生态环境学报 ›› 2023, Vol. 32 ›› Issue (10): 1842-1853.DOI: 10.16258/j.cnki.1674-5906.2023.10.013
侯冬梅1,2(), 张兰1,2, 李春成1,2, 陈露童1,2, 王盼盼1,2, 邹建平1,2,*(
)
收稿日期:
2023-07-27
出版日期:
2023-10-18
发布日期:
2024-01-16
通讯作者:
*邹建平。E-mail: zjp_112@126.com作者简介:
侯冬梅(1984年生),女,讲师,博士,主要从事重金属及有机污染物的生物处理技术研究。E-mail: hou_dong_mei@126.com
基金资助:
HOU Dongmei1,2(), ZHANG Lan1,2, LI Chuncheng1,2, CHEN Lutong1,2, WANG Panpan1,2, ZOU Jianping1,2,*(
)
Received:
2023-07-27
Online:
2023-10-18
Published:
2024-01-16
摘要:
锑作为一种强致畸致癌的重金属元素,广泛存在于自然水体环境之中,对人体健康和生态环境造成了一定程度的威胁。利用壳聚糖包埋生物质铁锰氧化物,制备出一种绿色环保、循环利用率高的生物质吸附材料(CH-BFMO)。采用批量吸附实验研究了该复合材料对水体中三价锑和五价锑的吸附性能。基于动力学和吸附等温线分析,并借助FTIR和XPS等表征方法,探究了CH-BFMO对水体中Sb(III)和Sb(V)的吸附机制。其结果表明:负载壳聚糖后,CH-BFMO的形貌结构并未发生明显改变,仍为无定型结构,但其比表面积由79.2 m2∙g−1增加到91.3 m2∙g−1,更加有利于对物质的吸附。批次实验表明,CH-BFMO对Sb(III)和Sb(V)的最大吸附容量分别为37.6 mg∙L−1(pH 4)和24.8 mg∙L−1(pH 6),二者的吸附动力学过程更接近准二级动力学方程,说明CH-BFMO对Sb(III)和Sb(V)均以化学吸附为主。Sb(III)和Sb(V)的吸附等温曲线都符合Langmuir等温模型,说明该过程均为单层吸附。FTIR及XPS分析表明:CH-BFMO表面含有的丰富的含氧官能团(C=O、C=C、O-H),有利于CH-BFMO对Sb(III)和Sb(V)的吸附去除。对于Sb(V)来说,主要是依靠与CH-BFMO发生化学吸附而实现去除。而对于Sb(III)的来说,其去除过程则可能涉及化学吸附和氧化的共同作用。SO42−、CO32−对CH-BFMO吸附Sb(III)和Sb(V)的影响较小,但PO43−会抑制材料对Sb(III)和Sb(V)的吸附去除。5次循环后,CH-BFMO对Sb(III)与Sb(V)的吸附量仍能保持在92%以上,说明CH-BFMO循环性能优良,是一种潜在的去除水体中锑污染的吸附材料。
中图分类号:
侯冬梅, 张兰, 李春成, 陈露童, 王盼盼, 邹建平. 壳聚糖-生物铁锰氧化物去除水体中锑的性能及机理研究[J]. 生态环境学报, 2023, 32(10): 1842-1853.
HOU Dongmei, ZHANG Lan, LI Chuncheng, CHEN Lutong, WANG Panpan, ZOU Jianping. Enhanced Removal of Sb(III) and Sb(V) Using Biological Iron and Manganese Oxides Modified Chitosan: Performance and Mechanism Study[J]. Ecology and Environment, 2023, 32(10): 1842-1853.
样品 | 比表面积/ (m2∙g−1) | 孔体积/ (cm3∙g−1) | 平均孔径/ (r∙nm−1) |
---|---|---|---|
BFMO | 79.2 | 0.15 | 3.12 |
CH-BFMO | 91.3 | 0.20 | 3.54 |
表1 负载前后生物铁锰氧化物的比表面参数对比
Table 1 Specific surface area parameters of BFMO and CH-BFMO
样品 | 比表面积/ (m2∙g−1) | 孔体积/ (cm3∙g−1) | 平均孔径/ (r∙nm−1) |
---|---|---|---|
BFMO | 79.2 | 0.15 | 3.12 |
CH-BFMO | 91.3 | 0.20 | 3.54 |
[1] |
ANWAR Y, 2018. Antibacterial and lead ions adsorption characteristics of chitosan-manganese dioxide bionanocomposite[J]. International Journal of Biological Macromolecules, 111: 1140-1145.
DOI PMID |
[2] |
CHENG M S, FANG Y, LI H P, et al., 2022. Review of recently used adsorbents for antimony removal from contaminated water[J]. Environmental Science and Pollution Research, 29(18): 26021-26044.
DOI |
[3] | DUAN S X, LI J X, LIU X, et al., 2016. HF-free synthesis of nanoscale metal-organic framework NMIL-100(Fe) as an efficient dye adsorbent[J]. ACS Sustainable Chemistry & Engineering, 4(6): 3368-3378. |
[4] |
FU L, SHOZUGAWA K, MATSUO M, 2018. Oxidation of antimony (III) in soil by manganese (IV) oxide using X-ray absorption fine structure[J]. Journal of Environmental Sciences, 73: 31-37.
DOI PMID |
[5] | GUO W J, FU Z Y, WANG H, et al., 2018. Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan[J]. China. Microchemical Journal, 137: 181-189. |
[6] |
GUO X J, WU Z J, HE M C, et al., 2014. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure[J]. Journal of Hazardous Materials, 276: 339-345.
DOI PMID |
[7] |
IKRAM M, SHUJAIT S, HAIDER A, et al., 2022. Molybdenum and chitosan-doped MnO2 nanostructures used as dye degrader and antibacterial agent[J]. Applied Nanoscience, 12: 3909-3924.
DOI |
[8] |
LAI L, LIU X T, REN W B, et al., 2023. Efficient removal of Sb(III) from water using β-FeOOH-modified biochar: Synthesis, performance and mechanism[J]. Chemosphere, 311(Part 1): 137057.
DOI URL |
[9] |
LEUZ A K, JOHNSON C A, 2005. Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 69(5): 1165-1172.
DOI URL |
[10] |
LUO J M, LUO X B, CRITTENDEN J, et al., 2015. Removal of antimonite(Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2)[J]. Environmental Science and Technology, 49(18): 11115-11124.
DOI URL |
[11] |
MANYANGADZE M, CHIKURUWO N H M, NARSAIAH T B, et al., 2020. Enhancing adsorption capacity of nano-adsorbents via surface modification: A review[J]. South African Journal of Chemical Engineering, 31: 25-32.
DOI URL |
[12] |
NAGA JYOTHI M S V, HARAFAN A, SEN GUPTA S, et al., 2022. Chitosan immobilised granular FeOOH-MnxOy bimetal-oxides nanocomposite for the adsorptive removal of lead from water[J]. Journal of Environmental Chemical Engineering, 10(2): 107353.
DOI URL |
[13] |
NUNDY S, GHOSH A, NATH R, et al., 2021. Reduced graphene oxide (rGO) aerogel: Efficient adsorbent for the elimination of antimony (III) and (V) from wastewater[J]. Journal of Hazardous Materials, 420: 126554.
DOI URL |
[14] |
PENG L, XU Y, ZHOU F, et al., 2016. Enhanced removal of Cd(II) by poly(acrylamide-co-sodium acrylate) water-retaining agent incorporated nano hydrous manganese oxide[J]. Materials and Design, 96: 195-202.
DOI URL |
[15] |
PENG Y Z, LUO L, LUO S, et al., 2021. Efficient removal of antimony(III) in aqueous phase by nano-Fe3O4 modified high-iron red mud: Study on its performance and mechanism[J]. Water, 13(6): 809.
DOI URL |
[16] |
TU Y H, REN L F, LIN Y X, et al., 2020. Adsorption of antimonite and antimonate from aqueous solution using modified polyacrylonitrile with an ultrahigh percentage of amidoxime groups[J]. Journal of Hazardous Materials, 388: 121997.
DOI URL |
[17] |
VAKILI M, DENG S, CAGNETTA G, et al., 2019. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review[J]. Separation and Purification Technology, 224: 373-387.
DOI URL |
[18] |
WANG L, WANG J Y, WANG Z X, et al., 2019. Synthesis of Ce-doped magnetic biochar for effective Sb(V) removal: Performance and mechanism[J]. Powder Technology, 345: 501-508.
DOI URL |
[19] |
WANG X Q, HE M C, LIN C Y, et al., 2012. Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite[J]. Geochemistry, 72(Supplement 4): 41-47.
DOI URL |
[20] |
WANG Y Q, KONG L H, HE M C, et al., 2023. Mechanistic insights into Sb(III) and Fe(II) co-oxidation by oxygen and hydrogen peroxide: Dominant reactive oxygen species and roles of organic ligands[J]. Water Research, 242(20): 120296.
DOI URL |
[21] |
XIAO F F, CHENG J H, CAO W, et al., 2019. Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars[J]. Journal of Colloid and Interface Science, 540: 579-584.
DOI PMID |
[22] |
XIE Y, LI P Y, ZENG Y, et al., 2018. Thermally treated fungal manganese oxides for bisphenol A degradation using sulfate radicals[J]. Chemical Engineering Journal, 335: 728-736.
DOI URL |
[23] |
XU A L, SUN X, FAN S Y, et al., 2023a. Bio-FeMnOx integrated carbonaceous gas-diffusion cathode for the efficient degradation of ofloxacin by heterogeneous electro-Fenton process[J]. Separation and Purification Technology, 312: 123348.
DOI URL |
[24] |
XU R, LI Q, NAN X L, et al., 2022. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms[J]. Journal of Hazardous Materials, 422: 126821.
DOI URL |
[25] |
XU Y H, OHKI A, MAEDA S, 2001. Adsorption and removal of antimony from aqueous solution by an activated Alumina: 1. Adsorption capacity of adsorbent and effect of process variables[J]. Toxicological and Environmental Chemistry, 80(3-4): 133-144.
DOI URL |
[26] |
XU Z B, SUN M Z, XU X Y, et al., 2023b. Electron donation of Fe-Mn biochar for chromium(VI) immobilization: Key roles of embedded zero-valent iron clusters within iron-manganese oxide[J]. Journal of Hazardous Materials, 456: 131632.
DOI URL |
[27] |
YAN L, SONG J Y, CHAN T S, et al., 2017. Insights into antimony adsorption on {001} TiO2: XAFS and DFT Study[J]. Environmental Science & Technology, 51(11): 6335-6341.
DOI URL |
[28] |
YANG K L, LIU Y L, LI Y Z, et al., 2019. Applications and characteristics of Fe-Mn binary oxides for Sb(V) removal in textile wastewater: Selective adsorption and the fixed-bed column study[J]. Chemosphere, 232: 254-263.
DOI PMID |
[29] |
YANG K L, ZHOU J S, LOU Z M, et al., 2018. Removal of Sb(V) from aqueous solutions using Fe-Mn binary oxides: The influence of iron oxides forms and the role of manganese oxides[J]. Chemical Engineering Journal, 354: 577-588.
DOI URL |
[30] | YUAN M, GU Z L, MINALE M, et al., 2022. Simultaneous adsorption and oxidation of Sb(III) from water by the pH-sensitive superabsorbent polymer hydrogel incorporated with Fe-Mn binary oxides composite[J]. Journal of Hazardous Materials, 423(Part A): 127013. |
[31] |
ZHANG J, DENG R J, REN B Z, et al., 2019. Preparation of a novel Fe3O4/HCO composite adsorbent and the mechanism for the removal of antimony (III) from aqueous solution[J]. Scientific Reports, 9: 13021.
DOI |
[32] | ZHAO X X, XIE Z M, LI Y W, et al., 2022. Synergy of Fe and biogenic Mn oxide components mediated by a newly isolated indigenous bacterium to enhance As(III/V) immobilization in groundwater[J]. Applied Geochemistry, 140: 105266. |
[33] | 蔡维炯, 曹长春, 陈朋铭, 2020. 覆铁砂对锑的吸附性能研究[J]. 广东化工, 47(21): 13-14. |
CAI W J, CAI C C, CHEN P M, 2020. Study on adsorption of Sb(III) by iron oxide coated sand[J]. Guangdong Chemical Industry, 47(21): 13-14. | |
[34] | 陈元铉, 2022. 零价锰及零价锰铁复合材料对水中锑的去除研究[D]. 广州: 广州大学:36-57. |
CHEN Y X, 2022. The study of nanoscale zerovalent manganese and zerovalent manganese-iron composite remove antimony from water[D]. Guangzhou: Guangzhou University:36-57. | |
[35] | 黄嘉慧, 2018. 铁氧化物的改性与制备及其对重金属锑(III)的吸附研究[D]. 上海: 东华大学:29-31. |
HUANG J H, 2018. The modification and preparation of iron-based oxides and its application for the adsorption of heavy metal antimony(III)[D]. Shanghai: Donghua University:29-31. | |
[36] | 邓仁健, 陈依琳, 张俊, 等, 2022. HCO-(Fe3O4)x复合吸附剂吸附去除Sb(III)和Sb(V)的差异及机理[J]. 中国有色金属学报, 32(5): 1430-1443. |
DENG R J, CHEN Y L, ZHANG J, et al., 2022. Difference and mechanism of Sb(III) and Sb(V) adsorption and removal by HCO-(Fe3O4)x[J]. The Chinese Journal of Nonferrous Metals, 32(5): 1430-1443. | |
[37] | 何扬洋, 王刚, 罗仕成, 等, 2023. 二硫代羧基化小麦秸秆对水中Cr(VI)的吸附性能及机理[J]. 环境科学学报, 43(6): 366-379. |
HE Y Y, WANG G, LUO S C, et al., 2023. Adsorption performance and mechanism of dithiocarboxylated wheat straw to Cr(VI) in water[J]. Acta Scientiae Circumstantiae, 43(6): 366-379. | |
[38] |
孔天乐, 孙晓旭, 孙蔚旻, 2020. 锑和砷对固氮菌的毒性效应及其机制研究[J]. 生态环境学报, 29(3): 589-595.
DOI |
KONG T L, SUN X X, SUN W M, 2020. Toxicity and mechanism of antimony and arsenic on Azotobacter[J]. Ecology and Environmental Sciences, 29(3): 589-595. | |
[39] | 冉钟吕, 苍岩, 戴晨, 等, 2022. 生物炭负载铁锰氧化物吸附去除Cr(Ⅵ)的试验研究[J]. 工业用水与废水, 53(4): 28-33. |
RAN Z L, CANG Y, DAI C, et al., 2022. Experimental study on removal of Cr(VI) by adsorption of iron and manganese oxides supported by biochar[J]. Industrial Water and Waste Water, 53(4): 28-33. | |
[40] | 石松, 吴乾元, 李新正, 等, 2020. 天然黄铁矿吸附去除水中Sb(V): 性能与机制[J]. 环境科学, 41(9): 4124-4132. |
SHI S, WU Q Y, LI X Z, et al., 2020. Adsorption of Sb(V) in water by natural pyrite: Performance and mechanism[J]. Environmental Science, 41(9): 4124-4132.
DOI URL |
|
[41] | 王华伟, 李晓月, 李卫华, 等, 2017. pH和络合剂对五价锑在水钠锰矿和水铁矿表面吸附行为的影响[J]. 环境科学, 38(1): 180-187. |
WANG H W, LI X Y, LI W H, et al., 2017. Effects of pH and complexing agents on Sb(Ⅴ) adsorption onto birnessite and ferrihydrite surface[J]. Environmental Science, 38(1): 180-187.
DOI URL |
|
[42] | 王舒晗, 任伯帜, 2023. 典型锑冶炼厂周边土壤重金属分布和污染评价——以冷水江市中连乡为例[J]. 广东化工, 50(6): 125-129. |
WANG S H, REN B Z, 2023. Distribution and pollution assessment of heavy metals in soils around typical antimony smelters-a case study of Zhonglian Township, Lengshuijiang city[J]. Guangdong Chemical Industry, 50(6): 125-129. | |
[43] | 魏东宁, 2018. 纳米零价铁污泥基生物质炭的制备及其对水体中Sb(Ⅲ)的吸附行为研究[D]. 长沙: 湖南农业大学:39-40. |
WEI D N, 2018. Preparation of nano-zero-valent iron sludge-based biochar and its adsorption behavior for Sb(III) in water[D]. Changsha: Hunan Agricultural University:39-40. | |
[44] | 吴雅静, 王华伟, 孙英杰, 等, 2021. 原位形成生物铁锰氧化物对砷(Ⅲ/Ⅴ)的去除效果与机制[J]. 环境科学学报, 41(2): 526-535. |
WU Y J, WANG H W, SUN Y J, et al., 2021. Removal efficiency and mechanism of arsenic(III/V) by in-situ generated biogenic Fe-Mn oxides[J]. Acta Scientiae Circumstantiae, 41(2): 526-535. | |
[45] | 晏平, 2014. 化学及生物铁锰复合氧化物去除水中重金属钴的吸附氧化特性研究[D]. 杭州: 浙江工业大学:10-11. |
YAN P, 2014. Preparation of the chemical and biogenic Fe-Mn binary oxide and their’s adsorption and oxidation characteristics of Co(II)[D]. Hangzhou: Zhejiang University of Technology:10-11. | |
[46] |
阳涅, 孙晓旭, 孔天乐, 等, 2023. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 32(3): 609-618.
DOI |
YANG N, SUN X X, KONG T L, et al., 2023. Response of microbial communities to changes in antimony pollution concentrations in fluvial sediment[J]. Ecology and Environmental Sciences, 32(3): 609-618. | |
[47] | 易春龙, 叶欣, 李泰来, 等, 2021. 生物锰氧化物对4种重金属的吸附特性研究[J]. 工业安全与环保, 47(3): 94-98. |
YI C L, YE X, LI T L, et al., 2021. Study the adsorption characteristics of biomanganese oxide to four heavy metals[J]. Industrial Safety and Environmental Protection, 47(3): 94-98. | |
[48] | 张攀, 2020. 壳聚糖-生物铁锰氧化物复合材料对水中锑的吸附机理研究[D]. 长沙: 湖南农业大学:10-15. |
ZHANG P, 2020. Study on the adsorption mechanism of antimony in water by chitosan-biological iron manganese oxide composite material[D]. Changsha: Hunan Agricultural University:10-15. | |
[49] | 张莹雪, 胥思勤, 李佳霜, 2018. Sb(Ⅲ)和Sb(Ⅴ)在不同吸附剂上的吸附特征[J]. 土壤, 50(1): 139-147. |
ZHANG Y X, XU S Q, LI J S, 2018. Adsorption characteristics of trivalent and pentavalent antimony on different adsorbents[J]. Soils, 50(1): 139-147. | |
[50] | 周楚晨, 李成, 钱建英, 等, 2022. 氧化铁红对印染废水中锑(V)的吸附性能[J]. 浙江大学学报(理学版), 49(2): 201-209, 260. |
ZHOU C C, LI C, QIAN J Y, et al., 2022. The study of antimony (V) adsorption by commercial iron oxide red[J]. Journal of Zhejiang University (Science Edition), 49(2): 201-209, 260. | |
[51] | 周雪, 吴贵亮, 陈国和, 2022. 铁镧氢化物改性生物炭对锑的吸附性能研究[J]. 绍兴文理学院学报(自然科学), 42(8): 55-62. |
ZHOU X, WU G L, CHEN G H, 2022. Study on the adsorption properties of antimony on biochar modified by iron lanthanum hydride[J]. Journal of Shaoxing University (Natural Science), 42(8): 55-62. | |
[52] | 朱红钢, 朱建明, 谭德灿, 等, 2023. 铁锰铝氧化物对锑的吸附研究进展[J]. 矿物岩石地球化学通报, 42(4): 931-940. |
ZHU H G, ZHU J M, TAN D C, et al., 2023. Progress on the adsorption of antimony by iron, manganese, and aluminum oxides[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 42(4): 931-940. |
[1] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[2] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[3] | 韩迁, 张玉娇, 赖承钺, 杨璐瑶, 孟旭. 成都市河流中四环素、喹诺酮类抗生素污染特征及生态风险评价[J]. 生态环境学报, 2023, 32(11): 1922-1932. |
[4] | 高晓宇, 王磊. 抗生素抗性基因在土壤中积累、转移与消减的研究进展[J]. 生态环境学报, 2023, 32(11): 2062-2071. |
[5] | 李璇, 钱秀雯, 黄娟, 王鸣宇, 肖君. 纳米氧化镍暴露下人工湿地运行性能及微生物群落的响应[J]. 生态环境学报, 2023, 32(10): 1833-1841. |
[6] | 李龙飞, 魏颖, 赵建南, 董静, 张景晓, 高肖飞, 张曼, 袁华涛, 高云霓, 李学军. 3种沉水植物对微囊藻的抑制作用及其周丛藻类响应[J]. 生态环境学报, 2023, 32(10): 1822-1832. |
[7] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
[8] | 周佳诚, 宋志斌, 苗芃, 谭路, 唐涛. 柳江不同河网位置大型底栖动物群落特征及其影响因子差异比较研究[J]. 生态环境学报, 2023, 32(10): 1794-1801. |
[9] | 赵燕楚, 王菲, 吴丹, 黄鑫, 陈佳林, 周琳普, 孔凡青. 海河流域河流大型底栖动物生物完整性指数健康评价[J]. 生态环境学报, 2023, 32(10): 1785-1793. |
[10] | 樊艳翔, 雷社平, 解建仓. 广东省河流水体富营养化综合评价及分异特征——基于博弈论组合赋权法与VIKOR模型[J]. 生态环境学报, 2023, 32(10): 1811-1821. |
[11] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[12] | 鲁言波, 陈湛峰, 李晓芳. 基于粒子群优化的GRU广东省跨境断面水质预测模型研究[J]. 生态环境学报, 2023, 32(9): 1673-1681. |
[13] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[14] | 李佳蔓, 王晓明, 胡欣蕊, 谢莹莹, 文震. 铁硫比对施氏矿物微观结构及吸附铬性能的影响[J]. 生态环境学报, 2023, 32(8): 1478-1486. |
[15] | 王源哲, 华春林, 赵丽, 樊敏, 梁晓盈, 周乐乐, 蔡璨, 姚婧. 山地城市主要河流水质评价及预测研究——以四川省绵阳市为例[J]. 生态环境学报, 2023, 32(8): 1465-1477. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||