kg−1) | 12.04± 0.97c | 17.45± 2.11b | 22.89± 5.01a | 21.02± 3.96a |
w(硝态氮)/ (mg·kg−1) | 13.51± 1.47c | 17.82± 0.25b | 17.88± 0.405b | 19.81± 0.71a |
w(速效磷)/ (mg·kg−1) | 11.39± 0.92c | 14.96± 1.64b | 15.08± 2.98b | 18.31± 0.68a |
w(全氮)/(g·kg−1) | 4.56±0.41b | 5.77±0.32a | 6.59±1.31a | 6.02±0.79a |
w(全磷)/(g·kg−1) | 0.61±0.07b | 0.62±0.03b | 0.67±0.03a | 0.68±0.02a |
w(速效钾)/ (mg·kg−1) | 408.27± 24.77b | 604.17± 20.79a | 610.43± 30.64a | 610.33± 24.97a |
图1 地上植物生物量、群落多样性指数与土壤理化因子的相关关系 *表示在0.05水平上显著相关;**表示在0.01水平上显著相关;***表示在0.001水平上显著相关蓝色表示负相关。r图注表示?1-1的相关程度值,红色表示正相关,蓝色表示负相关,颜色深浅表示相关性强弱。pH表示土壤的酸碱度;OM表示土壤有机质含量;AN表示土壤铵态氮含量;NN表示土壤硝态氮含量;AP表示土壤速效磷含量;TN表示土壤全氮含量;TP表示土壤全磷含量;AK表示土壤速效钾含量。TAB表示总地上生物量;VAB表示藜芦地上生物量;OAB表示其他植物地上生物量。S表示物种丰富度;H表示Shannon指数;D表示Simpson指数;E表示Pielou指数
Figure 1 Correlation between aboveground plant biomass, diversity indices and soil physicochemical properties
[1] |
AHMED A A, GYPSER S, FREESE D, et al., 2020. Molecular level picture of the interplay between pH and phosphate binding at the goethite-water interface[J]. Physical Chemistry Chemical Physics, 22(45): 26509-26524.
DOI PMID |
[2] |
AMTMANN A, TROUFFLARD S, ARMENGAUD P, 2008. The effect of potassium nutrition on pest and disease resistance in plants[J]. Physiol Plant, 133(4): 682-691.
DOI PMID |
[3] | ARAYA T, MLAHLWA A V, ELBASIT M A M A, et al., 2022. The impact of Tamarix invasion on the soil physicochemical properties[J]. Scientific Reports, 12(1): 5750. |
[4] | BAI J K, CHEN R, MEN X X, et al., 2023. Divergent linkages of soil phosphorus fractions to edaphic properties following afforestation in the riparian zone of the upper Yangtze River, China[J]. Chemosphere, 313: 137452. |
[5] | CHENG J N, JIN H, ZHANG J L, et al., 2022. Effects of allelochemicals, soil enzyme activities, and environmental factors on rhizosphere soil microbial community of Stellera chamaejasme L. along a growth-coverage gradient[J]. Microorganisms, 10(1): 158. |
[6] | DHILLON J, TORRES G, DRIVER E, et al., 2017. World phosphorus use efficiency in cereal crops[J]. Agronomy Journal, 109(4): 1670-1677. |
[7] | HU Y F, NACUN B, 2018. An analysis of land-use change and grassland degradation from a policy perspective in Inner Mongolia, China, 1990-2015[J]. Sustainability, 10(11): 4048. |
[8] | JIN H, YANG X Y, LIU R T, et al., 2018. Bacterial community structure associated with the rhizosphere soils and roots of Stellera chamaejasme L. along a Tibetan elevation gradient[J]. Annals of Microbiology, 68(5): 273-286. |
[9] | LOLLATO R P, FIGUEIREDO B M, DHILLON J S, et al., 2019. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments[J]. Field Crops Research, 236: 42-57. |
[10] | MARIOTTE P, SPOTSWOOD E N, FARRER E C, et al., 2017. Positive litter feedbacks of an introduced species reduce native diversity and promote invasion in Californian grasslands[J]. Applied Vegetation Science, 20(1): 28-39. |
[11] | MEHARG A, MARSCHNER P, 2012. Marschner's mineral nutrition of higher plants[J]. Experimental Agriculture, 48(2): 305. |
[12] |
RADUJKOVIĆ D, VERBRUGGEN E, SEABLOOM E W, et al., 2021. Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?[J]. Ecology Letters, 24(12): 2713-2725.
DOI PMID |
[13] | RAHMAN N A, LARBI A, OPOKU A, et al., 2019. Crop-livestock interaction effect on soil quality and maize yield in Northern Ghana[J]. Agronomy Journal, 111(2): 907-916. |
[14] | REN B H, MENG M, YU J X, et al., 2023. Invasion by Cenchrus spinifex changes the soil microbial community structure in a sandy grassland ecosystem[J]. Heliyon, 9(11): e20860. |
[15] | TORRES N, HERRERA I, FAJARDO L, et al., 2021. Meta-analysis of the impact of plant invasions on soil microbial communities[J]. BMC Ecology and Evolution, 21(1): 172. |
[16] | WANG C W, LIU Z K, YU W Y, et al., 2022. Grassland degradation has stronger effects on soil fungal community than bacterial community across the semi-arid region of Northern China[J]. Plants, 11(24): 3488. |
[17] | WANG S C, YUAN X Q, LI T, et al., 2024. Changes in soil microbe-mediated carbon, nitrogen and phosphorus cycling during spontaneous succession in abandoned Pb-Zn mining areas[J]. Science of The Total Environment, 920: 171018. |
[18] | XIE H T, KNAPP L S P, YU M K, et al., 2023. Solidago canadensis invasion destabilizes the understory plant community and soil properties of coastal shelterbelt forests of subtropical China[J]. Plant and Soil, 484(1): 65-77. |
[19] | YANG K X, YANG Y H, WU X H, et al., 2024. Allelopathic potential and chemical composition of essential oil from the invasive plant Acmella radicans[J]. Agronomy, 14(2): 342. |
[20] | ZHANG H, YANG X T, YIN Z, et al., 2024. Invasion of exotic Spartina alterniflora alters the size, availability, and stability of the soil phosphorus pool in the coastal wetlands of eastern China[J]. CATENA, 239: 107909. |
[21] | 鲍士旦, 2001. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2001. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press. | |
[22] | 高雅芳, 2019. 长白山西坡苔原带尖被藜芦关键物候期及其与环境要素关系[D]. 长春: 东北师范大学. |
GAO Y F, 2019. The key phenophases of Veratrum oxysepalum and relationship with environmental factors from tundra in the western slope of the Changbai Mountains[D]. Changchun: Northeast Normal University. | |
[23] | 顾令爽, 杨小林, 李义玲, 等, 2018. 藜芦属植物 (Veratrum) 的生理生态学研究进展[J]. 中国野生植物资源, 37(6): 53-56, 72. |
GU L S, YANG X L, LI Y L, et al., 2018. Advances in research of ecophysiological for Veratrum[J]. Chinese Wild Plant Resources, 37(6): 53-56, 72. | |
[24] | 何兴东, 高玉葆, 刘惠芬, 2004. 重要值的改进及其在羊草群落分类中的应用[J]. 植物研究, 24(4): 466-472. |
HE X D, GANG Y B, LIU H F, 2004. Amending of importance value and its application on classification of Leymus chinensis communities[J]. Bulletin of Botanical Research, 24(4): 466-472. | |
[25] | 胡睿, 2020. 藜芦入侵下长白山典型苔原生态系统的变化过程研究[D]. 长春: 东北师范大学. |
HU R, 2020. Study on the changing process of typical tundra ecosystem under the invasion of Veratrum nigrum [D]. Changchun: Northeast Normal University. | |
[26] | 胡奕, 2023. 三种一年生菊科入侵植物丰富度和多度对生态系统多功能性的影响[D]. 济南: 山东大学. |
HU Y, 2023. Effects of richness and abundance of three annual Asteraceae invasive plants on ecosystem multifunctionality[D]. Ji’nan: Shandong University. | |
[27] | 李海宁, 柳妍妍, 公延明, 等, 2023. 甘肃马先蒿入侵对巴音布鲁克高寒草原凋落物分解的影响[J]. 草原与草坪, 43(1): 1-11. |
LI H N, LIU Y Y, GONG Y M, et al., 2023. Effects of Pedicularis kansuensis invasion on litter decomposition in Bayanbulak alpine steppe[J]. Grassland and Turf, 43(1): 1-11. | |
[28] | 孟昀昊, 2022. 美洲商陆入侵的植物-土壤反馈机制探究[D]. 烟台: 鲁东大学. |
MENG Y H, 2022. The exploration on plant-soil feedback mechanism of Phytolacca americana L. invasion[D]. Yantai: Ludong University. | |
[29] |
牛琼梅, 单贵莲, 罗钦, 等, 2023. 毒害草入侵扩散对滇西北亚高山草甸土壤微生物多样性的影响[J]. 草地学报, 31(7): 1996-2004.
DOI |
NIU Q M, SHAN G L, LUO Q, et al., 2023. Effect of Invasion and diffusion of poisonous weeds on soil microbial diversity in subalpine meadow in northwest Yunnan[J]. Acta Agrestia Sinica, 31(7): 1996-2004. | |
[30] | 施宇森, 王杉杉, 方伟, 等, 2024. 基于Meta分析研究毛竹入侵致土壤pH提升及养分和微生物群落结构的变化[J]. 土壤学报, 61(3): 862-877. |
SHI Y S, WANG S S, FANG W, et al., 2024. Bamboo invades surrounding forest increased soil pH, changed soil chemical nutrient and microbial community: A meta-analysis[J]. Acta Pedologica Sinica, 61(3): 862-877. | |
[31] | 孙天舒, 2013. 草地瑞香狼毒种群扩散对土壤养分有效性的影响[D]. 沈阳: 东北大学. |
SUN T S, 2013. The effects of dispersion of Stellera chamaejasme L. population on soil nutrient availability of grassland[D]. Shenyang: Northeastern University. | |
[32] | 王福山, 何永涛, 石培礼, 等, 2016. 狼毒对西藏高原高寒草甸退化的指示作用[J]. 应用与环境生物学报, 22(4): 567-572. |
WANG F S, HE Y T, SHI P L, et al., 2016. Stellera chamaejasme as an indicator for alpine meadow degradation on the Tibetan Plateau[J]. Chinese Journal of Applied and Environmental Biology, 22(4): 567-572. | |
[33] | 王宏生, 王玉琴, 宋梅玲, 等, 2024. 黄帚橐吾不同密度斑块植物、土壤和微生物碳氮磷生态化学计量特征[J]. 生态学报, 44(10): 4297-4307. |
WANG H S, WANG Y Q, SONG M L, et al., 2024. Carbon, nitrogen and phosphorus stoichiometric characteristics of plants, soils and microbial biomass in patches with different densities of Ligularia virgaurea[J]. Acta Ecologica Sinica, 44(10): 4297-4307. | |
[34] | 王慧赟, 2020. 藜芦入侵对牛皮杜鹃叶片性状与光合特性的影响过程研究[D]. 长春: 东北师范大学. |
WANG H Y, 2020. Study on impacting process of Veratrum oxysepalum invasion on leaf characteristics and photosynthetic characteristics of Rhododendron aureum[D]. Changchun: Northeast Normal University. | |
[35] | 吴虎山, 宝柱, 2006. 呼伦贝尔天然草原退化原因及治理对策[J]. 草原与草业 (3): 26-27. |
WU H S, BAO Z, 2006. Causes of natural grassland degradation in Hulunbuir and countermeasures for its management[J]. Grassland and Prataculture (3): 26-27. | |
[36] | 杨琳, 2019. 新疆阿勒泰地区天然草地毒害草种群分布与危害及防控调查[D]. 咸阳: 西北农林科技大学. |
YANG L, 2019. Investigation on population distribution, harm and control of poisonous grass on natural grassland in Altay region of Xinjiang[D]. Xianyang: Northwest A & F University. | |
[37] | 尤延飞, 马青成, 郭亚洲, 等, 2018. 内蒙古天然草地毒草危害状况与防控对策[J]. 动物医学进展, 39(4): 105-110. |
YOU Y F, MA Q C, GUO Y Z, et al., 2018. Hazard status and control countermeasures of poisonous weeds in natural grasslands of Inner Mongolia[J]. Progress in Veterinary Medicine, 39(4): 105-110. | |
[38] |
赵榕江, 陈焘, 董丽佳, 等, 2023. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 47(10): 1333-1355.
DOI |
ZHAO R J, CHEN T, DONG L J, et al., 2023. Progress of plant-soil feedback in ecology studies[J]. Chinese Journal of Plant Ecology, 47(10): 1333-1355. | |
[39] | 郑文贤, 李世雄, 赵文, 等, 2024. 高寒草地土壤真菌群落结构对春季休牧的响应[J]. 生态学杂志, 43(6): 1703-1711. |
ZHENG W X, LI S X, ZHAO W, et al., 2024. Responses of soil fungal community structure to spring grazing exclusion in alpine grassland[J]. Chinese Journal of Ecology, 43(6): 1703-1711.
DOI |
|
[40] | 朱文琰, 杨畅, 许明圆, 等, 2024. 不同龄级瑞香狼毒影响微尺度高寒草甸群落结构[J]. 中国草地学报, 46(2): 83-91. |
ZHU W Y, YANG C, XU M Y, et al., 2024. Effects of Stellera chamaejasme development on community structure of micro-scale topography in alpine meadow[J]. Chinese Journal of Grassland, 46(2): 83-91. |
[1] | 罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340. |
[2] | 张腾云, 王静, 高健磊, 葛文静, 王宗耀, 韩龙. 碱性农田土壤冬小麦不同生育期镉的迁移转化研究[J]. 生态环境学报, 2024, 33(3): 450-459. |
[3] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[4] | 王玉琴, 宋梅玲, 周睿, 王宏生. 黄帚橐吾扩散对高寒草甸土壤理化特性及酶活性的影响[J]. 生态环境学报, 2023, 32(8): 1384-1391. |
[5] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[6] | 袁佳宝, 宋艳宇, 刘桢迪, 朱梦圆, 程小峰, 马秀艳, 陈宁, 李晓宇. 松嫩平原芦苇湿地土壤酶活性剖面分布特征及其微生物养分限制指示作用[J]. 生态环境学报, 2023, 32(12): 2141-2153. |
[7] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
[8] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[9] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[10] | 杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908. |
[11] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[12] | 刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001. |
[13] | 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. |
[14] | 郑智恒, 熊康宁, 容丽, 池永宽. 两种等级喀斯特石漠化地区生物结皮对土壤养分恢复的影响[J]. 生态环境学报, 2021, 30(6): 1202-1212. |
[15] | 林丽, 代磊, 林泽北, 吴际通, 颜伟, 王志杰. 黔中城市森林群落植物多样性及其与土壤理化性质的关系[J]. 生态环境学报, 2021, 30(11): 2130-2141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||