生态环境学报 ›› 2024, Vol. 33 ›› Issue (10): 1516-1524.DOI: 10.16258/j.cnki.1674-5906.2024.10.003
收稿日期:
2024-06-07
出版日期:
2024-10-18
发布日期:
2024-11-15
通讯作者:
*李香兰。E-mail: xlli@bnu.edu.cn作者简介:
谢舒雅(2001年生),女,硕士,研究方向为海岸带土壤碳循环与气候变化。E-mail: 202321051247@mail.bnu.edu.cn
基金资助:
Received:
2024-06-07
Online:
2024-10-18
Published:
2024-11-15
摘要:
滨海湿地是海岸带蓝碳生态系统的重要组成部分,其碳汇功能与固碳潜力已成为缓解全球气候变化的长期解决方案之一。互花米草(Spartina alterniflora)作为中国滨海湿地最重要的入侵物种之一,与本土植被相比具有适应性强、繁殖率高、生长迅速、传播速度快等生物特性,威胁盐沼和红树林等滨海湿地本土植被的生存,并随之影响滨海湿地土壤碳固存、碳分解、横向碳迁移等垂直和水平方向上的碳收支过程。植被光合碳同化后以凋落物、根系残留物及其分泌物等形式将有机碳输入到土壤中,土壤碳同化过程生成无机碳酸盐实现土壤无机碳(SIC)固定。该文概述了互花米草和本土植被的光合碳同化能力差异、互花米草入侵滨海湿地引起的植被源土壤有机碳变化以及互花米草入侵对滨海湿地土壤无机碳储量的影响;探究了互花米草入侵滨海湿地后土壤垂直方向上温室气体二氧化碳(CO2)和甲烷(CH4)排放的变化规律及其影响机制,并分析了互花米草入侵在溶解无机碳(DIC)、溶解有机碳(DOC)、颗粒有机碳(POC)等形式进行的滨海湿地土壤横向碳迁移中产生的影响。最后,指出了未来互花米草入侵在土壤碳收支方面的研究方向:建立滨海湿地野外观测网络以扩大研究尺度;重视与加强互花米草入侵下土壤碳固定和分解的时空变化及其驱动机制;发展生态系统动力学模型系统量化和预测互花米草入侵后果;制定和实践因地制宜的滨海湿地生态管理方案。
中图分类号:
谢舒雅, 李香兰. 互花米草入侵对中国滨海湿地土壤碳收支的影响[J]. 生态环境学报, 2024, 33(10): 1516-1524.
XIE Shuya, LI Xianglan. Effects of Spartina alterniflora Invasion on Soil Carbon Budget in Coastal Wetlands of China[J]. Ecology and Environment, 2024, 33(10): 1516-1524.
变量 | 研究地区 | 本土植被类型 | 排放量/(mg·m−2·h−1) | 参考文献 | |
---|---|---|---|---|---|
互花米草 | 本土植被 | ||||
CO2排放 | 江苏盐城湿地 | 芦苇, 盐地碱蓬 | 约199.10 | 芦苇: 约143.90, 盐地碱蓬: 约102.90 | Zhou et al., |
上海崇明岛湿地 | 芦苇, 海三棱藨草 | 高潮区: 185.80, 低潮区: 159.70 | 高潮区: 142.30, 低潮区: 112.00 | Bu et al., | |
福建漳江口湿地 | 秋茄, 白骨壤 | 5.75 | 秋茄: 30.24, 白骨壤: 23.96 | Gao et al., | |
福建九龙江口湿地 | 秋茄 | 46.40 | 86.83 | Wang et al., | |
CH4排放 | 江苏盐城湿地 | 盐地碱蓬 | 0.88 | 0.54 | Zhang et al., |
福建闽江口湿地 | 芦苇, 茳芏 (Cyperus malaccensis) | 10.92 | 芦苇: 4.44, 茳芏: 1.24 | Tong et al., | |
江苏盐城湿地 | 芦苇, 盐地碱蓬 | 0.25 | 芦苇: 0.05, 盐地碱蓬: 0.12 | Yuan et al., | |
上海崇明岛湿地 | 芦苇 | 1.81 | 0.57 | Chen et al., | |
福建九龙江口湿地 | 秋茄 | 6.41 | 6.37 | Wang et al., | |
福建漳江口湿地 | 秋茄, 白骨壤 | 2.26 | 秋茄: 0.04, 白骨壤: 0.45 | Gao et al., |
表1 互花米草入侵下滨海湿地土壤温室气体排放的变化
Table 1 Changes in soil greenhouse gas emissions in coastal wetlands under Spartina alterniflora invasion
变量 | 研究地区 | 本土植被类型 | 排放量/(mg·m−2·h−1) | 参考文献 | |
---|---|---|---|---|---|
互花米草 | 本土植被 | ||||
CO2排放 | 江苏盐城湿地 | 芦苇, 盐地碱蓬 | 约199.10 | 芦苇: 约143.90, 盐地碱蓬: 约102.90 | Zhou et al., |
上海崇明岛湿地 | 芦苇, 海三棱藨草 | 高潮区: 185.80, 低潮区: 159.70 | 高潮区: 142.30, 低潮区: 112.00 | Bu et al., | |
福建漳江口湿地 | 秋茄, 白骨壤 | 5.75 | 秋茄: 30.24, 白骨壤: 23.96 | Gao et al., | |
福建九龙江口湿地 | 秋茄 | 46.40 | 86.83 | Wang et al., | |
CH4排放 | 江苏盐城湿地 | 盐地碱蓬 | 0.88 | 0.54 | Zhang et al., |
福建闽江口湿地 | 芦苇, 茳芏 (Cyperus malaccensis) | 10.92 | 芦苇: 4.44, 茳芏: 1.24 | Tong et al., | |
江苏盐城湿地 | 芦苇, 盐地碱蓬 | 0.25 | 芦苇: 0.05, 盐地碱蓬: 0.12 | Yuan et al., | |
上海崇明岛湿地 | 芦苇 | 1.81 | 0.57 | Chen et al., | |
福建九龙江口湿地 | 秋茄 | 6.41 | 6.37 | Wang et al., | |
福建漳江口湿地 | 秋茄, 白骨壤 | 2.26 | 秋茄: 0.04, 白骨壤: 0.45 | Gao et al., |
[1] | ALONGI D M, 2020. Carbon cycling in the world’s mangrove ecosystems revisited: Significance of non-steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean[J]. Forests, 11(9): 977. |
[2] | BU N S, QU J F, LI Z L, et al., 2015. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River Estuary, China[J]. PLoS One, 10(3): e0121571. |
[3] | CHEN J H, WANG L, LI Y L, et al., 2012. Effect of Spartina alterniflora invasion and its controlling technologies on soil microbial respiration of a tidal wetland in Chongming Dongtan, China[J]. Ecological Engineering, 41: 52-59. |
[4] | CHEN X P, SUN J, WANG Y, et al., 2018. Temporal and spatial impact of Spartina alterniflora invasion on methanogens community in Chongming Island, China[J]. Journal of Microbiology, 56: 507-515. |
[5] | FENG J X, ZHOU J, WANG L M, et al., 2017. Effects of short-term invasion of Spartina alterniflora and the subsequent restoration of native mangroves on the soil organic carbon, nitrogen and phosphorus stock[J]. Chemosphere, 184: 774-783. |
[6] | GAO G F, LI P F, SHEN Z J, et al., 2018. Exotic Spartina alterniflora invasion increases CH4 while reduces CO2 emissions from mangrove wetland soils in southeastern China[J]. Scientific Reports, 8(1): 9243. |
[7] | GAO J H, FENG Z X, CHEN L, et al., 2016. The effect of biomass variations of Spartina alterniflora on the organic carbon content and composition of a salt marsh in northern Jiangsu Province, China[J]. Ecological Engineering, 95: 160-170. |
[8] | GAO S, DU Y F, XIE W J, et al., 2014. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China Earth Sciences, 57: 2567-2586. |
[9] | GAO Y, CHEN J Q, ZHANG T T, et al., 2021. Lateral detrital C transfer across a Spartina alterniflora invaded estuarine wetland[J]. Ecological Processes, 10(1): 1-19. |
[10] | GAO Y, PENG R H, OUYANG Z T, et al., 2020. Enhanced lateral exchange of carbon and nitrogen in a coastal wetland with invasive Spartina alterniflora[J]. Journal of Geophysical Research: Biogeosciences, 125(5): e2019JG005459. |
[11] | HE Y H, ZHOU X H, CHENG W S, et al., 2019. Linking improvement of soil structure to soil carbon storage following invasion by a C4 plant Spartina alterniflora[J]. Ecosystems, 22(4): 859-872. |
[12] | JIANG L F, LUO Y Q, CHEN J K, et al., 2009. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China[J]. Estuarine, Coastal and Shelf Science, 81(1): 74-82. |
[13] | JU R T, LI H, SHANG L, et al., 2017. “Saltmarsh Cordgrass Spartina alterniflora Loisel.” In Biological Invasions and its Management in China[M]. Vol. 2. Singapore: Springer Nature Singapore Private Ltd: 187-198. |
[14] | LI B, LIAO C H, ZHANG X D, et al., 2009. Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects[J]. Ecological Engineering, 35(4): 511-520. |
[15] | LIAO C Z, LUO Y Q, JIANG L F, et al., 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China[J]. Ecosystems, 10: 1351-1361. |
[16] | LU Z Y, XIAO K, WANG F F, et al., 2023. Salt marsh invasion reduces recalcitrant organic carbon pool while increases lateral export of dissolved inorganic carbon in a subtropical mangrove wetland[J]. Geoderma, 437: 116573. |
[17] | MENG W Q, FEAGIN R A, INNOCENTI R A, et al., 2020. Invasion and ecological effects of exotic smooth cordgrass Spartina alterniflora in China[J]. Ecological Engineering, 143: 105670. |
[18] | TONG C, WANG W Q, HUANG J F, et al., 2012. Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland[J]. Biogeochemistry, 111: 677-693. |
[19] | WAN S W, QIN P, LIU J, et al., 2009. The positive and negative effects of exotic Spartina alterniflora in China[J]. Ecological Engineering, 35(4): 444-452. |
[20] | WAN S, LIU X T, MOU X J, et al., 2020. Comparison of carbon, nitrogen, and sulfur in coastal wetlands dominated by native and invasive plants in the Yancheng National Nature Reserve, China[J]. Chinese geographical science, 30: 202-216. |
[21] | WANG F F, ZHANG N, YANG S C, et al., 2024. Source and stability of soil organic carbon jointly regulate soil carbon pool, but source alteration is more effective in mangrove ecosystem following Spartina alterniflora invasion[J]. Catena, 235: 107681. |
[22] | WANG H T, LIAO G S, D’SOUZA M, et al., 2016. Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China[J]. Environmental Science and Pollution Research, 23: 1873-1885. |
[23] | WANG M, WANG Q, SHA C Y, et al., 2018. Spartina alterniflora invasion affects soil carbon in a C3 plant-dominated tidal marsh[J]. Scientific Reports, 8(1): 628. |
[24] | XIA S P, WANG W Q, SONG Z L, et al., 2021. Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics[J]. Global Change Biology, 27(8): 1627-1644. |
[25] | XIE W J, GAO S, 2013. Invasive Spartina alterniflora-induced factors affecting epibenthos distribution in coastal salt marsh, China[J]. Acta Oceanologica Sinica, 32: 81-88. |
[26] | YANG R M, YANG F, 2020. Impacts of Spartina alterniflora invasion on soil inorganic carbon in coastal wetlands in China[J]. Soil Science Society of America Journal, 84(3): 844-855. |
[27] | YANG W, YAN Y E, JIANG F, et al., 2016. Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China[J]. Plant and Soil, 408(1): 443-456. |
[28] | YANG W, ZHAO H, CHEN X L, et al., 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China[J]. Ecological engineering, 61(Part A): 50-57. |
[29] | YUAN J J, DING W X, LIU D Y, et al., 2015. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China[J]. Global Change Biology, 21(4): 1567-1580. |
[30] | YUAN J J, LIU D Y, JI Y, et al., 2019. Spartina alterniflora invasion drastically increases methane production potential by shifting methanogenesis from hydrogenotrophic to methylotrophic pathway in a coastal marsh[J]. Journal of Ecology, 107(5): 2436-2450. |
[31] | ZHANG D H, HU Y M, LIU M, et al., 2017a. Introduction and spread of an exotic plant, Spartina alterniflora, along coastal marshes of China[J]. Wetlands, 37: 1181-1193. |
[32] | ZHANG G L, BAI J H, ZHAO Q Q, et al., 2021a. Soil carbon storage and carbon sources under different Spartina alterniflora invasion periods in a salt marsh ecosystem[J]. Catena, 196: 104831. |
[33] | ZHANG P, NIE M, LI B, et al., 2017b. The transfer and allocation of newly fixed C by invasive Spartina alterniflora and native Phragmites australis to soil microbiota[J]. Soil Biology and Biochemistry, 113: 231-239. |
[34] | ZHANG X H, ZHANG Z S, ZHE L, et al., 2021b. Impacts of Spartina alterniflora invasion on soil carbon contents and stability in the Yellow River Delta, China[J]. Science of The Total Environment, 775: 145188. |
[35] | ZHANG Y H, DING W X, CAI Z C, et al., 2010. Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh[J]. Atmospheric Environment, 44(36): 4588-4594. |
[36] |
ZHANG Y H, HUANG G M, WANG W Q, et al., 2012. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China[J]. Ecology, 93(3): 588-597.
PMID |
[37] | ZHANG Z M, WANG Y, ZHU Y K, et al., 2022. Carbon sequestration in soil and biomass under native and non-native mangrove ecosystems[J]. Plant and Soil, 479(1): 61-76. |
[38] | ZHENG X J, JAVED Z, LIU B, et al., 2023. Impact of Spartina alterniflora invasion in coastal wetlands of China: boon or bane?[J]. Biology, 12(8): 1057. |
[39] | ZHOU J G, ZHANG J F, CHEN Y P, et al., 2023. Blue carbon gain by plant invasion in saltmarsh overcompensated carbon loss by land reclamation[J]. Carbon Research, 2(1): 39. |
[40] | ZHOU L Y, YIN S L, AN S Q, et al., 2015. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in eastern salt marsh of China[J]. Clean-Soil, Air, Water, 43(4): 569-576. |
[41] | 白军红, 刘玥, 赵庆庆, 等, 2022. 水盐变化对滨海湿地土壤有机碳累积与碳排放的影响综述[J]. 北京师范大学学报 (自然科学版), 58(3): 447-457. |
BAI J H, LIU Y, ZHAO Q Q, et al., 2022. Soil organic carbon accumulation and decomposition in coastal wetlands in the changing water and salinity conditions: A review[J]. Journal of Beijing Normal University (Natural Science), 58(3): 447-457. | |
[42] | 陈桂香, 高灯州, 陈刚, 等, 2017. 互花米草入侵对我国红树林湿地土壤碳组分的影响[J]. 水土保持学报, 31(6): 249-256. |
CHEN G X, GAO D Z, CHEN G, et al., 2017. Effects of Spartina alterniflora invasion on soil carbon fractions in mangrove wetlands of China[J]. Journal of Soil and Water Conservation, 31(6): 249-256. | |
[43] | 陈桂香, 2018. 互花米草入侵对中国亚热带滨海湿地土壤碳库及其稳定性影响[D]. 福州: 福建师范大学. |
CHEN G X, 2018. Effects of Spartina alterniflora invasion on soil carbon pool and its stability in subtropical coastal wetlands in China[D]. Fuzhou: Fujian Normal University. | |
[44] | 董洪芳, 于君宝, 孙志高, 等, 2010. 黄河口滨岸潮滩湿地植物-土壤系统有机碳空间分布特征[J]. 环境科学, 31(6): 1594-1599. |
DONG H F, YU J B, SUN Z G, et al., 2010. Spatial distribution characteristics of organic carbon in the soil-plant systems in the Yellow River estuary tidal flat wetland[J]. Environmental Science, 31(6): 1594-1599. | |
[45] | 段代祥, 王美琦, 赵丽莹, 等, 2023. 黄河三角洲退化柽柳湿地土壤无机碳库的变化及其驱动因素[J]. 土壤通报, 54(6): 1308-1315. |
DUAN D X, WANG M Q, ZHAO L Y, et al., 2023. Wetland degradation of Tamarix chinensis induced changes in soil inorganic carbon stocks and related environmental factors in the Yellow River Delta[J]. Chinese Journal of Soil Science, 54(6): 1308-1315. | |
[46] | 冯晓娟, 戴国华, 刘婷, 等, 2024. 从生物地球化学视角理解土壤碳封存的机制和潜在途径[J/OL]. 中国科学: 地球科学, 1-12 [2024-09-24]. http://engine.scichina.com/doi/10.1360/SSTe-2024-0003. |
FENG X J, DAI G H, LIU T, et al., 2024. Understanding the mechanism and potential pathway of soil carbon sequestration from a biogeochemical perspective[J/OL]. Science in China: Earth Sciences, 1-12 [2024-09-24]. http://engine.scichina.com/doi/10.1360/SSTe-2024-0003. | |
[47] | 侯栋梁, 何东进, 严锦钰, 等, 2016. 互花米草入侵对闽东滨海湿地土壤有机碳的影响[J]. 海洋湖沼通报 (1): 68-76. |
HOU D L, HE D J, YAN J Y, et al., 2016. Effects of Spartina alterniflora invasion on soil organic carbon in coastal wetlands of eastern Fujian[J]. Marine Limnology Bulletin (1): 68-76. | |
[48] | 胡健, 曹全恒, 刘小龙, 等, 2022. 草灌植被转变对草地生态系统及其水碳过程的影响研究进展[J]. 生态学报, 42(11): 4324-4333. |
HU J, CAO Q H, LIU X L, et al., 2022. Research progress on the effect of the transition between shrub and grass vegetation on grassland ecosystem and its water-carbon processes[J]. Acta Ecologica Sinica, 42(11): 4324-4333. | |
[49] | 李华, 杨世伦, 2010. 潮间带盐沼植物黏附悬浮颗粒物的差异性研究[J]. 海洋学报, 32(1): 114-119. |
LI H, YANG S L, 2010. Changes of suspended particulates adhering to salt marsh plants[J]. Acta Oceanologica Sinica, 32(1): 114-119. | |
[50] | 李新鸽, 韩广轩, 朱连奇, 等, 2019. 降雨量改变对黄河三角洲滨海湿地土壤呼吸的影响[J]. 生态学报, 39(13): 4806-4820. |
LI X G, HAN G X, ZHU L Q, et al., 2019. Effects of changes in precipitation on soil respiration in coastal wetlands of the Yellow River Delta[J]. Acta Ecologica Sinica, 39(13): 4806-4820. | |
[51] | 刘纪化, 张飞, 焦念志, 2015. 陆海统筹研发碳汇[J]. 科学通报, 60(35): 3399-3405. |
LIU J H, ZHANG F, JIAO N Z, 2015. Deciphering the mechanisms of carbon sink through a holistic view of interactions between land and ocean[J]. Chinese Science Bulletin, 60(35): 3399-3405. | |
[52] | 刘绍辉, 方精云, 1997. 土壤呼吸的影响因素及全球尺度下温度的影响[J]. 生态学报, 17(5): 469-476. |
LIU S H, FANG J Y, 1997. Influencing factors of soil respiration and the effect of temperature on a Global Scale[J]. Acta Ecologica Sinica, 17(5): 469-476. | |
[53] |
陆松柳, 张辰, 徐俊伟, 2011. 植物根系分泌物分析及对湿地微生物群落的影响研究[J]. 生态环境学报, 20(4): 676-680.
DOI |
LU S L, ZHANG C, XU J W, 2011. Root exudates of wetland plants and the influence on the microbial community in constructed wetlands[J]. Ecology and Environmental Sciences, 20(4): 676-680. | |
[54] |
倪广艳, 2023. 外来植物入侵对生态系统碳循环影响的研究概述[J]. 生态环境学报, 32(7): 1325-1332.
DOI |
NI G Y, 2023. Effects of exotic plant invasions on terrestrial ecosystems carbon cycling[J]. Ecology and Environmental Sciences, 32(7): 1325-1332. | |
[55] | 钱逸凡, 刘道平, 楼毅, 等, 2019. 我国湿地生态状况评价研究进展[J]. 生态学报, 39(9): 3372-3382. |
QIAN Y F, LIU D P, LOU Y, et al., 2019. Research progress on ecological status assessment of wetlands in China[J]. Acta Ecologica Sinica, 39(9): 3372-3382. | |
[56] | 苏立城, 陈晓珊, 罗志忠, 等, 2024. 氮添加对森林土壤有机碳库固存及CO2排放的影响研究进展[J]. 生态学报, 44(7): 2717-2733. |
SU L C, CHEN X S, LUO Z Z, et al., 2024. Effects of nitrogen addition on the organic carbon sequestration and CO2 emissions in forest soils: A review[J]. Acta Ecologica Sinica, 44(7): 2717-2733. | |
[57] | 苏培玺, 王秀君, 解婷婷, 等, 2018. 干旱区荒漠无机固碳能力及土壤碳同化途径[J]. 科学通报, 63(8): 755-765. |
SU P X, WANG X J, XIE T T, et al., 2018. Inorganic carbon sequestration capacity and soil carbon assimilation pathway of deserts in arid region[J]. Chinese Science Bulletin, 63(8): 755-765. | |
[58] | 王爱军, 高抒, 贾建军, 2006. 互花米草对江苏潮滩沉积和地貌演化的影响[J]. 海洋学报, 28(1): 92-99. |
WANG A J, GAO S, JIA J J, 2006. Impact of Spartina alterniflora on sedimentary and morphological evolution of tidal salt marshes of Jiangsu, China[J]. Acta Oceanologica Sinica, 28(1): 92-99. | |
[59] |
王纯, 刘兴土, 仝川, 2018. 盐度对滨海湿地土壤碳库组分及稳定性的影响[J]. 地理科学, 38(5): 800-807.
DOI |
WANG C, LIU X T, TONG C, 2018. Effects of salinity on characteristics and stability of soil carbon pool in coastal wetland[J]. Scientia Geographica Sinica, 38(5): 800-807.
DOI |
|
[60] | 王法明, 唐剑武, 叶思源, 等, 2021. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 36(3): 241-251. |
WANG F M, TANG J W, YE S Y, et al., 2021. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences, 36(3): 241-251. | |
[61] | 汪景宽, 徐英德, 丁凡, 等, 2019. 植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报, 56(3): 528-540. |
WANG J K, XU Y D, DING F, et al., 2019. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: A review[J]. Acta Pedologica Sinica, 56(3): 528-540. | |
[62] | 王秀君, 章海波, 韩广轩, 2016. 中国海岸带及近海碳循环与蓝碳潜力[J]. 中国科学院院刊, 31(10): 1218-1225. |
WANG X J, ZHANG H B, HAN G X, 2016. Carbon cycle and blue carbon potential in coastal and offshore zones of China[J]. Bulletin of Chinese Academy of Sciences, 31(10): 1218-1225. | |
[63] | 解雪峰, 孙晓敏, 吴涛, 等, 2020. 互花米草入侵对滨海湿地生态系统的影响研究进展[J]. 应用生态学报, 31(6): 2119-2128. |
XIE X F, SUN X M, WU T, et al., 2020. Impacts of Spartina alterniflora invasion on coastal wetland ecosystem: Advances and prospects[J]. Chinese Journal of Applied Ecology, 31(6): 2119-2128. | |
[64] | 杨黎芳, 李贵桐, 2011. 土壤无机碳研究进展[J]. 土壤通报, 42(4): 986-990. |
YANG L F, LI G T, 2011. Research progress on soil inorganic carbon[J]. Chinese Journal of Soil Science, 42(4): 986-990. | |
[65] | 余健, 房莉, 卞正富, 等, 2014. 土壤碳库构成研究进展[J]. 生态学报, 34(17): 4829-4838. |
YU J, FANG L, BIAN Z F, et al., 2014. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 34(17): 4829-4838. | |
[66] |
张东秋, 石培礼, 张宪洲, 2005. 土壤呼吸主要影响因素的研究进展[J]. 地球科学进展, 20(7): 778-785.
DOI |
ZHANG D Q, SHI P L, ZHANG X Z, 2005. Research progress on main influencing factors of soil respiration[J]. Advances in Earth Science, 20(7): 778-785. | |
[67] | 张祥霖, 石盛莉, 潘根兴, 等, 2008. 互花米草入侵下福建漳江口红树林湿地土壤生态化学变化[J]. 地球科学进展, 23(9): 974-981. |
ZHANG X L, SHI S L, PAN G X, et al., 2008. Soil ecochemical changes in mangrove wetland in Zhangjiang estuary of Fujian Province under the invasion of Spartina alterniflora[J]. Advances in Earth Science, 23(9): 974-981. | |
[68] | 周川闽, 张志杰, 邱振, 等, 2021. 细粒沉积物理模拟研究进展与展望[J]. 沉积学报, 39(1): 253-267. |
ZHOU C M, ZHANG Z J, QIU Z, et al., 2021. Laboratory experiments on sedimentation of fine-grained sediment: A prospect review[J]. Acta Sedimentologica Sinica, 39(1): 253-267. | |
[69] | 周金戈, 覃国铭, 张靖凡, 等, 2022. 中国盐沼湿地蓝碳碳汇研究进展[J]. 热带亚热带植物学报, 30(6): 765-781. |
ZHOU J G, QIN G M, ZHANG J F, et al., 2022. Research progress of blue carbon sink in Chinese salt marshes[J]. Journal of Tropical and Subtropical Botany, 30(6): 765-781. |
[1] | 侯金龙, 马志强, 杨澄, 葛双双, 何迪, 董璠. 京津冀地区植被碳源/汇的时空变化特征及影响因素分析[J]. 生态环境学报, 2024, 33(9): 1329-1338. |
[2] | 李建付, 黄志霖, 和成忠, 姜昕, 宋琳, 刘佳鑫, 陈利顶. 滇东喀斯特断陷盆地土壤有机碳空间分布特征及其关键影响因子[J]. 生态环境学报, 2024, 33(9): 1339-1352. |
[3] | 李彦林, 陈杨洋, 杨霜溶, 刘菊梅. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371. |
[4] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
[5] | 朱乐洋, 张西哲, 陶江, 王秀, 韩艳英, 叶彦辉. 氮添加对色季拉山急尖长苞冷杉林土壤呼吸的影响[J]. 生态环境学报, 2024, 33(9): 1384-1396. |
[6] | 吴东阳, 吴家欢, 李伟志, 黄志杰, 杨春亚, 陈火君. 蚓粪、猪粪配施化肥对土壤质量、辣椒生长及品质的影响[J]. 生态环境学报, 2024, 33(9): 1416-1425. |
[7] | 丛鑫, 张怀迪, 张荣, 赵琛, 陈坤, 刘寒冰. 基于Meta分析的近10年中国农田土壤重金属污染特征与风险解析[J]. 生态环境学报, 2024, 33(9): 1451-1459. |
[8] | 刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470. |
[9] | 庞波, 海香, 张海芳, 张艳军, 王慧, 刘红梅, 杨殿林. 藜芦扩散对山地草甸草地植被特征和土壤理化性质的影响[J]. 生态环境学报, 2024, 33(8): 1174-1181. |
[10] | 王文静, 翟水晶, 王赛. 闽江下游湿地土壤硅的沿程分布特征及影响因素[J]. 生态环境学报, 2024, 33(8): 1182-1191. |
[11] | 范贝贝, 丁帅, 张田田, 张帅, 魏露露, 陈清. 周期性淹水-落干和施用秸秆对白云石改良棕壤磷素流失风险的模拟研究[J]. 生态环境学报, 2024, 33(8): 1203-1213. |
[12] | 张京磊, 王国良, 吴波, 贾春林, 张进红, 周圆, 马冰. 滨海盐碱地苜蓿-小黑麦轮作对土壤细菌和真菌群落多样性与网络结构的影响[J]. 生态环境学报, 2024, 33(7): 1048-1062. |
[13] | 林于蓝, 陈厚朴, 于文豪, 王宝英, 张杨, 张金波, 蔡祖聪, 赵军. 强还原处理对土壤中常见抗生素及其抗性基因的影响研究[J]. 生态环境学报, 2024, 33(7): 1107-1116. |
[14] | 蒋云峰, 严婷, 刘俊男, 马丙增, 王海萌, 窦笑萌. 黑土区农田中型土壤动物群落对免耕玉米秸秆覆盖频率的响应[J]. 生态环境学报, 2024, 33(5): 699-707. |
[15] | 吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||