生态环境学报 ›› 2024, Vol. 33 ›› Issue (1): 144-155.DOI: 10.16258/j.cnki.1674-5906.2024.01.015
李丹怡1,2(), 黄显婷1,3, 李继超4, 李颖洁1,3, 闫家普1, 林慰1,*(
)
收稿日期:
2023-09-26
出版日期:
2024-01-18
发布日期:
2024-03-19
通讯作者:
*林慰。E-mail: linwei@bnu.edu.cn作者简介:
李丹怡(1994年生),女,硕士,主要从事水污染控制技术、渔业环境与水产品风险评估等研究。E-mial: lidy27@mail2.sysu.edu.cn
基金资助:
LI Danyi1,2(), HUANG Xianting1,3, LI Jichao4, LI Yingjie1,3, YAN Jiapu1, LIN Wei1,*(
)
Received:
2023-09-26
Online:
2024-01-18
Published:
2024-03-19
摘要:
由于具有优异的抗菌性,抗生素被广泛应用于医学领域和养殖行业。然而,近年来对抗生素大规模的使用和排放,在自然界造成了大量的累积,引发了一系列水环境污染问题,严重威胁生态系统安全和人类健康。因此,研发可去除水中过量抗生素的材料已成为当前环境领域的重要研究方向之一。氧化石墨烯(graphene oxide,GO)以其高比表面积、良好亲水性、耐酸碱性、制备简便、成本低廉等优势,成为了一种新兴的抗生素去除材料。该文首先概述了现有的GO及其复合材料分类制备方法,包括空间改造、共价键修饰和金属氧化物改性等。其次,综述了近年来GO及其复合材料在抗生素去除领域的应用、影响因素及作用机制。结果表明,基于吸附原理的GO复合材料吸附去除抗生素效果主要受溶液pH、共存离子、吸附剂投加量、抗生素类别及浓度等多种因素的影响,吸附机制主要包括静电相互作用、π-π相互作用、阳离子-π键作用和氢键作用等,通过引入元素、金属和有机化合物等手段可有效提高GO材料的吸附容量;基于光催化降解原理的抗生素去除过程中,光照条件是最重要影响因素,而其中关键活性物质包括光生空穴、羟基自由基和超氧自由基等,掺杂金属纳米粒子与半导体纳米材料等能够优化其光催化性能。最后,通过对GO及其复合材料制备过程、去除机理和应用场景的综合分析,指出其普适性不高、实际应用不足和环境毒性不明等现存问题,并提出未来应加强材料研发、产业应用和毒性效应评估等方面的研究展望。
中图分类号:
李丹怡, 黄显婷, 李继超, 李颖洁, 闫家普, 林慰. 氧化石墨烯及其复合材料去除水体抗生素的研究进展[J]. 生态环境学报, 2024, 33(1): 144-155.
LI Danyi, HUANG Xianting, LI Jichao, LI Yingjie, YAN Jiapu, LIN Wei. Advances in the Removal of Antibiotics from Water by Graphene Oxide and Its Composites[J]. Ecology and Environment, 2024, 33(1): 144-155.
原料 | 反应时间 | 缺点 | 参考文献 |
---|---|---|---|
石墨、浓HNO3、KClO3/ KClO4/NaClO4 | 3−4 d | 生成有害气体、易爆炸 | Brodie, |
石墨、浓HNO3、KClO3、浓H2SO4 | 96 h | 生成有害气体、氧化程度过低、易破坏碳结构 | Staudenmaier, |
石墨、NaNO3、KMnO4、浓H2SO4、H2O2 | <2 h | 结构影响因素多 | Hummers et al., |
石墨、H2SO4、 H3PO4、KMnO4 | 12 h | 成本高 | Marcano et al., |
石墨、KMnO4、H2O2 | 1 h | 稳定性低 | Chao et al., |
表1 GO的制备方法
Table 1 Preparation methods of GO
原料 | 反应时间 | 缺点 | 参考文献 |
---|---|---|---|
石墨、浓HNO3、KClO3/ KClO4/NaClO4 | 3−4 d | 生成有害气体、易爆炸 | Brodie, |
石墨、浓HNO3、KClO3、浓H2SO4 | 96 h | 生成有害气体、氧化程度过低、易破坏碳结构 | Staudenmaier, |
石墨、NaNO3、KMnO4、浓H2SO4、H2O2 | <2 h | 结构影响因素多 | Hummers et al., |
石墨、H2SO4、 H3PO4、KMnO4 | 12 h | 成本高 | Marcano et al., |
石墨、KMnO4、H2O2 | 1 h | 稳定性低 | Chao et al., |
分类 | 思路 | 原理 | 制备方法 |
---|---|---|---|
石墨烯量子点 | 自上而下 | 通过物理或化学方法将大尺寸的石墨烯薄片切割成小尺寸的石墨烯量子点 | 水热法、电化学法、 化学剥离碳纤维法 |
自下而上 | 以小分子作前体通过一系列化学反应制备石墨烯量子点 | 溶液化学法、超声波法和微波法、 可控热解多环芳烃法 | |
特殊方法 | 将富勒烯在活泼过渡金属钌催化作用下分解获得系列原子级别的石墨烯量子点 | 电子束刻蚀法、钌催化C60转化法 | |
共价键修饰氧化石墨烯材料 | 共价键 修饰 | 有机小分子和聚合物负载到石墨烯或氧化石墨烯表面 | 原位聚合法、溶液共混法、熔融共混法、乳液共混法、Pickering乳液聚合法 |
无机纳米氧化石墨烯材料 | 物理掺杂 | 金属/金属氧化物与氧化石墨烯复合 | 水热法、高功率超声法、热剥离法 |
化学复合 | 以氯化亚锡和氧化石墨为原料制备得到二氧化锡/石墨烯复合材料 | 气热法、原位合成法 |
表2 典型GO复合材料的分类及制备方法1)
Table 2 Classification and preparation methods of typical GO composites
分类 | 思路 | 原理 | 制备方法 |
---|---|---|---|
石墨烯量子点 | 自上而下 | 通过物理或化学方法将大尺寸的石墨烯薄片切割成小尺寸的石墨烯量子点 | 水热法、电化学法、 化学剥离碳纤维法 |
自下而上 | 以小分子作前体通过一系列化学反应制备石墨烯量子点 | 溶液化学法、超声波法和微波法、 可控热解多环芳烃法 | |
特殊方法 | 将富勒烯在活泼过渡金属钌催化作用下分解获得系列原子级别的石墨烯量子点 | 电子束刻蚀法、钌催化C60转化法 | |
共价键修饰氧化石墨烯材料 | 共价键 修饰 | 有机小分子和聚合物负载到石墨烯或氧化石墨烯表面 | 原位聚合法、溶液共混法、熔融共混法、乳液共混法、Pickering乳液聚合法 |
无机纳米氧化石墨烯材料 | 物理掺杂 | 金属/金属氧化物与氧化石墨烯复合 | 水热法、高功率超声法、热剥离法 |
化学复合 | 以氯化亚锡和氧化石墨为原料制备得到二氧化锡/石墨烯复合材料 | 气热法、原位合成法 |
抗生素 | 吸附材料 | 吸附率 (吸附容量) | 反应条件 | 去除机理 | 参考文献 |
---|---|---|---|---|---|
左氧氟沙星 | 天冬氨酸-功能化氧化石墨烯-氧化锌 (GO-ZnO) | 95.12% (73.15 mg·g−1) | pH=7; t=25 ℃; 投加量为0.6 g·L−1; 初始质量浓度为30 mg·L−1 | 静电相互作用、 氢键、π-π相互作用 | Ismail et al., |
磺胺 | 锰原子-氮掺杂氧化石墨烯 (Mn-NGO) | 98.7% | pH为微酸性或中性; t =25 ℃; 投加量为1 g·L−1; 初始质量浓度为10 mg·L−1 | 阳离子-π键、静电吸引、 光催化降解 (羟基自由基、超氧自由基等) | Lü et al., |
土霉素 恶喹酸 甲氧苄啶 | 柠檬酸改性氧化石墨烯- 羧甲基纤维素膜 (GO-CMC) | OTC: 33.8% (102.05 mg·g−1) OA: 97.2% (256.68 mg·g−1) TMP: 83.3% (370.93 mg·g−1) | pH=5(OTC)/7(OA)/8(TMP); t=30 ℃; 投加量为1 g·L−1; 初始质量浓度为100 mg·L−1 | 阳离子-π键、 π-π相互作用 | Juengchareo-npoon et al., |
四环素 | 磁性氧化石墨烯海绵 (MGOS) | 85% (473 mg·g−1) | pH=10; t =35 ℃; 投加量为0.6 g·L−1; 初始质量浓度为400 mg·L−1 | 静电相互作用、 阳离子-π键 | Yu et al., |
四环素 | 磁性氧化石墨烯/氧化钨 (GO/W18O49) | >79% (318.18 mg·g−1) | pH=5; t=40 ℃; 初始质量浓度为100 mg·L−1 | π-π相互作用、静电吸引、络合作用、阳离子交换、氢键 | Qiao et al., |
环丙沙星 | 氧化石墨烯/海藻酸钙-聚丙烯酰胺 (GO/Ca-Alg2-PAM) | 6.846 mg·g−1 | t=25 ℃; 投加量为0.9 g·L−1 | ‒ | Choi et al., |
环丙沙星 | 几丁质/氧化石墨烯纳米材料 (nGO) | (282±11) mg·g−1 | pH=6.3; t =25 ℃; 投加量为5 g·L−1 | π-π堆积、静电吸引、 孔隙作用 | González et al., |
环丙沙星 诺氟沙星 | 氧化镁/壳聚糖/氧化石墨烯(MgO/Chit/GO) | CIP: 1111 mg·g−1 NOR: 1000 mg·g−1 | pH=7; t =25 ℃; 投加量为0.5 g·L−1 | π-π相互作用、 静电相互作用 | Nazraz et al., |
表3 GO复合材料吸附去除抗生素的应用
Table 3 Applications of adsorptive removal of antibiotics by GO composites
抗生素 | 吸附材料 | 吸附率 (吸附容量) | 反应条件 | 去除机理 | 参考文献 |
---|---|---|---|---|---|
左氧氟沙星 | 天冬氨酸-功能化氧化石墨烯-氧化锌 (GO-ZnO) | 95.12% (73.15 mg·g−1) | pH=7; t=25 ℃; 投加量为0.6 g·L−1; 初始质量浓度为30 mg·L−1 | 静电相互作用、 氢键、π-π相互作用 | Ismail et al., |
磺胺 | 锰原子-氮掺杂氧化石墨烯 (Mn-NGO) | 98.7% | pH为微酸性或中性; t =25 ℃; 投加量为1 g·L−1; 初始质量浓度为10 mg·L−1 | 阳离子-π键、静电吸引、 光催化降解 (羟基自由基、超氧自由基等) | Lü et al., |
土霉素 恶喹酸 甲氧苄啶 | 柠檬酸改性氧化石墨烯- 羧甲基纤维素膜 (GO-CMC) | OTC: 33.8% (102.05 mg·g−1) OA: 97.2% (256.68 mg·g−1) TMP: 83.3% (370.93 mg·g−1) | pH=5(OTC)/7(OA)/8(TMP); t=30 ℃; 投加量为1 g·L−1; 初始质量浓度为100 mg·L−1 | 阳离子-π键、 π-π相互作用 | Juengchareo-npoon et al., |
四环素 | 磁性氧化石墨烯海绵 (MGOS) | 85% (473 mg·g−1) | pH=10; t =35 ℃; 投加量为0.6 g·L−1; 初始质量浓度为400 mg·L−1 | 静电相互作用、 阳离子-π键 | Yu et al., |
四环素 | 磁性氧化石墨烯/氧化钨 (GO/W18O49) | >79% (318.18 mg·g−1) | pH=5; t=40 ℃; 初始质量浓度为100 mg·L−1 | π-π相互作用、静电吸引、络合作用、阳离子交换、氢键 | Qiao et al., |
环丙沙星 | 氧化石墨烯/海藻酸钙-聚丙烯酰胺 (GO/Ca-Alg2-PAM) | 6.846 mg·g−1 | t=25 ℃; 投加量为0.9 g·L−1 | ‒ | Choi et al., |
环丙沙星 | 几丁质/氧化石墨烯纳米材料 (nGO) | (282±11) mg·g−1 | pH=6.3; t =25 ℃; 投加量为5 g·L−1 | π-π堆积、静电吸引、 孔隙作用 | González et al., |
环丙沙星 诺氟沙星 | 氧化镁/壳聚糖/氧化石墨烯(MgO/Chit/GO) | CIP: 1111 mg·g−1 NOR: 1000 mg·g−1 | pH=7; t =25 ℃; 投加量为0.5 g·L−1 | π-π相互作用、 静电相互作用 | Nazraz et al., |
抗生素 | 光催化剂 | 去除效率 | 反应条件 | 关键活性物质 | 参考文献 |
---|---|---|---|---|---|
诺氟沙星 | 四氧二铁酸钴-还原氧化石墨烯-溴化氧铋 (CoFe2O4-rGO-BiOBr) | 88.7% | t=20 ℃; 投加量为0.3 g·L−1; 初始质量浓度为5 mg·L−1 | 光生空穴、 羟基自由基 | Zhang et al., |
四环素 金霉素 土霉素 强力霉素 | 钒酸铋/二氧化钛/还原氧化石墨烯(BiVO4/TiO2/rGO) | TC: 96.2% CTC: 97.5% OTC: 98.7% DXC: 99.6% | λ>420 nm; 初始质量浓度为10 mg·L−1 | 羟基自由基、 超氧自由基 | Wang et al., |
头孢氨苄 | 氨基化二氧化锰/氧化石墨烯/臭氧化和质子功能化石墨相氮化碳(MnO2-NH2/GO/p-C3N4) | 100% | 初始质量浓度为1 mg·L−1 | 光生空穴、羟基自由基、超氧自由基 | Yang et al., |
甲氧苄啶 | 铜铁层状双氢氧化物涂层/氧化石墨烯 (CuFe-LDH/GO) | 90.8% | t=(25±2) ℃; λ=254 nm; pH=8.8; 投加量为0.25 g·L−1; 初始质量浓度为20 mg·L−1 | 硫酸根自由基、 光生电子 | Vasseghian et al., |
土霉素 | 溴氧化铋/二硫化钼/氧化石墨烯异质结(BiOBr/MoS2/GO) | >98% | 室温; λ=380 nm; 投加量为1 g·L−1; 初始质量浓度为10 mg·L−1 | 光生空穴、羟基自由基、超氧自由基 | Li et al., |
头孢克洛 | 伊红Y/氧化石墨烯(GO/EY) | 97% | pH=7; 投加量为0.1 g·L−1; 初始质量浓度为2 mg·L−1 | 单态氧、 过氧化氢 | Luo et al., |
表4 GO复合材料光催化降解抗生素的应用
Table 4 Applications of photocatalytic antibiotics degradation by GO composites
抗生素 | 光催化剂 | 去除效率 | 反应条件 | 关键活性物质 | 参考文献 |
---|---|---|---|---|---|
诺氟沙星 | 四氧二铁酸钴-还原氧化石墨烯-溴化氧铋 (CoFe2O4-rGO-BiOBr) | 88.7% | t=20 ℃; 投加量为0.3 g·L−1; 初始质量浓度为5 mg·L−1 | 光生空穴、 羟基自由基 | Zhang et al., |
四环素 金霉素 土霉素 强力霉素 | 钒酸铋/二氧化钛/还原氧化石墨烯(BiVO4/TiO2/rGO) | TC: 96.2% CTC: 97.5% OTC: 98.7% DXC: 99.6% | λ>420 nm; 初始质量浓度为10 mg·L−1 | 羟基自由基、 超氧自由基 | Wang et al., |
头孢氨苄 | 氨基化二氧化锰/氧化石墨烯/臭氧化和质子功能化石墨相氮化碳(MnO2-NH2/GO/p-C3N4) | 100% | 初始质量浓度为1 mg·L−1 | 光生空穴、羟基自由基、超氧自由基 | Yang et al., |
甲氧苄啶 | 铜铁层状双氢氧化物涂层/氧化石墨烯 (CuFe-LDH/GO) | 90.8% | t=(25±2) ℃; λ=254 nm; pH=8.8; 投加量为0.25 g·L−1; 初始质量浓度为20 mg·L−1 | 硫酸根自由基、 光生电子 | Vasseghian et al., |
土霉素 | 溴氧化铋/二硫化钼/氧化石墨烯异质结(BiOBr/MoS2/GO) | >98% | 室温; λ=380 nm; 投加量为1 g·L−1; 初始质量浓度为10 mg·L−1 | 光生空穴、羟基自由基、超氧自由基 | Li et al., |
头孢克洛 | 伊红Y/氧化石墨烯(GO/EY) | 97% | pH=7; 投加量为0.1 g·L−1; 初始质量浓度为2 mg·L−1 | 单态氧、 过氧化氢 | Luo et al., |
[1] |
KHAN A, AMEEN F, KHAN F, et al., 2020. Fabrication and antibacterial activity of nanoenhanced conjugate of silver (I) oxide with graphene oxide[J]. Materials Today Communications, 25: 101667.
DOI URL |
[2] |
AI Y J, LIU Y, HUO Y Z, et al., 2019. Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials[J]. Environmental Science Nano, 6(11): 3336-3348.
DOI URL |
[3] |
ALOTHMAN Z A, ALMASOUD N, MBIANDA X Y, et al., 2021. Synthesis and characterization of γ-cyclodextrin-graphene oxide nanocomposite: Sorption, kinetics, thermodynamics and simulation studies of tetracycline and chlortetracycline antibiotics removal in water[J]. Journal of Molecular Liquids, 345(8): 116993.
DOI URL |
[4] |
ANIRUDHAN T S, DEEPA J R, 2017. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions[J]. Journal of Colloid And Interface Science, 490: 343-356.
DOI PMID |
[5] | BASHA S I, REHMAN A U, AZIZ M A, et al., 2023. Cement composites with carbon-based nanomaterials for 3D concrete printing applications: A review[J]. The Chemical Record, 23(4): e202200293. |
[6] |
BRAKAT A, ZHU H W, 2021. Nanocellulose-graphene hybrids: Advanced functional materials as multifunctional sensing platform[J]. Nano-Micro Letters, 13(6): 37.
DOI |
[7] |
BRODIE B C, 1859. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London, 149: 249-259.
DOI URL |
[8] |
CHAO Y, WANG C F, CHEN S, 2016. Facile access to graphene oxide from ferro-induced oxidation[J]. Scientific Reports, 6(1): 17071.
DOI |
[9] |
CHEN F, YANG Q, LI X M, et al., 2017. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4(040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation[J]. Applied Catalysis B: Environmental, 200: 330-342.
DOI URL |
[10] |
CHEN T, SHI P H, ZHANG J, et al., 2018. Natural polymer konjac glucomannan mediated assembly of graphene oxide as versatile sponges for water pollution control[J]. Carbohydrate Polymers, 202: 425-433.
DOI PMID |
[11] |
CHEN W F, YAN L F, 2011a. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures[J]. Nanoscale, 3(8): 3132-3137.
DOI URL |
[12] |
CHEN Z P, REN W C, GAO L B, et al., 2011b. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 10(6): 424-428.
DOI |
[13] |
CHOI J W, CHOI S J, 2022. Polyacrylamide functionalized graphene oxide/alginate beads for removing ciprofloxacin antibiotics[J]. Toxics, 10(2): 77.
DOI URL |
[14] |
COMPTON O C, NGUYEN S T, 2010. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials[J]. Small, 6(6): 711-723.
DOI PMID |
[15] |
GAO Y, LI Y, ZHANG L, et al., 2012. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J]. Journal of Colloid and Interface Science, 368(1): 540-546.
DOI PMID |
[16] |
GESSICA W, MARCELA F S, DA S E A, et al., 2021. Ag and CuO nanoparticles decorated on graphene oxide/activated carbon as a novel adsorbent for the removal of cephalexin from water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627: 127203.
DOI URL |
[17] |
GONZÁLEZ J A, BAFICO J G, VILLANUEVA M E, et al., 2018. Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material[J]. Carbohydrate Polymers, 188: 213-220.
DOI PMID |
[18] |
HOSSAIN S T, WANG R, 2016. Electrochemical exfoliation of graphite: Effect of temperature and hydrogen peroxide addition[J]. Electrochimica Acta, 216: 253-260.
DOI URL |
[19] |
HUMMERS W S, OFFEMAN R E, 1958. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 80(6): 1339.
DOI URL |
[20] |
ISMAIL N, IMRAN M, RAMZAN M, et al., 2023. Functionalized graphene oxide-zinc oxide hybrid material and its deployment for adsorptive removal of levofloxacin from aqueous media[J]. Environmental Research, 217: 114958.
DOI URL |
[21] |
JOHNSON J A, BENMORE C J, STANKOVICH S, et al., 2009. A neutron diffraction study of nano-crystalline graphite oxide[J]. Carbon, 47(9): 2239-2243.
DOI URL |
[22] |
JUENGCHAREONPOON K, WANICHPONGPAN P, BOONAMNUAYVITAYA V, 2021. Graphene oxide and carboxymethylcellulose film modified by citric acid for antibiotic removal[J]. Journal of Environmental Chemical Engineering, 9(1): 104637.
DOI URL |
[23] |
KUMAR R, SUDHAIK A, SONU, et al., 2023. Graphene oxide modified K, P co-doped g-C3N4 and CoFe2O4 composite for photocatalytic degradation of antibiotics[J]. Journal of the Taiwan Institute of Chemical Engineers, 150: 105077.
DOI URL |
[24] | KUNDI I W, WAZIR A H, 2016. Synthesis of graphene nano sheets by the rapid reduction of electrochemically exfoliated graphene oxide induced by microwaves[J]. Journal of the Chemical Society of Pakistan, 38(1): 11-16. |
[25] |
LI D, SHI W D, 2016. Recent developments in visible-light photocatalytic degradation of antibiotics[J]. Chinese Journal of Catalysis, 37(6): 792-799.
DOI |
[26] |
LI M F, LIU Y G, ZENG G M, et al., 2019. Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review[J]. Chemosphere, 226: 360-380.
DOI URL |
[27] |
LI M F, LIU Y G, YANG C P, et al., 2020. Effects of heteroaggregation with metal oxides and clays on tetracycline adsorption by graphene oxide[J]. Science of the Total Environment, 719: 137283.
DOI URL |
[28] |
LI X L, WANG H L, ROBINSON J T, et al., 2009. Simultaneous nitrogen doping and reduction of graphene oxide[J]. Journal of the American Chemical Society, 131(43): 15939-15944.
DOI PMID |
[29] |
LI Y H, LAI Z, HUANG Z J, et al., 2021. Fabrication of BiOBr/MoS2/ graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics[J]. Applied Surface Science, 550: 149342.
DOI URL |
[30] |
LIN Y X, XU S, JIA L, 2013. Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles[J]. Chemical Engineering Journal, 225: 679-685.
DOI URL |
[31] |
LUO Y, CHANG G R, HUANG L, et al., 2021. Eosin Y covalently modified on graphene oxide for enhanced photocatalytic activity toward the degradation of antibiotic cefaclor under visible light irradiation[J]. ChemistrySelect, 6(8): 1929-1936.
DOI URL |
[32] |
LÜ H H, LI P, TANG J C, et al., 2023. Single-atom Mn anchored on N-doped graphene oxide for efficient adsorption-photocatalytic degradation of sulfanilamide in water: Electronic interaction and mineralization pathway[J]. Chemical Engineering Journal, 454(Part 1): 140120.
DOI URL |
[33] |
MA J, JIANG Z, CAO J L, et al., 2020. Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions[J]. Chemosphere, 242: 125188.
DOI URL |
[34] |
MARCANO D C, KOSYNKIN D V, BERLIN J M, et al., 2010. Improved synthesis of graphene oxide[J]. ACS Nano, 4(8): 4806-4814.
DOI PMID |
[35] |
AHMADI M, ZABIHI O, YADAV R, et al., 2021. The reinforcing role of 2D graphene analogue MoS2 nanosheets in multiscale carbon fibre composites: Improvement of interfacial adhesion[J]. Composites Science and Technology, 207(21): 108717.
DOI URL |
[36] |
NAZRAZ M, YAMINI Y, ASIABI H, 2019. Chitosan-based sorbent for efficient removal and extraction of ciprofloxacin and norfloxacin from aqueous solutions[J]. Microchimica Acta, 186(7): 459.
DOI |
[37] |
PRAKASH J, VENKATAPRASANNA K S, JAYARAMAN V, et al., 2023. Exploring the potential of graphene oxide nanocomposite as a highly efficient photocatalyst for antibiotic degradation and pathogen inactivation[J]. Diamond and Related Materials, 137: 110104.
DOI URL |
[38] |
QIAO D S, QU X, CHEN X Y, et al., 2023. Rational structural design of graphene oxide/W18O49 nanocomposites realizes highly efficient removal of tetracycline in water[J]. Applied Surface Science, 619: 156630.
DOI URL |
[39] |
RAJA A, SON N, KANG M, 2021. Construction of visible-light driven Bi2MoO6-rGO-TiO2 photocatalyst for effective ofloxacin degradation[J]. Environmental Research, 199: 111261.
DOI URL |
[40] |
SARIKA J S. K R, NORIHIRO S, et al., 2021. Probing electrochemical charge storage of 3D porous hierarchical cobalt oxide decorated rGO in ultra-high-performance supercapacitor[J]. Surface & Coatings Technology, 419: 127287.
DOI URL |
[41] |
SINGH V, JOUNG D, ZHAI L, et al., 2011. Graphene based materials: Past, present and future[J]. Progress in Materials Science, 56(8): 1178-1271.
DOI URL |
[42] |
STAUDENMAIER L, 1898. Verfahren zur darstellung der graphitsäure[J]. Berichte der Deutschen Chemischen Gesellschaft, 31(2): 1481-1487.
DOI URL |
[43] |
SUN Y Y, TIAN J, WANG L, et al., 2015. One pot synthesis of magnetic graphene-carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water[J]. Journal of Chromatography A, 1422: 53-59.
DOI URL |
[44] |
SZABÓ T, BERKESI O, FORGÓ P, et al., 2015. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 18(11): 2740-2749.
DOI URL |
[45] |
ANUSUYA T, KUMAR V, KUMAR V, 2021. Hydrophilic graphene quantum dots as turn-off fluorescent nanoprobes for toxic heavy metal ions detection in aqueous media[J]. Chemosphere, 282: 131019.
DOI URL |
[46] |
TAN L C, WANG Y L, LIU Q, et al., 2015. Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material[J]. Chemical Engineering Journal, 259: 752-760.
DOI URL |
[47] |
VASSEGHIAN Y, SEZGIN D, NGUYEN D C, et al., 2023. A hybrid nanocomposite based on CuFe layered double hydroxide coated graphene oxide for photocatalytic degradation of trimethoprim[J]. Chemosphere, 322: 138243.
DOI URL |
[48] |
WANG F, YANG B S, WANG H, et al., 2016. Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite[J]. Journal of Molecular Liquids, 222: 188-194.
DOI URL |
[49] |
WANG S K, MA X F, ZHENG P W, 2019a. Sulfo-functional 3D porous cellulose/graphene oxide composites for highly efficient removal of methylene blue and tetracycline from water[J]. International Journal of Biological Macromolecules, 140: 119-128.
DOI URL |
[50] |
WANG W, HAN Q, ZHU Z J, et al., 2019b. Enhanced photocatalytic degradation performance of organic contaminants by heterojunction photocatalyst BiVO4/TiO2/RGO and its compatibility on four different tetracycline antibiotics[J]. Advanced Powder Technology, 30(9): 1882-1896.
DOI URL |
[51] |
WANG Y, LI S S, YANG H Y, et al., 2020. Progress in the functional modification of graphene/graphene oxide: A review[J]. RSC Advances, 10(26): 15328-15345.
DOI PMID |
[52] |
WANG Z L, ZHAN K, ZHU Y L, et al., 2021. Label-free one-dimension photonics crystals sensors assembled by UiO-66 and graphene oxide: A platform to quick and efficiently detect chlorobenzene vapors[J]. Journal of Environmental Chemical Engineering, 9(4): 105445.
DOI URL |
[53] |
WU J R, ZHAO H Y, CHEN R, et al., 2016. Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater[J]. Journal of Chromatography B, 1029-1030: 106-112.
DOI PMID |
[54] |
XIAO P, JIANG D L, JU L X, et al., 2018. Construction of RGO/CdIn2S4/g-C3N4ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride[J]. Applied Surface Science, 433: 388-397.
DOI URL |
[55] |
YANG B C, GUAN B H, 2022. Synergistic catalysis of ozonation and photooxidation by sandwich structured MnO2-NH2/GO/p-C3N4 on cephalexin degradation[J]. Journal of Hazardous Materials, 439: 129540.
DOI URL |
[56] |
YANG C, YOU X Z, CHENG J H, et al., 2017. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin[J]. Applied Catalysis B: Environmental, 200: 673-680.
DOI URL |
[57] |
YAO N, LI C, YU J Y, et al., 2020. Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water[J]. Separation and Purification Technology, 236: 116278.
DOI URL |
[58] |
YU B W, BAI Y T, MING Z, et al., 2017. Adsorption behaviors of tetracycline on magnetic graphene oxide sponge[J]. Materials Chemistry and Physics, 198: 283-290.
DOI URL |
[59] |
ZHANG G D, LIU X H, LU S Y, et al., 2020a. Occurrence of typical antibiotics in Nansi Lake's inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model[J]. Chemosphere, 242: 125269.
DOI URL |
[60] |
ZHANG Q Q, YING G G, PAN C, et al., 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 49(11): 6772-6782.
DOI URL |
[61] |
ZHANG R, LI Y, HAN Q, et al., 2020b. Investigation the high photocatalytic activity of magnetically separable graphene oxide modified BiOBr nanocomposites for degradation of organic pollutants and antibiotic[J]. Journal of Inorganic and Organometallic Polymers and Materials, 30(4): 1703-1715.
DOI |
[62] | 陈卫平, 彭程伟, 杨阳, 等, 2017. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 38(12): 5074-5080. |
CHEN W P, PENG C W, YANG Y, et al., 2017. Distribution characteristics and risk analysis of antibiotic in the groundwater in Beijing[J]. Environmental Science, 38(12): 5074-5080. | |
[63] | 戴荣, 2017. 氧化石墨烯和二氧化钛纳米管自组装水凝胶吸附环丙沙星、四环素的研究[D]. 南京: 南京大学. |
DAI R, 2017. Enhanced removal of ciprofloxacin/tetracycline by self-assembled hydrogel with anatase Titania nanotubes and graphene oxide[D]. Nanjing: Nanjing University. | |
[64] | 党志敏, 2010. 氧化石墨烯及其复合材料的制备与表征[D]. 南京: 南京理工大学. |
DANG Z M, 2010. Preparation and characterization of graphene oxide and its composites[D]. Nanjing: Nanjing University of Science and Technology. | |
[65] | 丁杰, 沙焕伟, 赵双阳, 等, 2016. 磁性氧化石墨烯/壳聚糖制备及其对磺胺嘧啶吸附性能研究[J]. 环境科学学报, 36(10): 3691-3700. |
DING J, SHA H W, ZHAO S Y, et al., 2016. Synthesis of graphene oxide/magnetite chitosan composite and adsorption performance for sulfadiazine[J]. Acta Scientiae Circumstantiae, 36(10): 3691-3700. | |
[66] | 傅玲, 刘洪波, 邹艳红, 等, 2005. Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J]. 炭素 (4): 10-14. |
FU L, LIU H B, ZHOU Y H, et al., 2005. Technology research on oxidative degree of graphite oxide prepared by Hummers method[J]. Carbon (4): 10-14. | |
[67] |
霍朝晖, 杨晓珊, 陈晓丽, 等, 2020. 纳米银/二维石墨相氮化碳/还原氧化石墨烯复合材料的制备及其光催化降解抗生素[J]. 应用化学, 37(4): 471-480.
DOI |
HUO Z H, YANG X S, CHEN X L, et al., 2020. Preparation of Ag/two-dimensional graphitic carbon nitride/reduced graphene oxide composite and its photocatalytic degradation of antibiotics[J]. Chinese Journal of Applied Chemistry, 37(4): 471-480.
DOI |
|
[68] | 姜哲, 于飞, 马杰, 2019. 石墨烯基吸附剂的设计及其对水中抗生素的去除[J]. 物理化学学报, 35(7): 709-724. |
JIANG Z, YU F, MA J, 2019. Design of graphene-based adsorbents and its removal of antibiotics in aqueous solution[J]. Acta Physico-Chimica Sinica, 35(7): 709-724.
DOI URL |
|
[69] | 孔巧平, 李乐利, 麻微微, 等, 2021. 氨基修饰氧化石墨烯-羧甲基纤维素复合吸附剂的制备及其对Cr(Ⅵ)的吸附性能研究[J]. 环境科学学报, 41(10): 4003-4012. |
KONG Q P, LI L L, MA W W, et al., 2021. Preparation of amino modified graphene oxide-carboxymethyl cellulose composite adsorbent and its adsorption performance towards Cr(VI)[J]. Acta Scientiae Circumstantiae, 41(10): 4003-4012.. | |
[70] |
李翠霞, 金海泽, 杨志忠, 等, 2017. 介孔RGO/TiO2复合光催化材料的制备及光催化性能[J]. 无机材料学报, 32(4): 357-364.
DOI |
LI C X, JIN H Z, YANG Z Z, et al., 2017. Preparation and photocatalytic properties of mesoporous RGO/TiO2composites[J]. Journal of Inorganic Materials, 32(4): 357-364.
DOI URL |
|
[71] | 李丹怡, 王许诺, 张广桔, 等, 2022. 水产养殖环境中抗生素抗性基因 (ARGs) 研究进展[J]. 南方水产科学, 18(5): 166-176. |
LI D Y, WANG X N, ZHANG G J, et al., 2022. Advances on antibiotic resistance genes(ARGs) in aquaculture environment[J]. South China Fisheries Science, 18(5): 166-176. | |
[72] | 李佳, 张学文, 谭智勇, 等, 2023. 镧和氧化石墨烯掺杂对TiO2光催化性能的影响[J]. 化工新型材料, 51(2): 159-168. |
LI J, ZHANG X W, TAN Z Y, et al., 2023. Effect of lanthanum and graphene oxide doping on the photocatalytic performance of titanium dioxide[J]. New Chemical Materials, 51(2): 159-168. | |
[73] | 李晓娜, 宋洋, 贾明云, 等, 2017. 生物质炭对有机污染物的吸附及机理研究进展[J]. 土壤学报, 54(6): 1313-1325. |
LI X N, SONG Y, JIA M Y, et al., 2017. A review of researches on biochar adsorbing organic contaminants and its mechanism[J]. Acta Pedologica Sinica, 54(6): 1313-1325. | |
[74] | 李旭, 赵卫峰, 陈国华, 2008. 石墨烯的制备与表征研究[J]. 材料导报, 22(8): 48-52. |
LI X, ZHAO W F, CHEN G H, 2008. Research progress in preparation and characterization of graphenes[J]. Materials Reports, 22(8): 48-52. | |
[75] | 李亚, 魏缠玲, 戴小军, 等, 2016. RGO/Fe2O3的制备及其对四环素的吸附性能研究[J]. 化学研究与应用, 28(11): 1540-1545. |
LI Y, WEI C L, DAI X J, et al., 2016. Preparation of RGO/Fe2O3 and its adsorption properties[J]. Chemical Research and Application, 28(11): 1540-1545. | |
[76] |
马瑞霄, 周浩, 张燕辉, 2021. RGO-ZnO光催化降解抗生素及还原Cr(Ⅵ)的研究[J]. 工业水处理, 41(3): 53-56.
DOI |
MA R X, ZHOU H, ZHANG Y H, 2021. RGO-ZnO photocatalytic antibiotics degradation and Cr(VI) reduction[J]. Industrial Water Treatment, 41(3): 53-56. | |
[77] | 童蕾, 姚林林, 刘慧, 等, 2016. 抗生素在地下水系统中的环境行为及生态效应研究进展[J]. 生态毒理学报, 11(2): 27-36. |
TONG L, YAO L L, LIU H, et al., 2016. Review on the Environmental Behavior and Ecological Effect of Antibiotics in Groundwater System[J]. Asian Journal of Ecotoxicology, 11(2): 27-36. | |
[78] | 王佳豪, 许锴, 刘康乐, 等, 2020. 水中磺胺类抗生素去除技术的研究进展[J]. 应用化工, 49(7): 1796-1801. |
WANG J H, XU K, LIU K L, et al., 2020. Research progress in removal of sulfonamides (SAs) in water[J]. Applied Chemical Industry, 49(7): 1796-1801. | |
[79] | 王晓峰, 张爽, 刘俊竹, 等, 2021. Fe3O4@还原氧化石墨烯纳米复合材料及其对四环素类抗生素的吸附研究[J]. 离子交换与吸附, 37(1): 76-87. |
WANG X F, ZHANG S, LIU J Z, et al., 2021. Research of Fe3O4@reduced graphene oxide nanocomposites for adsorptive removal of tetracycline antibiotics from aqueous solution[J]. Ion Exchange and Adsorption, 37(1): 76-87. | |
[80] | 王毅, 吴梦亚, 雷伟岩, 等, 2022. 氧化石墨烯负载Ag3PO4@聚苯胺复合材料的制备及其光催化性能[J]. 复合材料学报, 39(6): 2764-2773. |
WANG Y, WW M Y, LEI W Y, et al., 2022. Preparation of graphene oxide load Ag3PO4@polyaniline composite and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 39(6): 2764-2773. | |
[81] | 徐秀娟, 秦金贵, 李振. 2009. 石墨烯研究进展[J]. 化学进展, 21(12): 2559-2567. |
XU X J, QIN J G, LI Z, 2009. Research advances of graphene[J]. Progress in Chemistry, 21(12): 2559-2567. | |
[82] | 杨永岗, 陈成猛, 温月芳, 等, 2008. 氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 23(3): 193-200. |
YANG Y G, CHEN C M, WEN Y F, et al., 2008. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials, 23(3): 193-200. | |
[83] | 于艳, 徐珊, 郭晋邑, 等, 2021. 氧化石墨烯/ZnO光催化剂制备及其降解抗生素性能[J]. 分析科学学报, 37(1): 46-50. |
YU Y, XU S, GUO J Y, et al., 2021. Preparation of reduced graphene oxide/ZnO photocatalyst and degradation of antibiotics[J]. Journal of Analytical Science, 37(1): 46-50. | |
[84] | 张磊磊, 2017. 基于氧化石墨烯的复合材料 (Fe3O4/GO和GO/EY) 制备及其应用[D]. 成都: 成都理工大学. |
ZHANG L L, 2017. Preparation and application of composite materials (Fe3O4/GO and GO/EY) based on graphene oxide[D]. Chengdu: Chengdu University of Technology. | |
[85] | 张甜, 姜博, 邢奕, 等, 2021. 吸附法去除水中抗生素研究进展[J]. 环境工程, 39(3): 29-39. |
ZHANG T, JIANG B, XING Y, et al., 2021. Review on development of adsorption methosd to remove antibiotics from water[J]. Environmental Engineering, 39(3): 29-39. | |
[86] |
张芸秋, 梁勇明, 周建新, 2014. 石墨烯掺杂的研究进展[J]. 化学学报, 72(3): 367-377.
DOI |
ZHANG Y Q, LIANG Y M, ZHOU J X, 2014. Recent progress of graphene doping[J]. Acta Chemical Sinica, 72(3): 367-377. | |
[87] |
赵孟欣, 孟哲, 李和平, 等, 2020. 氧化石墨烯调控钼酸铋在可见光下选择性光催化降解环境水中的抗生素[J]. 高等学校化学学报, 41(11): 2479-2487.
DOI |
ZHAO M X, MENG Z, LI H P, et al., 2020. Photodegradation of antibiotic in environmental water by graphene oxide modulation bismuth molybdate under visible light Irradiation[J]. Chemical Journal of Chinese Universities, 41(11): 2479-2487.
DOI |
|
[88] | 郑佳佳, 郑有为, 朱根, 等, 2020. 氧化石墨烯薄膜去除水体中抗生素的研究进展[J]. 云南化工, 47(3): 13-14. |
ZHENG J J, ZHENG Y W, ZHU G, et al., 2020. Research progress of graphene oxide-based membrane for antibiotics removal from wate[J]. Yunnan Chemical Technology, 47(3): 13-14. | |
[89] | 郑乐媚, 关亦玮, 文定, 等, 2020. BiOBr/GO复合纳米光催化剂的制备及可见光下降解环丙沙星废水[J]. 环境化学, 39(8): 2137-2146. |
ZHENG L M, GUAN Y W, WEN D, et al., 2020. Preparation of BiOBr/GO composition nanocatalysts and application of degradation of ciprofloxacin wastewater in visible light[J]. Environmental Chemistry, 39(8): 2137-2146. | |
[90] | 周建红, 令玉林, 李友凤, 2021. GO@K2FeO4复合材料处理环丙沙星废水性能研究[J]. 遵义师范学院学报, 23(3): 106-108. |
ZHOU J H, LING Y L, LI Y F, 2021. A study on the performance of GO@K2FeO4 composite materials for the treatment of ciprofloxacin wastewater[J]. Journal of Zunyi Normal University, 23(3): 106-108. | |
[91] | 朱宏文, 段正康, 张蕾, 等, 2017. 氧化石墨烯的制备及结构研究进展[J]. 材料科学与工艺, 25(6): 82-88. |
ZHU H W, DUAN Z K, ZHANG L, et al., 2017. Review on preparation and structure of graphene oxide[J]. Materials Science and Technology, 25(6): 82-88. | |
[92] | 祝林, 2019. 生物质和GO/TiO2复合材料对四环素的吸附作用及其再生研究[D]. 合肥: 合肥工业大学. |
ZHU L, 2019. Adsorption performance of tetracycline by biomass carbonand GO/TiO2 composites and their regeneration capacity[D]. Hefei: Hefei University of Technology. |
[1] | 李佳蔓, 王晓明, 胡欣蕊, 谢莹莹, 文震. 铁硫比对施氏矿物微观结构及吸附铬性能的影响[J]. 生态环境学报, 2023, 32(8): 1478-1486. |
[2] | 王丽华, 王磊, 许端平, 薛杨. 煤胶体对重金属铜与镉的吸附特征研究[J]. 生态环境学报, 2023, 32(7): 1293-1300. |
[3] | 李桂英, 刘建莹, 安太成. 水体消毒过程中活的不可培养细菌的形成与复苏机制研究进展[J]. 生态环境学报, 2023, 32(7): 1333-1343. |
[4] | 彭双, 宋丹, 王一明, 林先贵. 土壤环境中四环素抗性基因向病原菌的转移研究[J]. 生态环境学报, 2023, 32(11): 1978-1987. |
[5] | 高晓宇, 王磊. 抗生素抗性基因在土壤中积累、转移与消减的研究进展[J]. 生态环境学报, 2023, 32(11): 2062-2071. |
[6] | 周永康, 余圣品, 李佳乐, 董一慧, 王萌, 赵齐灵, 李烨余. 土壤中抗生素的吸附行为与机理研究进展[J]. 生态环境学报, 2023, 32(11): 2072-2082. |
[7] | 侯冬梅, 张兰, 李春成, 陈露童, 王盼盼, 邹建平. 壳聚糖-生物铁锰氧化物去除水体中锑的性能及机理研究[J]. 生态环境学报, 2023, 32(10): 1842-1853. |
[8] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[9] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
[10] | 刘沙沙, 陈诺, 杨晓茵. 微塑料对有机污染物的吸附-解吸特性及其复合毒性效应研究进展[J]. 生态环境学报, 2022, 31(3): 610-620. |
[11] | 秦坤, 王志康, 王章鸿, 杨成, 刘杰刚, 沈德魁. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 2022, 31(2): 344-353. |
[12] | 汤家喜, 向彪, 李玉, 谭婷, 朱永乐, 甘建平. 硅藻土对水中氟化物的吸附特性研究[J]. 生态环境学报, 2022, 31(2): 335-343. |
[13] | 丛鑫, 王宇, 李瑶, 何洋洋. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 2022, 31(2): 326-334. |
[14] | 秦秦, 段海芹, 宋科, 孙丽娟, 孙雅菲, 周斌, 薛永. 常规施肥对土壤水稳性团聚体镉吸附解吸特性及化学形态的影响研究[J]. 生态环境学报, 2022, 31(12): 2403-2413. |
[15] | 姜晶, 阮呈杰, 陈霄宇, 吴仪, 汪永创. 微塑料模拟老化及其对污染物吸附行为影响研究进展[J]. 生态环境学报, 2022, 31(11): 2263-2274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||