[1] |
AZANU D, MORTEY C, DARKO G, et al., 2016. Uptake of antibiotics from irrigation water by plants[J]. Chemosphere, 157: 107-114.
DOI
PMID
|
[2] |
BARRAUD O, BACLET M C, DENIS F, et al., 2010. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons[J]. Journal of Antimicrobial Chemotherapy, 65(8): 1642-1645.
|
[3] |
BERENDONK T U, MANAIA C M, MERLIN C, 2015. Tackling antibiotic resistance: The environmental framework Nature Reviews[J] Microbiology, 13(5): 310-317.
|
[4] |
BÍLKOVÁ Z, MALA J, HRICH K, 2019. Fate and behaviour of veterinary sulphonamides under denitrifying conditions[J]. Science of The Total Environment, 695: 133824.
|
[5] |
CHEN Y L, YANG K J, YE Y, et al., 2021. Reductive soil disinfestation attenuates antibiotic resistance genes in greenhouse vegetable soils[J]. Journal of Hazardous Materials, 420: 126632.
|
[6] |
DORSCH M, LANE D, STACKEBRANDT E, 1992. Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences[J]. International Journal of Systematic Bacteriology, 42(1): 58-63.
PMID
|
[7] |
FORSBERG K J, PATEL S, GIBSON M K, et al., 2014. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 509: 612-616.
|
[8] |
GILLINGS M R, GAZE W H, PRUDEN A, et al., 2015. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution[J]. The ISME Journal, 9(6): 1269-1279.
|
[9] |
HARMER C J, HALL R M, 2016. IS26-Mediated formation of transposons carrying antibiotic resistance genes[J]. mSphere, 1(2): e00038-16.
|
[10] |
JAGTAP U B, 2017. Antibiotics in the soil: Sources, environmental issues, and bioremediation[M]. Switzerland: Springer International Publishing: 387-395.
|
[11] |
JI X L, SHEN Q H, LIU F, et al., 2012. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 235-236: 178-185.
DOI
PMID
|
[12] |
KIRCHHELLE C, 2018. Pharming animals: A global history of antibiotics in food production (1935-2017)[J]. Palgrave Communications, 4(1): 1-13.
|
[13] |
LENG Y F, BAO J G, CHANG G F, et al., 2016. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1[J]. Journal of Hazardous Materials, 318: 125-133.
|
[14] |
LIU L L, KONG J J, CUI H L, et al., 2016. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation[J]. Biological Control, 101: 103-113.
|
[15] |
MOGHADAM A A, SHUAI W T, HARTMANN E M, 2023. Anthropogenic antimicrobial micropollutants and their implications for agriculture[J]. Current Opinion in Biotechnology, 80: 102902.
|
[16] |
STEDTFELD R D, GUO X P, STEDTFELD T M, et al., 2018. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements[J]. FEMS Microbiology Ecology, 94(9): fly130.
|
[17] |
VON W C J H, JOHN P, VAN N J M, et al., 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer[J]. Frontiers in Microbiology, 7: 173.
DOI
PMID
|
[18] |
YAMAMOTO T, WAN T W, KHOKHLOVA O, et al., 2019. Methicillin-resistant Staphylococcus Aureus in community settings: Spread of drug resistance and uncontrollable infections[J]. Medical University, 2(4): 115-124.
|
[19] |
YANG B, YU Y L, LIU H, et al., 2022. Natural N-doped carbon quantum dots derived from straw and adhered onto TiO2 nanospheres for enhancing the removal of antibiotics and resistance genes[J]. ACS Omega, 8(1): 718-725.
|
[20] |
ZHANG Y, GU A Z, HE M, et al., 2017. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera[J]. Environmental Science & Technology, 51(1): 570-580.
|
[21] |
ZHANG S, LU Y X, ZHANG J J, et al., 2020. Constructed wetland revealed efficient sulfamethoxazole removal but enhanced the spread of antibiotic resistance genes[J]. Molecules, 25(4): 834.
|
[22] |
ZHAO J, NI T, LI J, et al., 2016. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system[J]. Applied Soil Ecology, 99: 1-12.
|
[23] |
ZHU N, LONG Y J, KAN Z X, et al., 2023. Reduction of mobile genetic elements determines the removal of antibiotic resistance genes during pig manure composting after thermal pretreatment[J]. Bioresource Technology, 387: 129672.
|
[24] |
蔡祖聪, 张金波, 黄新琦, 等, 2015. 强还原土壤灭菌防控作物土传病的应用研究[J]. 土壤学报, 52(3): 469-476.
|
|
CAI Z C, ZHANG J B, HUANG X Q, et al., 2015. Application of reductive soil disinfestation to suppress soil-borne pathogens[J]. Acta Pedologica Sinica, 52(3): 469-476.
|
[25] |
龚勍, 王震, 邢剑波, 等, 2023. 四环素降解对厌氧反硝化产甲烷性能的影响[J]. 中国环境科学, 43(6): 2899-2907.
|
|
GONG Q, WANG Z, XING J B, et al., 2023. Degradation of tetracycline under denitrification and methanogenesis system and its performance change[J]. China Environmental Science, 43(6): 2899-2907.
|
[26] |
李斌绪, 朱昌雄, 宋婷婷, 等, 2020. 电动力修复四环素类抗生素污染土壤的效果研究[J]. 环境科学与技术, 43(5): 187-194.
|
|
LI B X, ZHU C X, SONG T T, et al., 2020. Effect of electrodynamic remediation on tetracycline-contaminated soil[J]. Environmental Science & Technology, 43(5): 187-194.
|
[27] |
李彦文, 莫测辉, 赵娜, 等, 2009. 菜地土壤中磺胺类和四环素类抗生素污染特征研究[J]. 环境科学, 30(6): 1762-1766.
|
|
LI Y W, MO C H, ZHAO N, et al., 2009. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields[J]. Environmental Science, 30(6): 1762-1766.
|
[28] |
刘款, 孙明明, 刘满强, 等, 2017. 土壤反硝化对磺胺嘧啶及抗性基因消减的影响[J]. 土壤, 49(3): 482-491.
|
|
LIU K, SUN M M, LIU M Q, et al., 2017. Effects of anaerobic denitrification on the dissipation of sulfadiazine and resistance genes in soil[J]. Soils, 49(3): 482-491.
|
[29] |
刘元望, 李兆君, 冯瑶, 等, 2016. 微生物降解抗生素的研究进展[J]. 农业环境科学学报, 35(2): 212-224.
|
|
LIU Y W, LI Z J, FENG Y, et al., 2016. Research progress in microbial degradation of antibiotics[J]. Journal of Agro-Environment Science, 35(2): 212-224.
|
[30] |
聂璐, 吴奎海, 陈文静, 等, 2019. 插入序列IS6100介导DNA序列转移的机制研究[J]. 中国医药生物技术, 14(4): 341-346.
|
|
NIE L, WU K H, CHEN W J, et al., 2019. The mechanism of insertion sequence IS6100 mediated transfer of DNA sequences[J]. Chinese Medicinal Biotechnology, 14(4): 341-346.
|
[31] |
裴孟, 梁玉婷, 易良银, 等, 2017. 黑麦草对土壤中残留抗生素的降解及其对微生物活性的影响[J]. 环境工程学报, 11(5): 3179-3186.
|
|
PEI M, LIANG Y T, YI L Y, et al., 2017. Degradation of residual antibiotics in soils by ryegrass and its effect on microbial activity[J]. Chinese Journal of Environmental Engineering, 11(5): 3179-3186.
|
[32] |
邰义萍, 莫测辉, 李彦文, 等, 2011. 长期施用粪肥菜地土壤中四环素类抗生素的含量与分布特征[J]. 环境科学, 32(4): 1182-1187.
|
|
TAI Y P, MO C H, LI Y W, et al., 2011. Concentrations and distribution of tetracycline antibiotics in vegetable field soil chronically fertilized with manures[J]. Environmental Science, 32(4): 1182-1187.
|
[33] |
王广印, 郭卫丽, 陈碧华, 等, 2023. 强还原土壤灭菌法防控瓜菜土壤连作障碍效果的影响因素[J]. 中国瓜菜, 36(2): 11-18.
|
|
WANG G Y, GUO W L, CHEN B H et al., 2023. The factors affecting reductive soil disinfection (RSD) on overcoming mono-cropping obstacles of cucurbits and vegetables[J]. China Cucurbits and Vegetables, 36(2): 11-18.
|
[34] |
王晓洁, 赵蔚, 张志超, 等, 2021. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控[J]. 中国科学: 技术科学, 51(6): 615-636.
|
|
WANG X J, ZHAO W, ZHANG Z C et al., 2021. Veterinary antibiotics in soils: environmental processes, ecotoxicity, and risk mitigation[J]. Scientia Sinica Technologica, 51(6): 615-636.
|
[35] |
肖磊, 王海芳, 2020. 四环素类抗生素在土壤环境中的残留及环境行为研究进展[J]. 应用化工, 49(12): 3178-3184.
|
|
XIAO L, WANG H F, 2020. Tetracycline residues and environmental behavior of tetracycline antibiotics in soil: A review[J]. Applied Chemical Industry, 49(12): 3178-3184.
|
[36] |
于文豪, 李舒, 林于蓝, 等, 2024. 棉隆熏蒸和强还原处理对农田土壤抗生素抗性基因的影响研究[J]. 土壤学报, [待发表].
|
|
YU W H, LI S, LIN Y L, et al., 2024. Effects of dazomet fumigation and reductive soil disinfestation on antibiotic resistance genes in farmland soil[J]. Acta Pedologica Sinica, [In Press].
|
[37] |
袁钰龙, 刘冬梅, 向荣程, 等, 2021. 大环内酯类抗生素微生物降解的研究进展[J]. 生物工程学报, 37(9): 3129-3141.
|
|
YUAN Y L, LIU D M, XIANG R C, et al., 2021. Advances in biodegradation of macrolide antibiotics[J]. Chinese Journal of Biotechnology, 37(9): 3129-3141.
|
[38] |
赵军, 张晶清, 林于蓝, 等, 2024. 强还原土壤处理驱动的微生物群落稳定性与功能的关联性[J]. 土壤学报, 61(1): 187-199.
|
|
ZHAO J, ZHANG J Q, LIN Y L, et al., 2024. Correlation between the stability and function of soil microbial community driven by reductive soil disinfestation[J]. Acta Pedologica Sinica, 61(1): 187-199.
|
[39] |
赵晓东, 乔青青, 秦宵睿, 等, 2023. 近15年我国土壤抗生素污染特征与生物修复研究进展[J]. 环境科学, 44(7): 4059-4076.
|
|
ZHAO X D, QIAO Q Q, QIN X R, et al., 2023. Characteristics of antibiotic contamination of soil in China in past fifteen years and the bioremediation technology: A review[J]. Environmental Science, 44(7): 4059-4076.
|
[40] |
朱同彬, 孙盼盼, 党琦, 等, 2014. 淹水添加有机物料改良退化设施蔬菜地土壤[J]. 土壤学报, 51(2): 335-341.
|
|
ZHU T B, SUN P P, DANG Q, et al., 2014. Improvement of degraded greenhouse vegetable soil by flooding and/or amending organic materials[J]. Acta Pedologica Sinica, 51(2): 335-341.
|