生态环境学报 ›› 2024, Vol. 33 ›› Issue (10): 1506-1515.DOI: 10.16258/j.cnki.1674-5906.2024.10.002
李瑞1(), 王邵军1,*(
), 兰梦杰1, 罗双1, 夏佳慧1, 杨胜秋1, 解玲玲1, 肖博2, 郭晓飞2, 王郑钧1, 郭志鹏1
收稿日期:
2024-07-06
出版日期:
2024-10-18
发布日期:
2024-11-15
通讯作者:
*王邵军。E-mail: shaojunwang2009@163.com作者简介:
李瑞(1999年生),女,硕士研究生,研究方向为土壤生态学。E-mail: mzby2022@163.com
基金资助:
LI Rui1(), WANG Shaojun1,*(
), LAN Mengjie1, LUO Shuang1, XIA Jiahui1, YANG Shengqiu1, XIE Lingling1, XIAO Bo2, GUO Xiaofei2, WANG Zhengjun1, GUO Zhipeng1
Received:
2024-07-06
Online:
2024-10-18
Published:
2024-11-15
摘要:
为探明丛枝菌根(Arbuscular mycorrhiza,AM)真菌接种对石漠化土壤碳矿化影响的过程及机制,选择圆柏(Sabina chinensis)为供试寄主植物,分别接种幼套近明球囊霉(Claroideoglomus etunicatum,CE)、摩西斗管囊霉(Funneliformis mosseae,FM)、根内根孢囊霉(Rhizophagus intraradices,RI),设对照处理(无AM真菌,CK),采用室内需氧培养法测定不同处理土壤碳矿化速率的时空变化,分析其与根系侵染状况、微生物生物量碳氮和土壤性质的关系。 结果表明,1)3种AM真菌接种对土壤碳矿化速率的影响存在差异。CE处理下的碳矿化速率(13.1 mg∙kg−1∙d−1)高于RI(11.7 mg∙kg−1∙d−1)和FM(9.7 mg∙kg−1∙d−1);3种AM真菌处理下碳矿化速率均表现为湿季大于干季,沿土层加深而减小,随季节和土层的变幅均呈现CE>RI>FM的特征。2)AM真菌接种显著提高根系侵染率、菌丝侵染密度、土壤碳氮磷组分和水分含量,其提升率变幅范围为16.4%-81.6%。3)AM真菌接种引起土壤微生物量碳和氮含量变化显著影响碳矿化,其对碳矿化速率的解释量大小为:CE(93.3%、87.6%)>RI(86.4%、80.7%)>FM(81.1%、75.1%)>CK(65.2%、67.6%)。4)AM真菌处理下碳矿化速率与根系侵染率、菌丝侵染密度、易氧化碳、有机碳、全磷、全氮和含水率呈显著正相关,与容重和pH呈显著负相关;主成分结果表明,易氧化有机碳、微生物量碳氮、容重是土壤碳矿化速率的主要影响因子。因此,AM真菌共生主要通过改变碳组分、微生物量氮及土壤紧密度,进而促进云南石漠化土壤碳矿化速率。
中图分类号:
李瑞, 王邵军, 兰梦杰, 罗双, 夏佳慧, 杨胜秋, 解玲玲, 肖博, 郭晓飞, 王郑钧, 郭志鹏. 石漠化土壤碳矿速率对丛枝菌根真菌接种的响应[J]. 生态环境学报, 2024, 33(10): 1506-1515.
LI Rui, WANG Shaojun, LAN Mengjie, LUO Shuang, XIA Jiahui, YANG Shengqiu, XIE Lingling, XIAO Bo, GUO Xiaofei, WANG Zhengjun, GUO Zhipeng. Response of Soil Carbon Mineral Rate in Rocky Desertification to Arbuscular Mycorrhizal Fungi Inoculation[J]. Ecology and Environment, 2024, 33(10): 1506-1515.
图1 不同AM真菌接种处理下土壤碳矿化速率时间变化 不同大写字母表示同一处理不同月份之间存在显著差异,不同小写字母表示同1月不同处理之间存在显著差异(p<0.050);不同月份4种处理的样本量n=4。
Figure 1 Temporal variation of soil carbon mineralization rate under different AM fungal inoculation
图2 不同AM真菌接种处理下土壤碳矿化速率垂直变化 不同小写字母表示同一土层不同处理之间存在显著差异(p<0.050);不同土层4种处理的样本量n=4。
Figure 2 Vertical variation of soil carbon mineralization rate under different AM fungal inoculation treatments
处理 | df | 均方 | F | p |
---|---|---|---|---|
不同接种 | 3 | 186.89 | 232.39 | 0.004 |
不同月份 | 3 | 221.41 | 275.31 | 0.001 |
不同土层 | 1 | 90.592 | 112.65 | 0.003 |
不同接种×月份 | 9 | 17.768 | 22.094 | 0.002 |
不同接种×土层 | 3 | 4.867 | 6.052 | 0.006 |
不同月份×土层 | 3 | 105.95 | 131.75 | 0.004 |
不同接种×月份×土层 | 9 | 5.221 | 6.492 | 0.008 |
表1 接种处理、土层和月份对土壤碳矿化速率影响的方差分析
Table 1 Variance analysis for the effects of inoculation treatments, soil layers and months on carbon mineralization rate
处理 | df | 均方 | F | p |
---|---|---|---|---|
不同接种 | 3 | 186.89 | 232.39 | 0.004 |
不同月份 | 3 | 221.41 | 275.31 | 0.001 |
不同土层 | 1 | 90.592 | 112.65 | 0.003 |
不同接种×月份 | 9 | 17.768 | 22.094 | 0.002 |
不同接种×土层 | 3 | 4.867 | 6.052 | 0.006 |
不同月份×土层 | 3 | 105.95 | 131.75 | 0.004 |
不同接种×月份×土层 | 9 | 5.221 | 6.492 | 0.008 |
处理 | 0‒5 cm | 5‒10 cm | |||||
---|---|---|---|---|---|---|---|
回归方程 | R | p | 回归方程 | R | p | ||
CE | y=0.051x2+3.667x+2.130 | 0.972 | 0.010 | y=7.550x2+0.230x+4.190 | 0.893 | 0.010 | |
RI | y=2.555x2−6.912x+12.306 | 0.845 | 0.027 | y=4.012x2−3.487x+7.857 | 0.884 | 0.002 | |
FM | y=0.052x2+5.295x+0.772 | 0.824 | 0.002 | y=3.123x2−0.600x+5.032 | 0.799 | 0.010 | |
CK | y = −8.075x2+15.745x+2.366 | 0.745 | 0.009 | y= −3.460x2+10.145x+0.813 | 0.560 | 0.035 |
表2 AM菌种处理下土壤碳矿化速率与微生物量碳的关系
Table 2 Relationship of soil carbon mineralization rate with microbial biomass carbon under AM inoculation treatments
处理 | 0‒5 cm | 5‒10 cm | |||||
---|---|---|---|---|---|---|---|
回归方程 | R | p | 回归方程 | R | p | ||
CE | y=0.051x2+3.667x+2.130 | 0.972 | 0.010 | y=7.550x2+0.230x+4.190 | 0.893 | 0.010 | |
RI | y=2.555x2−6.912x+12.306 | 0.845 | 0.027 | y=4.012x2−3.487x+7.857 | 0.884 | 0.002 | |
FM | y=0.052x2+5.295x+0.772 | 0.824 | 0.002 | y=3.123x2−0.600x+5.032 | 0.799 | 0.010 | |
CK | y = −8.075x2+15.745x+2.366 | 0.745 | 0.009 | y= −3.460x2+10.145x+0.813 | 0.560 | 0.035 |
处理 | 0‒5 cm | 5‒10 cm | |||||
---|---|---|---|---|---|---|---|
回归方程 | R | p | 回归方程 | R | p | ||
CE | y= −0.002x2+0.617x−21.433 | 0.923 | 0.001 | y=0.002x2−0.007x+7.059 | 0.828 | 0.022 | |
RI | y= −0.001x2+0.370x−8.281 | 0.809 | 0.007 | y= −0.020x2+2.895x−89.177 | 0.806 | 0.004 | |
FM | y=0.013x2−0.699x+9.917 | 0.702 | 0.012 | y=0.001x2+0.389x−12.240 | 0.800 | 0.003 | |
CK | y=0.012x2−0.595x+7.195 | 0.687 | 0.030 | y=0.005x2−0.070x−0.635 | 0.665 | 0.040 |
表3 AM菌种处理下土壤碳矿化速率与微生物量氮的关系
Table 3 Relationship of soil carbon mineralization rate with microbial biomass nitrogen under AM inoculation treatments
处理 | 0‒5 cm | 5‒10 cm | |||||
---|---|---|---|---|---|---|---|
回归方程 | R | p | 回归方程 | R | p | ||
CE | y= −0.002x2+0.617x−21.433 | 0.923 | 0.001 | y=0.002x2−0.007x+7.059 | 0.828 | 0.022 | |
RI | y= −0.001x2+0.370x−8.281 | 0.809 | 0.007 | y= −0.020x2+2.895x−89.177 | 0.806 | 0.004 | |
FM | y=0.013x2−0.699x+9.917 | 0.702 | 0.012 | y=0.001x2+0.389x−12.240 | 0.800 | 0.003 | |
CK | y=0.012x2−0.595x+7.195 | 0.687 | 0.030 | y=0.005x2−0.070x−0.635 | 0.665 | 0.040 |
指标 | 不同接种处理 | |||
---|---|---|---|---|
CE | RI | FM | CK | |
pH | 7.42±0.09b | 7.61±0.04ab | 7.68±0.03ab | 7.72±0.01a |
wTOC/(g∙kg−1) | 17.43±0.03a | 16.94±0.49ab | 15.93±0.13b | 13.74±0.14c |
wROC/(g∙kg−1) | 7.36±0.59a | 6.44±0.10ab | 5.83±0.03b | 4.01±0.26c |
wMBC/(g∙kg−1) | 2.19±0.08a | 1.71±0.52b | 1.47±0.19b | 0.98±0.10c |
wTN/(g∙kg−1) | 3.83±0.21a | 2.91±0.07b | 2.73±0.04b | 1.96±0.05c |
wHN/(mg∙kg−1) | 76.15±0.42a | 59.44±3.28b | 51.95±0.89b | 35.72±1.82c |
wNN/(mg∙kg−1) | 10.36±0.10a | 8.93±0.38b | 8.06±0.20b | 3.76±0.46c |
wAN/(mg∙kg−1) | 6.08±0.41a | 5.15±0.07b | 4.53±0.40b | 2.96±0.47c |
wMBN/(mg∙kg−1) | 61.74±0.48a | 60.40±0.05a | 56.34±0.73b | 49.64±0.30c |
wTP/(g∙kg−1) | 1.75±0.05a | 1.68±0.01a | 1.47±0.06b | 1.13±0.04c |
wAP/(mg∙kg−1) | 57.96±2.18a | 52.20±1.22b | 35.75±0.81c | 33.82±0.56c |
wSW/(%) | 11.91±0.81a | 9.69±1.07ab | 7.14±0.26bc | 4.77±0.11c |
wBD/(g∙cm−3) | 1.50±0.08b | 1.61±0.02ab | 1.51±0.01b | 1.69±0.01a |
wRC/(%) | 91.22±4.14a | 75.21±3.41b | 56.43±2.82c | 35.32±1.90d |
wHLD/(m∙g−1) | 3.96±0.62a | 2.85±0.40b | 2.34±0.31c | 1.84±0.11d |
表4 不同AM真菌接种下侵染率、菌丝侵染密度及土壤性质变化
Table 4 Changes in root colonization, hyphal length density, and soil properties under AM inoculation treatments
指标 | 不同接种处理 | |||
---|---|---|---|---|
CE | RI | FM | CK | |
pH | 7.42±0.09b | 7.61±0.04ab | 7.68±0.03ab | 7.72±0.01a |
wTOC/(g∙kg−1) | 17.43±0.03a | 16.94±0.49ab | 15.93±0.13b | 13.74±0.14c |
wROC/(g∙kg−1) | 7.36±0.59a | 6.44±0.10ab | 5.83±0.03b | 4.01±0.26c |
wMBC/(g∙kg−1) | 2.19±0.08a | 1.71±0.52b | 1.47±0.19b | 0.98±0.10c |
wTN/(g∙kg−1) | 3.83±0.21a | 2.91±0.07b | 2.73±0.04b | 1.96±0.05c |
wHN/(mg∙kg−1) | 76.15±0.42a | 59.44±3.28b | 51.95±0.89b | 35.72±1.82c |
wNN/(mg∙kg−1) | 10.36±0.10a | 8.93±0.38b | 8.06±0.20b | 3.76±0.46c |
wAN/(mg∙kg−1) | 6.08±0.41a | 5.15±0.07b | 4.53±0.40b | 2.96±0.47c |
wMBN/(mg∙kg−1) | 61.74±0.48a | 60.40±0.05a | 56.34±0.73b | 49.64±0.30c |
wTP/(g∙kg−1) | 1.75±0.05a | 1.68±0.01a | 1.47±0.06b | 1.13±0.04c |
wAP/(mg∙kg−1) | 57.96±2.18a | 52.20±1.22b | 35.75±0.81c | 33.82±0.56c |
wSW/(%) | 11.91±0.81a | 9.69±1.07ab | 7.14±0.26bc | 4.77±0.11c |
wBD/(g∙cm−3) | 1.50±0.08b | 1.61±0.02ab | 1.51±0.01b | 1.69±0.01a |
wRC/(%) | 91.22±4.14a | 75.21±3.41b | 56.43±2.82c | 35.32±1.90d |
wHLD/(m∙g−1) | 3.96±0.62a | 2.85±0.40b | 2.34±0.31c | 1.84±0.11d |
图3 土壤碳矿化速率与土壤性质、真菌侵染状况的相关性分析 *表示p<0.050,**表示p<0.010;蓝色表示负相关,红色表示正相关,颜色越深表示相关性越强。不同指标的样本量n=16
Figure 3 Correlation analysis of soil carbon mineralization rate with soil properties and fungal infestation status
图4 土壤性质、真菌侵染状况对碳矿化速率影响的主成分分析 “○”代表CE菌种处理;“△”代表RI菌种处理;“□”代表FM菌种处理;“◇”代表CK不接种菌种处理。不同处理的样本量n=4
Figure 4 Principal component analysis showing the effect of soil properties and fungal infestation status on carbon mineralization rate
[1] | ALMALIKI S, EBREESUM H, 2020. Changes in soil carbon mineralization, soil microbes, roots density and soil structure following the application of the arbuscular mycorrhizal fungi and green algae in the arid saline soil[J]. Rhizosphere, 14: 2452-2198. |
[2] |
BARBARA D, S A P, HENK D, et al., 2010. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(24):10938-10942.
DOI PMID |
[3] | BARNARD R L, OSBORNE C A, FIRESTONE M K, 2013. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The Isme Journal, 7(11): 2229-2241. |
[4] | CONTIN M, CORCIMARU S, NOBILI D M, et al., 2000. Temperature changes and the ATP concentration of the soil microbial biomass[J]. Soil Biology and Biochemistry, 32(8): 1219-1225. |
[5] | CAMENZIND T, RILLIG M C, 2013. Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil[J]. Soil Biology and Biochemistry, 64: 96-102. |
[6] |
CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al., 2014. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 20(7): 2356-2367.
DOI PMID |
[7] |
CHAO L, WULF A, JOHANNES L, et al., 2019. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 25(11): 3578-3590.
DOI PMID |
[8] | FROST S M, STAH D D, WILLIANMS S E, 2001. Long-term reestablishment of arbuscular mycorrhizal disturbed semiarid surface mine soil[J]. Arid Land Research and Management, 15(1): 3-12. |
[9] | GRELET G A, DAVID J, ERIC P, et al., 2009. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas[J]. The New Phytologist, 182(2): 359-366. |
[10] | HEINZE S, RAUPP J, JOERGENSEN G R, 2010. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture[J]. Plant and Soil, 328(1-2): 203-215. |
[11] | HAWKES C V, KIVLIN S N, ROCCA J D, et al., 2011. Fungal community responses to precipitation[J]. Global Change Biology, 17(4): 1637-1645. |
[12] | JOHANNERS R, ERLAND B, BROOKES P C, et al., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The Isme Journal, 4(10): 1340-1351. |
[13] | JUAREZ S, NUNAN N, DUDAY A C, et al., 2013. Soil carbon mineralisation responses to alterations of microbial diversity and soil structure[J]. Biology and Fertility of Soils: Cooperating Journal of the International Society of Soil Science, 49(7): 939-948. |
[14] | KLIRONOMOS N J, 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi[J]. Ecology, 84(9): 2292-2301. |
[15] | LINN D M, DORAN J W, 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils[J]. Soil Science Society of America Journal, 48(6): 1267-1272. |
[16] |
LIANG C, DAS K C, MCCLENDON R W, 2003. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend[J]. Bioresource Technology, 86(2): 131-137.
PMID |
[17] | POLL C, INGWERSEN J, STEMMER M, et al., 2006. Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere[J]. European Journal of Soil Science, 57(4): 583-595. |
[18] | PIETRI A J, BROOKES P, 2009. Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil[J]. Soil Biology and Biochemistry, 41(7): 1396-1405. |
[19] |
PHILLIPS R P, BRZOSTEK E, MIDGLEY M G, 2013. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests[J]. New Phytologist, 199(1): 41-51.
DOI PMID |
[20] | REN C J, CHEN J, LU X J, et al., 2017. Responses of soil total microbial biomass and community compositions to rainfall reductions[J]. Soil Biology and Biochemistry, 116: 4-10. |
[21] | SIX J, BOSSUYT H, DEGRYZE S, et al., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 79(1): 7-31. |
[22] | SINGH R, BEHL R, JAIN P, et al., 2007. Performance and gene effects for root characters and micronutrient uptake in wheat inoculated with arbuscular mycorrhizal fungi and[J]. Acta Agronomica Hungarica, 55(3): 325-330. |
[23] | SPONSELLER A R, 2007. Precipitation pulses and soil CO2 flux in a sonoran desert ecosystem[J]. Global Change Biology, 13(2): 426-436. |
[24] | SMITH E J, READ D, 2009. Mycorrhizal symbiosis (third Edition)[J]. Soil Science Society of America Journal, 73(2): 694. |
[25] |
STEFANO M, SCHIMEL P J, AMILCARE P, 2012. Responses of soil microbial communities to water stress: Results from a meta-analysis[J]. Ecology, 93(4): 930-938.
DOI PMID |
[26] | TEOMAN G, DILEK G, 2021. Changes in carbon stocks of soil and forest floor in black pine plantations in turkey[J]. Journal of Forestry Research, 32(1): 339-347. |
[27] | WANG C, MORRISSEY E M, MAU R L, et al., 2021. The temperature sensitivity of soil: Microbial biodiversity, growth, and carbon mineralization[J]. The Isme Journal, 15(9): 2738-2747. |
[28] | 安丽芸, 2019. 微生物多样性及外加碳源对土壤碳矿化的影响[D]. 太原: 山西大学: 29-37. |
AN L Y, 2019. The effect of microbial diversity and carbon sources on soil mineralization[D]. Taiyuan: Shanxi University: 29-37. | |
[29] | 曹乾斌, 王邵军, 任玉连, 等, 2019. 蚂蚁筑巢对西双版纳热带森林土壤碳矿化动态的影响[J]. 应用生态学报, 30(12): 4231-4239. |
CAO Q B, WANG S J, REN Y L, et al., 2019. Effects of ant colonization on spatiotemporal variation of organic carbon mineralization in Xishuangbanna tropical forest soils[J]. Chinese Journal of Applied Ecology, 30(12): 4231-4239. | |
[30] | 陈果, 刘岳燕, 姚槐应, 等, 2006. 一种测定淹水土壤中微生物生物量碳的方法: 液氯熏蒸浸提-水浴法[J]. 土壤学报, 43(6): 981-988. |
CHEN G, LIU Y Y, YAO H Y, et al., 2006. A method for measuring microbial biomass C in waterlogged soil: Chlorineo form fumigation extraction- water bath method[J]. Acta Pedologica Sinica, 43(6): 981-988. | |
[31] | 楚海燕, 2019. 中亚热带森林转换对土壤团聚体中微生物群落结构及酶活性的影响[D]. 福州: 福建师范大学: 32-47. |
CHU H Y, 2019. Effects of forest conversion on microbial community structure and enzyme activities in soil aggregates in mid-subtropical China[D]. Fuzhou: Fujian Normal University: 32-47. | |
[32] | 段灏, 王磊, 曹湛波, 2016. 接种丛植菌根真菌对湿生植物氮磷吸收能力的影响[J]. 工业微生物, 46(6): 1-6. |
DUAN H, WANG L, CAO Z B, 2016. Effects of arbuscular mycorrhizal fungi on absorption of nitrogen and phosphorous in aquatic plants[J]. Industrial Microbiology, 46(6): 1-6. | |
[33] | 董星丰, 2023. 大兴安岭多年冻土区土壤碳矿化及微生物机制研究[D]. 哈尔滨: 哈尔滨师范大学: 50-114. |
DONG X F, 2023. Soil carbon mineralization and microbial mechanism in permafrost region of Great Hing’an Mountains[D]. Harbin: Harbin Normal University:50-114. | |
[34] |
鄂晓伟, 田野, 李晓凤, 等, 2019. 亚热带北缘次生阔叶林土壤性状和菌根真菌多样性随坡位的变化[J]. 生态环境学报, 28(4): 676-685.
DOI |
E X W, TIAN Y, LI X F, et al., 2019. Effects of slope position on soil properties and mycorrhiza fungi diversity in secondary broad-leaved forest in north rim of subtropical zone[J]. Ecology and Environmental Sciences, 28(4): 676-685. | |
[35] | 黄辉, 陈光水, 谢锦升, 等, 2008. 土壤微生物生物量碳及其影响因子研究进展[J]. 湖北林业科技 (4): 34-41. |
HUANG H, CHEN G S, XIE J S, et al., 2008. Advances on soil microbial biomass carbon and its effect factor[J]. Hubei Forestry Science and Technology (4): 34-41. | |
[36] | 焦盼盼, 2023. 水分变化对黄土高原典型土壤有机碳矿化影响的微生物作用机制[D]. 北京: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心): 82-117. |
JIAO P P, 2023. Mechanisms of microbial effects of water change on organic carbon mineralization of typical soil on the Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences (Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education):82-117. | |
[37] | 金文豪, 邵帅, 陈俊辉, 等, 2021. 不同类型菌根对土壤碳循环的影响差异研究进展[J]. 浙江农林大学学报, 38(5): 953-962. |
JIN W H, SHAO S, CHEN J H, et al., 2021. Research progress in the impact of different mycorrhizal types on soil carbon cycling[J]. Journal of Zhejiang Agriculture and Forestry University, 38(5): 953-962. | |
[38] | 康成芳, 宫渊波, 车明轩, 等, 2020. 川西高寒山地灌丛草甸不同海拔土壤有机碳矿化的季节动态[J]. 生态学报, 40(4): 1367-1375. |
KANG C F, GONG Y B, CHE M X, et al., 2020. Seasonal dynamics of soil organic carbon mineralization for alpine shrub meadow at different elevations, wester Sichuan[J]. Acta Ecologica Sinica, 40(4): 1367-1375. | |
[39] | 李晶晶, 2021. 氮添加对人工油松林土壤碳氮矿化过程及其微生物调控机制的影响[D]. 咸阳: 西北农林科技大学: 20-91. |
LI J J, 2021. Effects of nitrogen addition on soil carbon and nitrogen mineralization and microbial regulation mechanism in a Pinus tabulaeformis forest[D]. Xianyang: Northwest Agriculture and Forestry University: 20-91. | |
[40] |
李秀清, 李晓红, 2019. 鄱阳湖湿地不同植物群落土壤养分及微生物多样性研究[J]. 生态环境学报, 28(2): 385-394.
DOI |
LI X Q, LI X H, 2019. Variation of soil nutrients and microbial community diversity in the wetland of Poyang Lake[J]. Ecology and Environmental Sciences, 28(2): 385-394. | |
[41] | 刘方园, 2023. 氮添加和温度变化对土壤碳氮矿化及酶活性的影响研究[D]. 西安: 西安理工大学: 39-51. |
LIU F Y, 2023. Effects of nitrogen addition and temperature changes on soil carbon and nitrogen mineralization and enzyme activity[D]. Xi’an: Xi’an University of Technology: 39-51. | |
[42] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 166-185. |
LU R K, 2000. Methods for agricultural chemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press: 166-185. | |
[43] | 荣慧, 房焕, 张中彬, 等, 2022. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响[J]. 土壤学报, 59(2): 476-485. |
RONG H, FANG H, ZHANG Z B, et al., 2022. Effects of aggregate size distribution on soil pore structure and soil organic carbon mineralization[J]. Acta Pedologica Sinica, 59(2): 476-485. | |
[44] | 史学军, 潘剑君, 陈锦盈, 等, 2009. 不同类型凋落物对土壤有机碳矿化的影响[J]. 环境科学, 30(6): 1832-1837. |
SHI X J, PAN J J, CHEN J Y, et al., 2009. Effects of different types of litters on soil organic carbon mineralization[J]. Environmental Science, 30(6): 1832-1837. | |
[45] | 宋歌, 孙波, 教剑英, 2007. 测定土壤硝态氮的紫外分光光度法与其他方法的比较[J]. 土壤学报, 44(2): 288-293. |
SONG G, SUN B, JIAO J Y, 2007. Comparison between UV spectrophotometry and other methods for determining soil nitrate nitrogen[J]. Acta Pedologica Sinica, 44(2): 288-293. | |
[46] | 孙吉庆, 刘润进, 李敏, 2012. 丛枝菌根真菌提高植物抗逆性的效应及其机制研究进展[J]. 植物生理学报, 48(9): 845-852. |
SUN J Q, LIU R J, LI M, 2012. Advances in the study of increasing plant stress resistance and mechanisms by arbuscular mycorrhizal fungi[J]. Plant Physiology Journal, 48(9): 845-852. | |
[47] |
王邵军, 2020. “植物-土壤”相互反馈的关键生态学问题: 格局、过程与机制[J]. 南京林业大学学报(自然科学版), 44(2): 1-9.
DOI |
WANG S J, 2020. Key ecological issues in plant-soil feedback: Pattern, process and mechanism[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 44(2): 1-9. | |
[48] | 王邵军, 李霁航, 陆梅, 等, 2019. “AM真菌-根系-土壤” 耦合作用机制研究进展[J]. 中南林业科技大学学报, 39(12): 1-9. |
WANG S J, LI J H, LU M, et al., 2019. Advance on the mechanism of coupling interactions among AM fungi, roots and soils[J]. Journal of Central South University of Forestry and Technology, 39(12): 1-9. | |
[49] |
王邵军, 左倩倩, 曹乾斌, 等, 2022. 云南寻甸石漠化土壤易氧化碳对丛枝菌根真菌共生的响应[J]. 南京林业大学学报(自然科学版), 46(1): 7-14.
DOI |
WANG S J, ZUO Q Q, CAO Q B, et al., 2022. Response of readily oxidized carbon to arbuscular mycorrhizal (AM) fungi inoculations in rocky desert soil, Xundian, Yunnan Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 46(1): 7-14. | |
[50] | 王星, 孙沙沙, 王桂红, 等, 2018. 土壤水溶性有机碳的高锰酸钾氧化比色法测定研究[J]. 江苏农业科学, 46(16): 246-249. |
WANG X, SUN S S, WANG G H, et al., 2018. Study on the determination of water-soluble organic carbon in soil by potassium permanganate oxidation colorimetric method[J]. Jangsu Agricultural Sciences, 46(16): 246-249. | |
[51] | 汪欣, 向兆, 李策, 等, 2020. 全自动凯氏定氮仪测定土壤全氮含量方法的优化探索[J]. 山东农业大学学报(自然科学版), 51(3): 438-440, 446. |
WANG X, XIANG Z, LI C, et al., 2020. Optimization of the method for determination of total nitrogen in soil by automatic kjeldahl apparatus[J]. Journal of Shandong Agricultural University (Natural Science Edition), 51(3): 438-440, 446. | |
[52] | 肖孔操, 2015. 土壤不同初始pH条件下外源植物物料碳氮矿化与碱度释放特征研究[D]. 杭州: 浙江大学: 34-45. |
XIAO K C, 2015. Carbon and nitrogen mineralization and alkalinity release following application of plant materials to acid soils differing in initial pH[D]. Hangzhou: Zhejiang University: 34-45. | |
[53] | 解玲玲, 王邵军, 肖博, 等, 2023. 土壤碳库积累与分配对热带森林恢复的响应[J]. 生态学报, 43(23): 9877-9890. |
XIE L L, WANG S J, XIAO B, et al., 2023. Responses of soil carbon component accumulation and allocation to tropical forest restoration[J]. Acta Ecologica Sinica, 43(23): 9877-9890. | |
[54] | 许华, 何明珠, 唐亮, 等, 2020. 荒漠土壤微生物量碳、氮变化对降水的响应[J]. 生态学报, 40(4): 1295-1304. |
XU H, HE M Z, TANG L, et al., 2020. Response of changes of microbial biomass carbon and nitrogen to precipitation in desert soil[J]. Acta Ecologica Sinica, 40(4): 1295-1304. | |
[55] | 许淼平, 任成杰, 张伟, 等, 2018. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 29(7): 2445-2454. |
XU M P, REN C J, ZHANG W, et al., 2018. Responses mechanism of C꞉N꞉P stoichiometry of soil microbial biomass and soil enzymes to climate change[J]. Chinese Journal of Applied Ecology, 29(7): 2445-2454. | |
[56] | 许展颖, 陈小梅, 张雪莹, 等, 2023. 短期降水控制对鼎湖山南亚热带季风林土壤有机碳及官能团碳组分的影响[J]. 生态科学, 42(5): 223-230. |
XU Z Y, CHEN X M, ZHANG X Y, et al., 2023. Effects of short-term precipitation manipulation on soil organic carbon and organic carbon groups in the south subtropical monsoon forest of Dinghushan[J]. Ecological Science, 42(5): 223-230. | |
[57] | 杨继松, 刘景双, 孙丽娜, 2008. 温度、水分对湿地土壤有机碳矿化的影响[J]. 生态学杂志, 27(1): 38-42. |
YANG J S, LIU J S, SUN L N, 2008. Effects of temperature and soil moisture on wetland soil organic carbon mineralization[J]. Chinese Journal of Ecology, 27(1): 38-42. | |
[58] | 尹宁宁, 王丽萍, 2014. 复垦基质中有机碳和丛植菌根真菌对团聚体形成的影响[J]. 河北师范大学学报(自然科学版), 38(5): 518-524. |
YIN N N, WANG L P, 2014. The effect of organic carbon and arbuscular mycorrhizal fungi on aggregate formation in reclaimed soil in mining area[J]. Journal of Hebei Normal University (Natural Science Edition), 38(5): 518-524. | |
[59] | 殷士学, 1993. 土壤微生物生物量及其与养分循环关系的研究进展[J]. 土壤学进展 (4): 1-8. |
YIN S X, 1993. Research progress on soil microbial biomass and its relationship with nutrient cycling[J]. Advances in Soil Science (4): 1-8. | |
[60] | 喻彩丽, 李亮, 张贝, 等, 2023. 丛枝菌根真菌和解磷菌对青梅根系发育、磷吸收及土壤磷有效性的影响[J]. 江苏农业科学, 51(17): 240-248. |
YU C L, LI L, ZHANG B, et al., 2023. Arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria on root development and phosphorus absorption of green plum and the effects of soil phosphorus availability[J]. Jiangsu Agricultural Sciences, 51(17): 240-248. | |
[61] | 张丹丹, 2018. 模拟增温对土壤有机碳矿化及腐殖质组成的影响[D]. 长春: 吉林农业大学: 10-11. |
ZHANG D D, 2018. Effects of experimental warming on organic carbon mineralization and humus composition of soils[D]. Changchun: Jilin Agricultural University: 10-11. | |
[62] | 张林海, 曾从盛, 仝川, 2011. 生源要素有效性及生物因子对湿地土壤碳矿化的影响[J]. 生态学报, 31(18): 5387-5395. |
ZHANG L H, ZENG C S, TONG C, 2011. A review on the effects of biogenic elements and biological factors on wetland soil carbon mineralization[J]. Acta Ecologica Sinica, 31(18): 5387-5395. | |
[63] |
左倩倩, 王邵军, 陈闽昆, 等, 2020. 土壤碳矿化对西双版纳热带森林恢复演替的响应[J]. 生态环境学报, 29(7): 1318-1325.
DOI |
ZUO Q Q, WANG S J, CHEN M K, et al., 2020. Response of soil carbon mineralization to restoration succession of Xishuangbanna tropical forests[J]. Ecology and Environmental Sciences, 29(7): 1318-1325. | |
[64] | 张昆凤, 王邵军, 张路路, 等, 2023. 土壤细菌呼吸对西双版纳热带森林恢复的响应[J]. 生态学报, 43(10): 4142-4153. |
ZHANG K F, WANG S J, ZHANG L L, et al., 2023. Response of soil bacterial respiration to tropical forest restoration in Xishuangbanna, China[J]. Acta Ecologica Sinica, 43(10): 4142-4153. | |
[65] | 赵爽, 王邵军, 杨波, 等, 2022. 接种丛枝菌根真菌对云南石漠化土壤呼吸的影响[J]. 生态学报, 42(21): 8830-8838. |
ZHAO S, WANG S J, YANG B, et al., 2022. Effects of arbuscular mycorrhiza fungi inoculations on soil respiration in Yunnan rocky desertification habitat[J]. Acta Ecologica Sinica, 42(21): 8830-8838. | |
[66] | 郑智超, 2023. 呼玛河流域多年冻土区森林和湿地土壤有机碳矿化及其温度敏感性研究[D]. 哈尔滨: 哈尔滨师范大学: 1-45. |
ZHENG Z C, 2023. Study on soil organic carbon mineralization and temperature sensitivity of forest and wetland in permafrost regions of the Huma River Basin[D]. Harbin: Harbin Normal University:1-45. | |
[67] | 朱玉帆, 刘伟超, 李佳欣, 等, 2023. 黄土丘陵区人工刺槐林土壤有机碳矿化特征及其与有机碳组分的关系[J]. 环境科学, 44(1): 444-451. |
ZHU Y F, LIU W C, LI J X, et al., 2023. Mineralization characteristics of soil organic carbon and its relationship with organic carbon components in artificial Robinia pseudoacacia forest in loess hilly region[J]. Environmental Science, 44(1): 444-451. | |
[68] |
周祉蕴, 王奕钧, 杨艳丽, 等, 2024. 脉冲降水和凋落物对温性草原土壤碳矿化激发效应的影响[J]. 草地学报, 32(3): 879-888.
DOI |
ZHOU Z Y, WANG Y J, YANG Y L, et al., 2024. Influence of pulsed precipitation and litter on the priming effects of soil carbon mineralization in temperate steppe[J]. Acta Agrestia Sinica, 32(3): 879-888. |
[1] | 李彦林, 陈杨洋, 杨霜溶, 刘菊梅. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371. |
[2] | 罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340. |
[3] | 林丹丹, 毕华兴, 赵丹阳, 管凝, 韩金丹, 郭艳杰. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征[J]. 生态环境学报, 2024, 33(3): 379-388. |
[4] | 张桂芹, 王云博, 杜琪玥, 闫怀忠, 李思源, 石敬华, 刘仕杰, 朱文祺, 孙友敏. 济南市柴油型移动源排放颗粒物中碳组分特征和排放量估算[J]. 生态环境学报, 2024, 33(3): 408-417. |
[5] | 常博然, 陈茹岚, 王彪, 蓝天, 邓琳, 薛会英. 藏东南折拉山不同林分类型土壤有机碳及其组分分布特征[J]. 生态环境学报, 2024, 33(10): 1495-1505. |
[6] | 吴雲鹏, 李艳梅, 胡元泽, 王妍, 车光欣, 刘芳君. 不同光伏阵列处理对滇中石漠化地区环境因子及细菌群落组成和多样性的影响[J]. 生态环境学报, 2024, 33(10): 1570-1579. |
[7] | 王郑钧, 王邵军, 肖博, 解玲玲, 郭志鹏, 张昆凤, 张路路, 樊宇翔, 郭晓飞, 罗双, 夏佳慧, 李瑞, 杨胜秋, 兰梦杰. 西双版纳热带森林土壤有机碳积累-分配动态对蚂蚁筑巢活动的响应[J]. 生态环境学报, 2024, 33(1): 35-44. |
[8] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[9] | 刘晗, 王萍, 孙鲁沅, 秦文婧, 陈晓芬, 陈金, 周国朋, 梁婷, 刘佳, 李燕丽. 种植冬绿肥对红壤幼龄橘园土壤微生物量碳、氮和酶活的影响[J]. 生态环境学报, 2023, 32(9): 1623-1631. |
[10] | 徐梓津, 张雪松, 陈明曼. 山地岩溶区生态系统服务时空演变特征分析——以贵州省为例[J]. 生态环境学报, 2023, 32(7): 1196-1206. |
[11] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[12] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[13] | 张怀成, 韩红, 王在峰, 韩立钊, 刘克, 张桂芹, 范晶, 魏小锋. 济南市城市扬尘的微观形貌和化学组分特征分析[J]. 生态环境学报, 2023, 32(3): 545-555. |
[14] | 秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731. |
[15] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||