生态环境学报 ›› 2023, Vol. 32 ›› Issue (8): 1355-1364.DOI: 10.16258/j.cnki.1674-5906.2023.08.001
• 研究论文【生态学】 •
下一篇
收稿日期:
2023-07-20
出版日期:
2023-08-18
发布日期:
2023-11-08
通讯作者:
*罗春玲。E-mail: clluo@gig.ac.cn作者简介:
姜懿珊(1990年生),女,助理研究员,博士,从事土壤元素循环、污染控制及类土壤转化机制研究。E-mail: jiangyishan@wust.edu.cn
基金资助:
JIANG Yishan1,2(), SUN Yingtao2, ZHANG Gan2, LUO Chunling2,*(
)
Received:
2023-07-20
Online:
2023-08-18
Published:
2023-11-08
摘要:
森林土壤微生物决定了森林生态系统的能量流动和物质循环,研究其群落结构和影响因素对于维持生态系统稳定性和应对全球气候变化具有重要意义。磷脂脂肪酸(PLFAs)因其仅在活体微生物中存在的特性,可以作为生物标志物直观反映土壤中不同种类微生物群落的生物量和群落结构。以土壤微生物为对象,采用PLFA方法,分析了中国全部6种气候类型中天然森林土壤中微生物的群落结构、生物量和理化性质,并采用相关分析和冗余分析方法分析了影响微生物群落结构的主要因素。结果表明,6种气候类型中,土壤容重、土壤pH、土壤凋落物碳质量分数、土壤有机碳质量分数、土壤总氮质量分数、土壤碳氮比和土壤总磷质量分数存在显著差异。真菌群落生物量在6种气候类型中存在显著差异,随气候类型从寒带-温带-热带变化中呈现先升后降的趋势。暖温带土壤真菌与细菌比值最高(0.7),显著高于亚热带、热带土壤(0.4-0.5)。热带土壤和高原土壤的革兰氏阳性与阴性菌比显著高于其他气候类型(1.3-1.5),亚热带土壤最低(0.7)。气候(年均温、年降水量)和土壤理化性质(土壤pH、土壤容重、土壤总氮质量分数和土壤有机碳质量分数)与PLFAs质量分数所代表的土壤微生物生物量和群落结构呈现显著相关关系(P<0.01)。综上,在中国6种气候类型中,森林土壤中总PLFAs所代表的生物量差异不大,但土壤的理化性质和微生物群落结构差异显著。森林土壤微生物群落结构最主要影响因素是年均温、年降水量和土壤pH值。
中图分类号:
姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364.
JIANG Yishan, SUN Yingtao, ZHANG Gan, LUO Chunling. Pattern and Influencing Factors of Forest Soil Microbial Communities in Different Climate Types in China[J]. Ecology and Environment, 2023, 32(8): 1355-1364.
气候森林类型 | 采样区 | 经纬度 | 采样点数量 | 海拔高度范围/m | 年降雨量范围/mm | 年均温范围/℃ |
---|---|---|---|---|---|---|
寒温带针叶林 | 大兴安岭DX | 123.5143°E, 49.5409W | 8 | 445‒1370 | 371‒549 | -3.6‒ -1.3 |
温带针阔混交林 | 小兴安岭XX | 129.6451E, 47.4468W | 9 | 240‒1420 | 619‒693 | 1.1‒2.8 |
长白山CB | 128.1301E, 42.1402W | 4 | 1250‒2000 | 941‒950 | 5.1‒5.1 | |
赛罕乌拉HS | 118.7067E, 44.1911W | 3 | 1170‒1400 | 509‒509 | 4.0‒4.0 | |
塞罕坝SH | 117.2924E, 42.4682W | 4 | 1560‒1870 | 530‒541 | 4.0‒4.5 | |
白草洼BC | 117.6061E, 40.8154W | 4 | 1120‒1710 | 656‒664 | 8.5‒8.6 | |
暖温带落叶阔叶林 | 五岳寨WY | 113.8379E, 38.7197W | 4 | 1430‒1880 | 525‒525 | 11.1‒11.1 |
关帝山GD | 111.4423E, 37.8880W | 3 | 1310‒2200 | 469‒469 | 9.7‒9.7 | |
秦岭QL | 107.8002E, 34.0171W | 6 | 870‒2350 | 674‒696 | 13.4‒13.7 | |
青峰山QF | 107.4418E, 34.0009W | 3 | 1530‒2100 | 699‒706 | 13.5‒13.6 | |
鳌山AS | 107.4666E, 33.8583W | 4 | 1260‒1720 | 728‒731 | 13.8‒13.9 | |
亚热带常绿阔叶林 | 神农架SN | 110.5480E, 31.7582W | 4 | 1210‒3090 | 1005‒1127 | 15.9‒16.0 |
天目山TM | 119.7071E, 30.5828W | 4 | 540‒1460 | 1692‒1774 | 16.9‒17.0 | |
梵净山FJ | 108.7021E, 27.9072W | 3 | 1482‒2095 | 1500‒1501 | 15.2‒15.2 | |
武功山WG | 114.1627E, 27.4649W | 3 | 778‒1115 | 2067‒2068 | 18.2‒18.2 | |
雷公山LG | 108.1994E, 26.3806W | 4 | 1223‒1844 | 1555‒1558 | 16.3‒16.3 | |
南岭NL | 113.0148E, 24.9141W | 4 | 1160‒1520 | 2080‒2082 | 19.4‒19.5 | |
井冈山JG | 114.1635E, 26.4999W | 5 | 925‒1350 | 2079‒2084 | 18.6‒18.7 | |
哀牢山AL | 101.0328E, 24.5333W | 5 | 2190‒2655 | 985‒991 | 17.7‒17.7 | |
戴云山DY | 118.2217E, 25.6431W | 5 | 1100‒1510 | 2010‒2012 | 20.3‒20.3 | |
鼎湖山DH | 112.5386E, 23.1684W | 3 | 210‒586 | 2073‒2073 | 21.5‒21.5 | |
十万大山SW | 107.9145E, 21.8843W | 5 | 393‒708 | 1819‒1824 | 22.7‒22.8 | |
热带雨林 | 西双版纳BN | 101.2854E, 21.9072W | 2 | 652‒805 | 97.08‒97.08 | 22.98‒22.98 |
尖峰岭JF | 108.8900E, 18.7297W | 1 | 873‒873 | 76.83‒76.83 | 25.08‒25.08 | |
霸王岭BW | 108.8067E, 18.6999W | 2 | 1101‒1148 | 76.08‒76.83 | 25.08‒25.08 | |
海南岛HN | 109.6399E, 19.4486W | 2 | 143‒143 | 1815‒1815 | 23.5‒23.5 | |
高原山地森林 | 贡嘎山GG | 102.0709E, 29.6033W | 4 | 2300‒2700 | 1353‒1613 | 7.6‒10.1 |
表1 采样点的气候森林类型和环境气象信息
Table 1 Climate type, forest type and environmental information of sampling sites
气候森林类型 | 采样区 | 经纬度 | 采样点数量 | 海拔高度范围/m | 年降雨量范围/mm | 年均温范围/℃ |
---|---|---|---|---|---|---|
寒温带针叶林 | 大兴安岭DX | 123.5143°E, 49.5409W | 8 | 445‒1370 | 371‒549 | -3.6‒ -1.3 |
温带针阔混交林 | 小兴安岭XX | 129.6451E, 47.4468W | 9 | 240‒1420 | 619‒693 | 1.1‒2.8 |
长白山CB | 128.1301E, 42.1402W | 4 | 1250‒2000 | 941‒950 | 5.1‒5.1 | |
赛罕乌拉HS | 118.7067E, 44.1911W | 3 | 1170‒1400 | 509‒509 | 4.0‒4.0 | |
塞罕坝SH | 117.2924E, 42.4682W | 4 | 1560‒1870 | 530‒541 | 4.0‒4.5 | |
白草洼BC | 117.6061E, 40.8154W | 4 | 1120‒1710 | 656‒664 | 8.5‒8.6 | |
暖温带落叶阔叶林 | 五岳寨WY | 113.8379E, 38.7197W | 4 | 1430‒1880 | 525‒525 | 11.1‒11.1 |
关帝山GD | 111.4423E, 37.8880W | 3 | 1310‒2200 | 469‒469 | 9.7‒9.7 | |
秦岭QL | 107.8002E, 34.0171W | 6 | 870‒2350 | 674‒696 | 13.4‒13.7 | |
青峰山QF | 107.4418E, 34.0009W | 3 | 1530‒2100 | 699‒706 | 13.5‒13.6 | |
鳌山AS | 107.4666E, 33.8583W | 4 | 1260‒1720 | 728‒731 | 13.8‒13.9 | |
亚热带常绿阔叶林 | 神农架SN | 110.5480E, 31.7582W | 4 | 1210‒3090 | 1005‒1127 | 15.9‒16.0 |
天目山TM | 119.7071E, 30.5828W | 4 | 540‒1460 | 1692‒1774 | 16.9‒17.0 | |
梵净山FJ | 108.7021E, 27.9072W | 3 | 1482‒2095 | 1500‒1501 | 15.2‒15.2 | |
武功山WG | 114.1627E, 27.4649W | 3 | 778‒1115 | 2067‒2068 | 18.2‒18.2 | |
雷公山LG | 108.1994E, 26.3806W | 4 | 1223‒1844 | 1555‒1558 | 16.3‒16.3 | |
南岭NL | 113.0148E, 24.9141W | 4 | 1160‒1520 | 2080‒2082 | 19.4‒19.5 | |
井冈山JG | 114.1635E, 26.4999W | 5 | 925‒1350 | 2079‒2084 | 18.6‒18.7 | |
哀牢山AL | 101.0328E, 24.5333W | 5 | 2190‒2655 | 985‒991 | 17.7‒17.7 | |
戴云山DY | 118.2217E, 25.6431W | 5 | 1100‒1510 | 2010‒2012 | 20.3‒20.3 | |
鼎湖山DH | 112.5386E, 23.1684W | 3 | 210‒586 | 2073‒2073 | 21.5‒21.5 | |
十万大山SW | 107.9145E, 21.8843W | 5 | 393‒708 | 1819‒1824 | 22.7‒22.8 | |
热带雨林 | 西双版纳BN | 101.2854E, 21.9072W | 2 | 652‒805 | 97.08‒97.08 | 22.98‒22.98 |
尖峰岭JF | 108.8900E, 18.7297W | 1 | 873‒873 | 76.83‒76.83 | 25.08‒25.08 | |
霸王岭BW | 108.8067E, 18.6999W | 2 | 1101‒1148 | 76.08‒76.83 | 25.08‒25.08 | |
海南岛HN | 109.6399E, 19.4486W | 2 | 143‒143 | 1815‒1815 | 23.5‒23.5 | |
高原山地森林 | 贡嘎山GG | 102.0709E, 29.6033W | 4 | 2300‒2700 | 1353‒1613 | 7.6‒10.1 |
气候 类型 | 土壤容重/ (g∙cm-3) | pH | 凋落物碳质量 分数/% | 有机碳质量 分数/% | 总氮质量 分数/% | 碳氮比 | 总磷质量 分数/‰ | 真菌与 细菌比 | 革兰氏阳性与 阴性菌比 | |
---|---|---|---|---|---|---|---|---|---|---|
寒温带 | DX | 0.42±0.17 1) | 5.03±0.78 | 36.31±6.00 | 17.32±8.96 | 0.71±0.37 | 32.07±24.65 | 2.97±3.96 | 0.65±0.33 | 0.81±0.35 |
温带 | BC | 0.48±0.16 | 5.53±0.73 | 35.12±1.43 | 10.95±4.49 | 0.91±0.28 | 11.66±2.18 | 1.07±0.12 | 0.64±0.11 | 0.58±0.16 |
CB | 0.21±0.03 2) | 4.83±0.40 | 26.62±5.36 | 6.70±1.75 | 0.49±0.14 | 13.77±0.70 | 1.00±0.15 | 0.64±0.20 | 0.97±0.50 | |
HS | 0.46±0.19 | 6.01±0.50 | 30.62±7.36 | 6.30±2.23 | 0.45±0.23 | 14.74±2.37 | 0.61±0.27 | 0.67±0.10 | 0.71±0.26 | |
SH | 0.43±0.13 | 6.39±0.38 | 28.62±5.61 | 10.83±4.86 | 0.69±0.34 | 16.49±2.08 | 0.82±0.31 | 0.70±0.12 | 0.59±0.18 | |
XX | 0.42±0.10 | 5.60±0.45 | 34.74±5.00 | 13.85±4.85 | 0.94±0.34 | 14.87±1.58 | 1.39±0.39 | 0.48±0.05 | 1.30±0.20 | |
暖温带 | AS | 0.32±0.09 | 5.19±0.86 | 35.48±4.86 | 20.36±11.25 | 1.09±0.38 | 17.81±3.88 | 1.00±0.23 | 0.74±0.11 | 0.56±0.06 |
GD | 0.31±0.06 | 5.96±0.61 | 36.59±2.36 | 11.14±1.01 | 0.58±0.01 | 19.32±1.57 | 0.93±0.01 | 0.56±0.06 | 1.13±0.20 | |
QF | 0.37±0.02 | 5.95±0.26 | 36.91±1.96 | 10.94±3.18 | 0.81±0.40 | 15.26±5.79 | 1.19±0.36 | 0.70±0.18 | 1.19±0.46 | |
QL | 0.37±0.05 | 6.42±0.65 | 35.09±3.21 | 13.75±4.13 | 1.00±0.25 | 13.74±1.39 | 1.47±0.41 | 0.77±0.14 | 0.62±0.16 | |
WY | 0.42±0.22 | 5.24±1.06 | 28.33±8.18 | 5.26±1.00 | 0.34±0.10 | 15.62±1.60 | 0.81±0.23 | 0.61±0.07 | 0.98±0.64 | |
亚热带 | AL | 0.53±0.09 | 4.45±0.68 | 46.18±1.27 | 14.33±5.75 | 0.96±0.35 | 14.95±3.44 | 1.12±0.46 | 0.55±0.09 | 0.61±0.20 |
DH | 0.81±0.15 | 3.78±0.18 | 4.51±1.04 | 0.21±0.11 | 25.29±11.48 | 0.33±0.03 | 0.48±0.17 | 0.69±0.23 | ||
DY | 0.42±0.14 | 3.79±0.37 | 48.04±1.92 | 9.59±3.42 | 0.52±0.19 | 18.47±2.27 | 0.41±0.09 | 0.51±0.07 | 0.56±0.14 | |
FJ | 0.30±0.09 | 4.30±0.38 | 43.70±6.25 | 18.06±5.68 | 1.25±0.37 | 14.46±0.48 | 1.28±0.55 | 0.33±0.10 | 1.11±0.45 | |
JG | 0.51±0.20 | 4.85±2.00 | 46.25±1.92 | 9.22±4.38 | 0.37±0.25 | 31.97±13.88 | 0.46±0.15 | 0.45±0.07 | 0.61±0.17 | |
LG | 0.66±0.13 | 4.13±0.76 | 39.36±4.63 | 13.78±2.56 | 0.92±0.23 | 15.18±1.69 | 0.89±0.28 | 0.46±0.10 | 0.51±0.14 | |
NL | 0.64±0.17 | 4.28±0.13 | 38.48±4.49 | 5.42±1.38 | 0.50±0.10 | 11.06±3.14 | 0.28±0.08 | 0.63±0.29 | 0.53±0.17 | |
SN | 0.33±0.04 | 5.32±0.69 | 39.00±3.82 | 16.73±12.42 | 1.05±0.62 | 14.67±3.22 | 1.38±0.55 | 0.80±0.18 | 0.50±0.10 | |
SW | 0.77±0.12 | 3.80±0.25 | 33.81±13.80 | 5.01±1.51 | 0.33±0.11 | 19.93±17.53 | 0.24±0.05 | 0.27±0.11 | 1.01±0.24 | |
TM | 0.62±0.23 | 4.56±0.39 | 7.21±4.17 | 0.52±0.32 | 14.12±1.22 | 0.93±0.47 | 0.46±0.17 | 0.89±0.59 | ||
WG | 0.72±0.17 | 4.37±0.16 | 26.83±8.40 | 3.66±1.10 | 0.27±0.08 | 13.35±1.44 | 0.71±0.20 | 0.41±0.07 | 1.08±0.73 | |
热带 | BN | 1.22±0.02 | 5.91±0.84 | 31.14±3.58 | 2.39±1.56 | 0.32±0.20 | 7.42±0.33 | 10.48±9.77 | 0.32±0.08 | 1.94±0.26 |
BW | 1.17±0.15 | 4.89±0.11 | 35.00±5.65 | 2.38±0.52 | 0.23±0.02 | 10.15±1.56 | 2.85±0.57 | 0.49±0.08 | 1.51±0.03 | |
HN | 1.24±0.05 | 4.66±0.33 | ‒ | 2.01±0.45 | 0.31±0.07 | 6.55±0.05 | 0.26±0.06 | 0.44±0.03 | 1.26±0.39 | |
JF | 1.32±0 | 5.65±0 | 39.00±0 | 1.53±0 | 0.17±0 | 8.90±0 | 1.52±0 | 0.51±0 | 1.18±0 | |
高原 | GG | 1.03±0.30 | 4.49±0.97 | 34.14±13.60 | 5.87±3.66 | 0.42±0.18 | 13.13±3.78 | 8.31±2.87 | 0.49±0.12 | 1.34±0.28 |
表2 27个研究区土壤的理化性质和微生物群落结构信息
Table 2 Physico-chemical properties and microbial structure information of soil samples from 27 sampling sites
气候 类型 | 土壤容重/ (g∙cm-3) | pH | 凋落物碳质量 分数/% | 有机碳质量 分数/% | 总氮质量 分数/% | 碳氮比 | 总磷质量 分数/‰ | 真菌与 细菌比 | 革兰氏阳性与 阴性菌比 | |
---|---|---|---|---|---|---|---|---|---|---|
寒温带 | DX | 0.42±0.17 1) | 5.03±0.78 | 36.31±6.00 | 17.32±8.96 | 0.71±0.37 | 32.07±24.65 | 2.97±3.96 | 0.65±0.33 | 0.81±0.35 |
温带 | BC | 0.48±0.16 | 5.53±0.73 | 35.12±1.43 | 10.95±4.49 | 0.91±0.28 | 11.66±2.18 | 1.07±0.12 | 0.64±0.11 | 0.58±0.16 |
CB | 0.21±0.03 2) | 4.83±0.40 | 26.62±5.36 | 6.70±1.75 | 0.49±0.14 | 13.77±0.70 | 1.00±0.15 | 0.64±0.20 | 0.97±0.50 | |
HS | 0.46±0.19 | 6.01±0.50 | 30.62±7.36 | 6.30±2.23 | 0.45±0.23 | 14.74±2.37 | 0.61±0.27 | 0.67±0.10 | 0.71±0.26 | |
SH | 0.43±0.13 | 6.39±0.38 | 28.62±5.61 | 10.83±4.86 | 0.69±0.34 | 16.49±2.08 | 0.82±0.31 | 0.70±0.12 | 0.59±0.18 | |
XX | 0.42±0.10 | 5.60±0.45 | 34.74±5.00 | 13.85±4.85 | 0.94±0.34 | 14.87±1.58 | 1.39±0.39 | 0.48±0.05 | 1.30±0.20 | |
暖温带 | AS | 0.32±0.09 | 5.19±0.86 | 35.48±4.86 | 20.36±11.25 | 1.09±0.38 | 17.81±3.88 | 1.00±0.23 | 0.74±0.11 | 0.56±0.06 |
GD | 0.31±0.06 | 5.96±0.61 | 36.59±2.36 | 11.14±1.01 | 0.58±0.01 | 19.32±1.57 | 0.93±0.01 | 0.56±0.06 | 1.13±0.20 | |
QF | 0.37±0.02 | 5.95±0.26 | 36.91±1.96 | 10.94±3.18 | 0.81±0.40 | 15.26±5.79 | 1.19±0.36 | 0.70±0.18 | 1.19±0.46 | |
QL | 0.37±0.05 | 6.42±0.65 | 35.09±3.21 | 13.75±4.13 | 1.00±0.25 | 13.74±1.39 | 1.47±0.41 | 0.77±0.14 | 0.62±0.16 | |
WY | 0.42±0.22 | 5.24±1.06 | 28.33±8.18 | 5.26±1.00 | 0.34±0.10 | 15.62±1.60 | 0.81±0.23 | 0.61±0.07 | 0.98±0.64 | |
亚热带 | AL | 0.53±0.09 | 4.45±0.68 | 46.18±1.27 | 14.33±5.75 | 0.96±0.35 | 14.95±3.44 | 1.12±0.46 | 0.55±0.09 | 0.61±0.20 |
DH | 0.81±0.15 | 3.78±0.18 | 4.51±1.04 | 0.21±0.11 | 25.29±11.48 | 0.33±0.03 | 0.48±0.17 | 0.69±0.23 | ||
DY | 0.42±0.14 | 3.79±0.37 | 48.04±1.92 | 9.59±3.42 | 0.52±0.19 | 18.47±2.27 | 0.41±0.09 | 0.51±0.07 | 0.56±0.14 | |
FJ | 0.30±0.09 | 4.30±0.38 | 43.70±6.25 | 18.06±5.68 | 1.25±0.37 | 14.46±0.48 | 1.28±0.55 | 0.33±0.10 | 1.11±0.45 | |
JG | 0.51±0.20 | 4.85±2.00 | 46.25±1.92 | 9.22±4.38 | 0.37±0.25 | 31.97±13.88 | 0.46±0.15 | 0.45±0.07 | 0.61±0.17 | |
LG | 0.66±0.13 | 4.13±0.76 | 39.36±4.63 | 13.78±2.56 | 0.92±0.23 | 15.18±1.69 | 0.89±0.28 | 0.46±0.10 | 0.51±0.14 | |
NL | 0.64±0.17 | 4.28±0.13 | 38.48±4.49 | 5.42±1.38 | 0.50±0.10 | 11.06±3.14 | 0.28±0.08 | 0.63±0.29 | 0.53±0.17 | |
SN | 0.33±0.04 | 5.32±0.69 | 39.00±3.82 | 16.73±12.42 | 1.05±0.62 | 14.67±3.22 | 1.38±0.55 | 0.80±0.18 | 0.50±0.10 | |
SW | 0.77±0.12 | 3.80±0.25 | 33.81±13.80 | 5.01±1.51 | 0.33±0.11 | 19.93±17.53 | 0.24±0.05 | 0.27±0.11 | 1.01±0.24 | |
TM | 0.62±0.23 | 4.56±0.39 | 7.21±4.17 | 0.52±0.32 | 14.12±1.22 | 0.93±0.47 | 0.46±0.17 | 0.89±0.59 | ||
WG | 0.72±0.17 | 4.37±0.16 | 26.83±8.40 | 3.66±1.10 | 0.27±0.08 | 13.35±1.44 | 0.71±0.20 | 0.41±0.07 | 1.08±0.73 | |
热带 | BN | 1.22±0.02 | 5.91±0.84 | 31.14±3.58 | 2.39±1.56 | 0.32±0.20 | 7.42±0.33 | 10.48±9.77 | 0.32±0.08 | 1.94±0.26 |
BW | 1.17±0.15 | 4.89±0.11 | 35.00±5.65 | 2.38±0.52 | 0.23±0.02 | 10.15±1.56 | 2.85±0.57 | 0.49±0.08 | 1.51±0.03 | |
HN | 1.24±0.05 | 4.66±0.33 | ‒ | 2.01±0.45 | 0.31±0.07 | 6.55±0.05 | 0.26±0.06 | 0.44±0.03 | 1.26±0.39 | |
JF | 1.32±0 | 5.65±0 | 39.00±0 | 1.53±0 | 0.17±0 | 8.90±0 | 1.52±0 | 0.51±0 | 1.18±0 | |
高原 | GG | 1.03±0.30 | 4.49±0.97 | 34.14±13.60 | 5.87±3.66 | 0.42±0.18 | 13.13±3.78 | 8.31±2.87 | 0.49±0.12 | 1.34±0.28 |
环境参数 | 细菌 | 真菌 | 革兰氏阳性菌 | 革兰氏阴性菌 | 总PLFAs | 真菌和细菌比 | 革兰氏阳性和阴性菌比 |
---|---|---|---|---|---|---|---|
经度 | 0.158 | 0.141 | 0.106 | -0.006 | 0.121 | 0.067 | 0.039 |
纬度 | 0.260**2) | 0.348** | 0.177 | 0.111 | 0.277** | 0.335** | 0.019 |
海拔高度 | -0.030 | 0.077 | -0.112 | 0.113 | 0.032 | 0.245* | -0.232* |
年均温 | -0.263** | -0.325** | -0.211* | -0.129 | -0.293** | -0.281** | -0.049 |
年降水量 | -0.183 | -0.299** | -0.228* | -0.079 | -0.261** | -0.347* | -0.194* |
土壤容重 | -0.232*3) | -0.321** | 0.013 | -0.249** | -0.192* | -0.328** | 0.362** |
pH | 0.218* | 0.333** | 0.241* | 0.081 | 0.279** | 0.277** | 0.183 |
凋落物碳质量分数 | 0.019 | -0.083 | -0.057 | 0.101 | -0.027 | -0.094 | -0.179 |
土壤有机碳 | 0.509** | 0.534** | 0.303** | 0.567** | 0.498** | 0.312** | -0.293** |
土壤总氮 | 0.590** | 0.603** | 0.426** | 0.582** | 0.585** | 0.205* | -0.174 |
土壤碳氮比 | -0.047 | -0.042 | -0.132 | 0.019 | -0.076 | 0.090 | -0.228* |
土壤总磷 | -0.051 | -0.083 | 0.168 | -0.093 | 0.049 | 0.104 | 0.325** |
表3 土壤环境参数与生物参数的相关系数1)
Table 3 Correlations between environmental factors and microbial indexes
环境参数 | 细菌 | 真菌 | 革兰氏阳性菌 | 革兰氏阴性菌 | 总PLFAs | 真菌和细菌比 | 革兰氏阳性和阴性菌比 |
---|---|---|---|---|---|---|---|
经度 | 0.158 | 0.141 | 0.106 | -0.006 | 0.121 | 0.067 | 0.039 |
纬度 | 0.260**2) | 0.348** | 0.177 | 0.111 | 0.277** | 0.335** | 0.019 |
海拔高度 | -0.030 | 0.077 | -0.112 | 0.113 | 0.032 | 0.245* | -0.232* |
年均温 | -0.263** | -0.325** | -0.211* | -0.129 | -0.293** | -0.281** | -0.049 |
年降水量 | -0.183 | -0.299** | -0.228* | -0.079 | -0.261** | -0.347* | -0.194* |
土壤容重 | -0.232*3) | -0.321** | 0.013 | -0.249** | -0.192* | -0.328** | 0.362** |
pH | 0.218* | 0.333** | 0.241* | 0.081 | 0.279** | 0.277** | 0.183 |
凋落物碳质量分数 | 0.019 | -0.083 | -0.057 | 0.101 | -0.027 | -0.094 | -0.179 |
土壤有机碳 | 0.509** | 0.534** | 0.303** | 0.567** | 0.498** | 0.312** | -0.293** |
土壤总氮 | 0.590** | 0.603** | 0.426** | 0.582** | 0.585** | 0.205* | -0.174 |
土壤碳氮比 | -0.047 | -0.042 | -0.132 | 0.019 | -0.076 | 0.090 | -0.228* |
土壤总磷 | -0.051 | -0.083 | 0.168 | -0.093 | 0.049 | 0.104 | 0.325** |
图3 土壤环境参数与土壤PLFAs组分变化的冗余分析图 MAT:年均温;LC:凋落物碳质量分数;MAP:年降水量;C/N:土壤碳氮比;SOC:土壤有机碳质量分数;TN:土壤总氮质量分数;Latitude:纬度;Elevation:海拔;TP:土壤总磷质量分数;SD:土壤容重;RDA1,RDA2:代表PLFAs组分变化的RDA成分)
Figure 3 Bioplot of redundancy analysis with environmental factors and soil PLFA composition
[1] |
ALLEN S E, 1974. Chemical analysis of ecological materials[J]. Journal of Applied Ecology, 13(2): 650.
DOI URL |
[2] |
Bligh E G, Dyer W J A, 1959. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 37(8): 911-917.
DOI PMID |
[3] | CAMPBELL C, 2010. Soil microbiology, ecology, and biochemistry[M]. Edited by PAUL E A. European Journal of Soil Science 59(5): 1008-1009. |
[4] |
FROSTEGÅRD Å., BÅÅTH E, 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biology and Fertility of Soils, 22(1-2): 59-65.
DOI URL |
[5] | JUMPPONEN A, MYROLD D D, 2014. Microbial community and functional responses to rainfall manipulations in a prairie soil[J]. Genomic Science Contractor-Grantee Meeting XII, 56: 98. |
[6] |
LECHEVALIER M P, MOSS C W, 1976. Lipids in bacterial taxonomy - a taxonomist’s view, critical reviews in microbiology, informa healthcare[J]. CRC Critical Reviews in Microbiology, 5(2): 109.
DOI URL |
[7] |
LEWE N, HERMANS S, LEAR G et al., 2021. Phospholipid fatty acid (PLFA) analysis as a tool to estimate absolute abundances from compositional 16S rRNA bacterial metabarcoding data[J]. Journal of Microbiological Methods, 188(1): 106271.
DOI URL |
[8] |
LIANG Y T, JIANG Y J, WANG F et al., 2015. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover[J]. The ISME Journal, 9(12): 2561-2572.
DOI |
[9] |
LIU S, WANG F, XUE K et al., 2014. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry[J]. Environmental Microbiology, 17(3): 566-576.
DOI URL |
[10] |
LIU X, WANG S, JIANG Y S, et al., 2017. Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island[J]. Environmental Pollution, 227(8): 57-63.
DOI URL |
[11] |
WHITE D, DAVIS W, NICKELS J et al., 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate[J]. Oecologia, 40(1): 51-62.
DOI PMID |
[12] | WANG G H, JIN J, TU M N et al., 2006. Effects of plant, soil and soil management on soil microbial community diversity[J]. Chinese Journal of Ecology, 25(5): 550-556. |
[13] |
ZHAO M X, XUE K, WANG F et al., 2014. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping[J]. The ISME Journal, 8(10): 2045-2055.
DOI |
[14] | 白晓旭, 史荣久, 尤业明, 等, 2015. 河南宝天曼不同林龄与林型森林土壤的细菌群落结构与多样性[J]. 应用生态学报, 26(8): 2273-2281. |
BAI X X, SHI R J, YOU Y M, et al., 2015. Bacterial community structure and diversity in soils of different forest ages and types in Baotianman forest, Henan Province, China[J]. Chinese Journal of Applied Ecology, 26(8): 2273-2281. | |
[15] | 毕明丽, 宇万太, 姜子绍, 等, 2010. 利用PLFA方法研究不同土地利用方式对潮棕壤微生物群落结构的影响[J]. 中国农业科学, 43(9): 1834-1842. |
BI M L, YU W T, JIANG Z S, et al., 2010. Study on the effects of different land use patterns on microbial community structure in aquic brown soil by utilizing PLFA method[J]. Scientia Agricultura Sinica, 43(9): 1834-1842. | |
[16] | 曹永昌, 谭向平, 和文祥, 等, 2016. 秦岭地区不同林分土壤微生物群落代谢特征[J]. 生态学报, 36(10): 2978-2986. |
CAO Y C, TAN X P, HE W X, et al., 2016. The metabolism characteristics of microbial community in different forest soil in Qinling Mountains Area[J]. Acta Ecologica Sinica, 36(10): 2978-2986. | |
[17] | 陈庆强, 沈承德, 孙彦敏, 等, 2005. 鼎湖山土壤有机质深度分布的剖面演化机制[J]. 土壤学报, 42(1): 1-8. |
CHEN Q Q, SHEN C D, SUN Y M, et al., 2005. Mechanism of distribution of soil organic matter with depth due to evolution of soil profiles at the Dinghushan Biosphere Reserve[J]. Acta Pedologica Sinica, 42(1): 1-8. | |
[18] |
丁爽, 魏圣钊, 陈真亮, 等, 2023. 中国西南典型森林土壤微生物在不同土壤深度下的变化特征[J]. 应用生态学报, 34(3): 614-622.
DOI |
DING S, WEI S Z, CHEN Z L, et al., 2023. Variation characteristics of microorganisms at different soil depths of typical forests in southwest China[J]. Chinese Journal of Applied ecology, 34(3): 614-622.
DOI |
|
[19] | 高秀宏, 李敏, 卢萍, 等, 2019. 呼和浩特市大青山白桦根际土壤细菌群落结构研究[J]. 生态学报, 39(10): 3586-3596. |
GAO X H, LI M, LU P, et al., 2019. Bacterial community in the rhizosphere soil of Betula platyphylla in the Daqing Mountains, Hohhot[J]. Acta Ecologica Sinica, 39(10): 3586-3596. | |
[20] | 谷晓楠, 贺红士, 陶岩, 等, 2017. 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子[J]. 生态学报, 37(24): 8374-8384. |
GU X N, HE H S, TAO Y, et al., 2017. Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain[J]. Acta Ecologica Sinica, 37(24):8374-8384. | |
[21] | 姜雪薇, 马大龙, 臧淑英, 等, 2021. 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J]. 微生物学通报, 48(4): 1093-1105. |
JIANG X W, MA D L, ZANG S Y, et al., 2021. Characteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing[J]. Microbiology China, 48(4): 1093-1105. | |
[22] | 李洪杰, 刘军伟, 杨林, 等, 2016. 海拔梯度模拟气候变暖对高山森林土壤微生物生物量碳氮磷的影响[J]. 应用与环境生物学报, 22(4): 599-605. |
LI H J, LIU J W, YANG L, et al., 2016. Effects of simulated climate warming on soil microbial biomass carbon, nitrogen and phosphorus of alpine forest[J]. Chinese Journal of Applied and Environmental Biology, 22(4): 599-605. | |
[23] | 李雪, 万晓华, 周富伟, 等, 2020. 南亚热带6种人工林土壤微生物生物量和群落结构特征[J]. 亚热带资源与环境学报, 15(1): 33-40. |
LI X, WAM X H, ZHOU F W, et al., 2020. Characteristics of soil microbial biomass and community structure under six different tree species plantations in southern subtropical of China[J]. Journal of Subtropical Resources and Environment, 15(1): 33-40. | |
[24] | 乔沙沙, 周永娜, 柴宝峰, 等, 2017. 关帝山森林土壤真菌群落结构与遗传多样性特征[J]. 环境科学, 38(6): 2502-2512. |
QIAO S S, ZHOU Y N, CHAI B F, et al., 2017. Characteristics of fungi community structure and genetic diversity of forests in Guandi Mountains[J]. Environmental Science, 38(6): 2502-2512. | |
[25] |
谭红妍, 闫瑞瑞, 闫玉春, 等, 2015. 不同放牧强度下温性草甸草原土壤微生物群落结构PLFAs分析[J]. 草业学报, 24(3): 115-121.
DOI |
TAN H Y, YAN R R, YAN Y C, et al., 2015. Phospholipid fatty acid analysis of soil microbial communities under different grazing intensities in meadow steppe[J]. Acta Prataculturae Sinica, 30(6): 1126-1134. | |
[26] | 王卫霞, 史作民, 罗达, 等, 2013. 南亚热带3种人工林土壤微生物生物量和微生物群落结构特征[J]. 应用生态学报, 24(7): 1784-1792. |
WANG W X, SHI Z M, LUO D, et al., 2013. Characteristics of soil microbial biomass and community composition in three types of plantations in southern subtropical area of China[J]. Chinese Journal of Applied Ecology, 24(7): 1784-1792. | |
[27] | 韦应莉, 曹文侠, 李建宏, 等, 2018. 不同放牧与围封高寒灌丛草地土壤微生物群落结构PLFA分析[J]. 生态学报, 38(13): 4897-4908. |
WEI Y L, CAO W X, LI J H, et al., 2018. Phospholipidfatty acid (PLFA) Analysis of soil microbial community structure with different intensities of grazing and fencing in alpine shrubland[J]. Acta Ecologica Sinica, 38(13): 4897-4908. | |
[28] | 吴则焰, 林文雄, 陈志芳, 等, 2014. 武夷山不同海拔植被带上土壤微生物PLFA分析[J]. 林业科学, 50(7): 105-112. |
WU Z Y, LIN W X, CHEN Z F, et al., 2014. Phospholipid fatty acid analysis of soil microbes at different elevation of Wuyi Mountains[J]. Scientia Silvae Sinicae, 50(7): 105-112. | |
[29] | 徐文煦, 王继华, 张雪萍, 2009. 我国森林土壤微生物生态学研究现状及展望[J]. 哈尔滨师范大学自然科学学报, 25(3): 96-100. |
XU W X, WANG J H, ZHANG X P, 2009. Research progress on microbial ecology of forest in China[J]. Natural Science Journal of Harbin Normal University, 25(3): 96-100. | |
[30] | 徐德英, 孙良杰, 王阳, 等, 2020. 土壤微生物群落对玉米根茬和茎叶残体碳的利用特征[J]. 中国环境科学, 40(10): 4504-4513. |
XU D Y, SUN L J, WANG Y, et al., 2020. Characteristics of microbial utilization of maize root-and straw derived carbon[J]. China Environmental Science, 40(10): 4504-4513. | |
[31] | 杨立宾, 朱道光, 崔福星, 等, 2017. 寒温带兴安落叶松林不同林型土壤微生物群落特征[J]. 东北林业大学学报, 45(9): 66-72. |
YANG L B, ZHU D G, CUI F X, et al., 2017. Soil microbial community characteristics of the different forest types of larix gmelini forest in cold temperate zone[J]. Journal of Northeast Forestry University, 45(9): 66-72. | |
[32] | 张秋芳, 刘波, 林营志, 等, 2009. 土壤微生物群落磷脂脂肪酸PLFA生物标记多样性[J]. 生态学报, 29(8): 4127-4137. |
ZHANG Q F, LIU B, LIN Y Z, et al., 2009. The Diversity of Phospholipid fatty acid (PLFA) Biomarker for the Microbial Community in soil[J]. Acta Ecologica Sinica, 29(8): 4127-4137. | |
[33] | 张瑞娟, 李华, 林勤保, 等, 2011. 土壤微生物群落表征中磷脂脂肪酸 (PLFA) 方法研究进展[J]. 山西农业科学, 39(9): 1020-1024. |
ZHANG R J, LI H, LIN Q B, et al., 2011. Research progress of PLFA method in the soil microbial community[J]. Journal of Shanxi Agricultural Sciences, 39(9): 1020-1024. | |
[34] | 赵帅, 张静妮, 赖欣, 等, 2011. 放牧与围栏内蒙古针茅草原土壤微生物生物量碳、氮变化及微生物群落结构PLFA分析[J]. 农业环境科学学报, 30(6): 1126-1134. |
ZHAO S, ZHANG J N, LAI X, et al., 2011. Analysis of microbial biomass C, N and soil microbial community structure of stipa steppes Using PLFA at grazing and fenced in Inner Mongolia, China[J]. Journal of Agro-Environment Science, 30(6): 1126-1134. | |
[35] | 赵雯, 王丹丹, 热依拉木民, 等, 2023. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 31(2): 151-162. |
ZHAO W, WANG D D, MUMIN R Y Z, et al., 2023. Soil microbial community structure of Larix gmelinii forest in the Aershan area[J]. Biodiversity Science, 31(2): 151-162. | |
[36] |
朱平, 陈仁升, 宋耀选, 等, 2015. 祁连山不同植被类型土壤微生物群落多样性差异[J]. 草业学报, 24(6): 75-84.
DOI |
ZHU P, CHEN R R, SONG Y X, et al., 2015. Soil microbial community diversity under four vegetation types in the Qilian Mountains, China[J]. Acta Prataculturae Sinica, 24(6): 75-84.
DOI |
|
[37] | 朱万泽, 马胜兰, 王文武, 等, 2023. 土壤微生物碳利用效率研究进展[J]. 山地学报, 41(1): 1-18. |
ZHU W Z, MA S L, WANG W W, et al., 2023. Research advances in soil microbial carbon use efficiency[J]. Mountain Research, 41(1): 1-18. |
[1] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[2] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[3] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[4] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[5] | 喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168. |
[6] | 孙建波, 畅文军, 李文彬, 张世清, 李春强, 彭明. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
[7] | 陈丽娟, 周文君, 易艳芸, 宋清海, 张一平, 梁乃申, 鲁志云, 温韩东, MOHD Zeeshan, 沙丽清. 云南哀牢山亚热带常绿阔叶林土壤CH4通量特征[J]. 生态环境学报, 2022, 31(5): 949-960. |
[8] | 梁嘉伟, 余炜敏, 姚钰玲, 胡绮琪, 陆丹绵, 王荣萍, 廖新荣, 黄赛花. 生物有机肥对土壤质量及蔬菜产量的影响[J]. 生态环境学报, 2022, 31(3): 497-503. |
[9] | 余斐, 叶彩红, 许窕孜, 张中瑞, 朱航勇, 张耕, 华雷, 邓鉴锋, 丁晓纲. 韶关市花岗岩地区森林土壤重金属污染评价[J]. 生态环境学报, 2022, 31(2): 354-362. |
[10] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
[11] | 胡瑞, 房焕英, 肖胜生, 段剑, 张杰, 刘洪光, 汤崇军. 南方红壤典型花岗岩侵蚀区主要治理模式的土壤碳汇效应[J]. 生态环境学报, 2021, 30(8): 1617-1626. |
[12] | 张健, 徐明, 王阳, 文春玉, 杨云礼, 张姣, 聂坤. 黔中地区不同马尾松群丛土壤球囊霉素分布特征[J]. 生态环境学报, 2021, 30(12): 2303-2308. |
[13] | 杨洪炳, 肖以华, 李明, 许涵, 史欣, 郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系[J]. 生态环境学报, 2021, 30(10): 1976-1989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||