生态环境学报 ›› 2023, Vol. 32 ›› Issue (11): 1901-1912.DOI: 10.16258/j.cnki.1674-5906.2023.11.001
• 研究论文 •
下一篇
何文宣1,2(), 李垒2,3, 孙思宇4, 李昌2, 李久义1,5, 田秀君1,5,*(
)
收稿日期:
2023-02-27
出版日期:
2023-11-18
发布日期:
2024-01-17
通讯作者:
* 田秀君。E-mail: xjtian@bjtu.edu.cn作者简介:
何文宣(1997年生),女,硕士研究生,主要从事水环境微塑料污染研究。E-mail: hwxbjtu@126.com
基金资助:
HE Wenxuan1,2(), LI Lei2,3, SUN Siyu4, LI Chang2, LI Jiuyi1,5, TIAN Xiujun1,5,*(
)
Received:
2023-02-27
Online:
2023-11-18
Published:
2024-01-17
摘要:
河流水体的微塑料污染已引起国内外的广泛关注,但对人类活动影响显著的城市排水河道不同水期多环境介质中的微塑料污染研究相对较少。为揭示城市排水河道微塑料分布规律,以北京市北运河水体为例,基于汛期和非汛期北运河表层水、沉积物和鱼类样品,分析统计了不同种类微塑料的时空分布特征,讨论了组成特征差异,揭示了北运河微塑料的主要来源。结果表明,北运河表层水中微塑料丰度为4.90-22.1 items∙L−1(汛期)和3.10-14.8 items∙L−1(非汛期);沉积物中微塑料丰度为0.74×103-2.88×103 items∙kg−1(汛期)和0.16×103-1.69×103 items∙kg−1(非汛期);鱼类肠道内微塑料的丰度为0.33-3.33 items∙ind−1。与国内外其他河流对比,北运河水体和沉积物的微塑料污染处于中等水平,鱼类微塑料污染程度较低。时间尺度上,表层水和沉积物中微塑料丰度均表现为汛期>非汛期。空间尺度上,汛期表层水的微塑料丰度表现为郊野段>城市段,非汛期表现为城市段>郊野段,不同水期沉积物微塑料丰度未显示显著的相关性。表层水以≤0.5 mm透明/白色聚乙烯和聚丙烯纤维为主导,沉积物以≤0.5 mm透明/白色聚乙烯/聚丙烯碎片为主导,鱼类中≤0.5 mm蓝色纤维素纤维最为丰富。杂食性鱼类肠道内微塑料的丰度显著高于肉食性,栖息水层对鱼类肠道内微塑料的丰度影响较小。北运河微塑料主要来源为人类日常生活、旅游业、渔业活动和污水排放。研究结果可为城市河流的微塑料污染研究提供基础数据,并为微塑料污染的管控和防治提供参考。
中图分类号:
何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912.
HE Wenxuan, LI Lei, SUN Siyu, LI Chang, LI Jiuyi, TIAN Xiujun. Distribution Characteristics of Microplastics in Water, Sediment and Fish in Beiyun River[J]. Ecology and Environment, 2023, 32(11): 1901-1912.
研究区域 | 孔径/μm | 提取方法 | 丰度范围/(items∙L−1) | 参考文献 |
---|---|---|---|---|
日本29条河流, 日本 | 100 | NaCl | 0-0.012 | Kataoka et al., |
Biobío河, 智利 | 50 | NaCl, SPT, NaClO | 0.003-0.026 | Correa-Araneda et al., |
大丰河, 中国 | 330 | 10%KOH | 3×10−4-2.5×10−3 (旱季), 4×10−5-9×10−4 (雨季) | Liu et al., |
青藏高原河流, 中国 | 45 | 30% H2O2, ZnCl2 | 0.48-0.97 | Jiang et al., |
海河, 中国 | 1.2 | 30% H2O2, NaCl | 2.64-18.5 | Liu et al., |
茅洲河, 中国 | 0.45 | 30%H2O2, ZnCl2 | 4-25.5 (4月), 3.5-10.5 (10月) | Wu et al., |
美舍河, 中国 | 48 | 30% H2O2 | 3-10 | Wen et al., |
成都城市河流, 中国 | 0.45 | 35% H2O2 | 5.0-10.5 | Chen et al., |
珠江, 中国 | 50 | 30% H2O2 | 8.73-53.3 | Yan et al., |
玛纳斯河, 中国 | 0.45 | 30%H2O2, NaCl | 21-49 | Wang et al., |
北运河, 中国 | 20 | 30%H2O2, ZnCl2 | 4.90-22.1 (汛期), 3.10-14.8 (非汛期) | 本研究 |
表1 国内外河流表层水中微塑料的丰度
Table 1 Abundance of microplastics in river surface waters at home and abroad
研究区域 | 孔径/μm | 提取方法 | 丰度范围/(items∙L−1) | 参考文献 |
---|---|---|---|---|
日本29条河流, 日本 | 100 | NaCl | 0-0.012 | Kataoka et al., |
Biobío河, 智利 | 50 | NaCl, SPT, NaClO | 0.003-0.026 | Correa-Araneda et al., |
大丰河, 中国 | 330 | 10%KOH | 3×10−4-2.5×10−3 (旱季), 4×10−5-9×10−4 (雨季) | Liu et al., |
青藏高原河流, 中国 | 45 | 30% H2O2, ZnCl2 | 0.48-0.97 | Jiang et al., |
海河, 中国 | 1.2 | 30% H2O2, NaCl | 2.64-18.5 | Liu et al., |
茅洲河, 中国 | 0.45 | 30%H2O2, ZnCl2 | 4-25.5 (4月), 3.5-10.5 (10月) | Wu et al., |
美舍河, 中国 | 48 | 30% H2O2 | 3-10 | Wen et al., |
成都城市河流, 中国 | 0.45 | 35% H2O2 | 5.0-10.5 | Chen et al., |
珠江, 中国 | 50 | 30% H2O2 | 8.73-53.3 | Yan et al., |
玛纳斯河, 中国 | 0.45 | 30%H2O2, NaCl | 21-49 | Wang et al., |
北运河, 中国 | 20 | 30%H2O2, ZnCl2 | 4.90-22.1 (汛期), 3.10-14.8 (非汛期) | 本研究 |
种类 | 栖息 水层 | 食性 | 数量 | 体长/ cm | 体质量/ g |
---|---|---|---|---|---|
红鳍原鲌 Chanodichthys erythropterus | 上层 | 肉食性 | 7 | 14.2± 1.08 | 23.4± 5.31 |
䱗 Hemiculter leucisculus | 中上层 | 杂食性 | 3 | 12.6± 1.39 | 16.8± 5.20 |
棒花鱼 Abbottina rivularis | 下层 | 杂食性 | 3 | 10.5± 0.01 | 10.6± 0.17 |
鲫 Carassius auratus | 下层 | 杂食性 | 3 | 15.7± 1.52 | 60.6± 44.0 |
河川沙塘鳢 Odontobutis potamophilus | 下层 | 肉食性 | 6 | 12.3± 1.13 | 35.3± 5.91 |
泥鳅 Misgurnus anguillicaudatus | 下层 | 杂食性 | 5 | 15.3± 1.29 | 21.7± 6.53 |
表2 北运河鱼类的基本信息
Table 2 Basic information on the fish of the Beiyun River
种类 | 栖息 水层 | 食性 | 数量 | 体长/ cm | 体质量/ g |
---|---|---|---|---|---|
红鳍原鲌 Chanodichthys erythropterus | 上层 | 肉食性 | 7 | 14.2± 1.08 | 23.4± 5.31 |
䱗 Hemiculter leucisculus | 中上层 | 杂食性 | 3 | 12.6± 1.39 | 16.8± 5.20 |
棒花鱼 Abbottina rivularis | 下层 | 杂食性 | 3 | 10.5± 0.01 | 10.6± 0.17 |
鲫 Carassius auratus | 下层 | 杂食性 | 3 | 15.7± 1.52 | 60.6± 44.0 |
河川沙塘鳢 Odontobutis potamophilus | 下层 | 肉食性 | 6 | 12.3± 1.13 | 35.3± 5.91 |
泥鳅 Misgurnus anguillicaudatus | 下层 | 杂食性 | 5 | 15.3± 1.29 | 21.7± 6.53 |
图3 北运河汛期和非汛期表层水中微塑料的时空丰度差异 图中a为微塑料的丰度图、b为时间对比图、c为空间对比图;*表示P<0.05,**表示P<0.01
Figure 3 Spatial and temporal abundance differences of microplastics in flood and non-flood surface water of the Beiyun River
图4 北运河不同水期表层水和沉积物中微塑料的组成特征 图中a为微塑料的形状占比图、b为粒径占比图、c为颜色占比图、d为聚合物类型占比图
Figure 4 Characterization of microplastic composition in surface water and sediments of the Beiyun River during different water periods
图6 北运河汛期和非汛期沉积物中微塑料的时空丰度差异 图中a为微塑料的丰度图、b为时间对比图、c为空间对比图;*表示P<0.05,**表示P<0.01
Figure 6 Spatial and temporal abundance differences of microplastics in flood and non-flood sediments of the Beiyun River
研究区域 | 孔径/μm | 提取方法 | 丰度范围/(103 items∙kg−1) | 参考文献 |
---|---|---|---|---|
布里斯班河, 澳大利亚 | 0.45 | ZnCl2 | 0.01-0.52 | He et al., |
维斯瓦河, 波兰 | 1.6 | NaCl | 0.19-0.58 | Sekudewicz et al., |
长江, 中国 | 0.45 | 30% KOH꞉NaClO (1꞉1) | 0.007-0.788 | Yuan et al., |
湘江, 中国 | 0.22 | 30% H2O2+Fe(Ⅱ), ZnCl2 | 0.144-0.510 | Yin et al., |
亚马逊河, 中国 | 63 | 30%H2O2, ZnCl2 | 0.417-2.10 | Gerolin et al., |
上海城市河流, 中国 | 1 | NaCl | 0.41-1.54 | Peng et al., |
海河, 中国 | 1.2 | 30% H2O2, NaCl | 1.35-11.9 | Liu et al., |
西河, 中国 | 0.45 | 30% H2O2, NaCl | 2.56-10.2 | Huang et al., |
北运河, 中国 | 20 | 30% H2O2, ZnCl2, NaCl | 0.74-2.88 (汛期), 0.16-1.69 (非汛期) | 本研究 |
表3 国内外河流沉积物中微塑料的丰度
Table 3 Abundance of microplastics in river sediment at home and abroad
研究区域 | 孔径/μm | 提取方法 | 丰度范围/(103 items∙kg−1) | 参考文献 |
---|---|---|---|---|
布里斯班河, 澳大利亚 | 0.45 | ZnCl2 | 0.01-0.52 | He et al., |
维斯瓦河, 波兰 | 1.6 | NaCl | 0.19-0.58 | Sekudewicz et al., |
长江, 中国 | 0.45 | 30% KOH꞉NaClO (1꞉1) | 0.007-0.788 | Yuan et al., |
湘江, 中国 | 0.22 | 30% H2O2+Fe(Ⅱ), ZnCl2 | 0.144-0.510 | Yin et al., |
亚马逊河, 中国 | 63 | 30%H2O2, ZnCl2 | 0.417-2.10 | Gerolin et al., |
上海城市河流, 中国 | 1 | NaCl | 0.41-1.54 | Peng et al., |
海河, 中国 | 1.2 | 30% H2O2, NaCl | 1.35-11.9 | Liu et al., |
西河, 中国 | 0.45 | 30% H2O2, NaCl | 2.56-10.2 | Huang et al., |
北运河, 中国 | 20 | 30% H2O2, ZnCl2, NaCl | 0.74-2.88 (汛期), 0.16-1.69 (非汛期) | 本研究 |
[1] |
ALAM F C, SEMBIRING E, MUNTALIF B S, et al., 2019. Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia)[J]. Chemosphere, 224: 637-645.
DOI PMID |
[2] |
BIAN P Y, LIU Y X, ZHAO K H, et al., 2022. Spatial variability of microplastic pollution on surface of rivers in a mountain-plain transitional area: A case study in the Chin Ling-Wei River Plain, China[J]. Ecotoxicology and Environmental Safety, 232: 113298.
DOI URL |
[3] |
CHEN J, DENG Y E, CHEN Y, et al., 2022b. Distribution patterns of microplastics pollution in urban fresh waters: A case study of rivers in Chengdu, China[J]. International Journal of Environmental Research and Public Health, 19(15): 8972.
DOI URL |
[4] |
CHEN X C, XIONG X, JIANG X M, et al., 2019. Sinking of floating plastic debris caused by biofilm development in a freshwater lake[J]. Chemosphere, 222: 856-864.
DOI PMID |
[5] |
CHEN Y L, SHEN Z X, LI G J, et al., 2022a. Factors affecting microplastic accumulation by wild fish: A case study in the Nandu River, South China[J]. Science of The Total Environment, 847: 157486.
DOI URL |
[6] |
CORREA-ARANEDA F, PÉREZ J, TONIN A M, et al., 2022. Microplastic concentration, distribution and dynamics along one of the largest Mediterranean-climate rivers: A whole watershed approach[J]. Environmental Research, 209: 112808.
DOI URL |
[7] |
CREW A, GREGORY-EAVES I, RICCIARDI A, 2020. Distribution, abundance, and diversity of microplastics in the upper St. Lawrence River[J]. Environmental Pollution, 260(15): 113994.
DOI URL |
[8] |
DEVEREUX R, WESTHEAD E K, JAYARATNE R, et al., 2022. Microplastic abundance in the Thames River during the new year period[J]. Marine Pollution Bulletin, 177: 113534.
DOI URL |
[9] | DI M X, WANG J, 2018. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of The Total Environment, 616-617: 1620-1627. |
[10] |
DRIS R, GASPERI J, ROCHER V, et al., 2015. Microplastic contamination in an urban area: A case study in Greater Paris[J]. Environmental Chemistry, 12(5): 592-599.
DOI URL |
[11] |
EO S, HONG S H, SONG Y K, et al., 2019. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea[J]. Water Research, 160: 228-237.
DOI PMID |
[12] |
FENG S S, LU H W, YAO T C, et al., 2021. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau[J]. Journal of Hazardous Materials, 417: 126034.
DOI URL |
[13] |
GAGO J, CARRETERO O, FILGUEIRAS A V, et al., 2018. Synthetic microfibers in the marine environment: A review on their occurrence in seawater and sediments[J]. Marine Pollution Bulletin, 127: 365-376.
DOI PMID |
[14] |
GAO Y, FAN K Y, WANG C, et al., 2022. Abundance, Composition, and potential ecological risks of microplastics in surface water at different seasons in the Pearl River Delta, China[J]. Water, 14(16): 2545.
DOI URL |
[15] |
GEROLIN C R, PUPIM F N, SAWAKUCHI A O, et al., 2020. Microplastics in sediments from Amazon rivers, Brazil[J]. Science of The Total Environment, 749: 141604.
DOI URL |
[16] |
GEYER R, JAMBECK J R, LAW K L, 2017. Production, use, and fate of all plastics ever made[J]. Science Advances, 3(7): e1700782.
DOI URL |
[17] |
HE B B, GOONETILLEKE A, AYOKO G A, et al., 2020. Abundance, distribution patterns, and identification of microplastics in Brisbane River sediments, Australia[J]. Science of The Total Environment, 700: 134467.
DOI URL |
[18] |
HERNANDEZ E, NOWACK B, MITRANO D M, 2017. Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing[J]. Environmental Science & Technology, 51(12): 7036-7046.
DOI URL |
[19] |
HOSSAIN M J, AFTABUDDIN S, AKHTER F, et al., 2022. Surface water, sediment, and biota: The first multi-compartment analysis of microplastics in the Karnafully river, Bangladesh[J]. Marine Pollution Bulletin, 180: 113820.
DOI URL |
[20] |
HU B, GUO P Y, HAN S Y, et al., 2022. Distribution characteristics of microplastics in the soil of mangrove restoration wetland and the effects of microplastics on soil characteristics[J]. Ecotoxicology, 31(7): 1120-1136.
DOI |
[21] |
HUANG C W, LI Y L, LIN C, et al., 2023. Seasonal influence on pollution index and risk of multiple compositions of microplastics in an urban river[J]. Science of The Total Environment, 859(Part 1): 160021.
DOI URL |
[22] |
HUANG D F, LI X Y, OUYANG Z Z, et al., 2021. The occurrence and abundance of microplastics in surface water and sediment of the West River downstream, in the south of China[J]. Science of The Total Environment, 756: 143857.
DOI URL |
[23] |
HUANG Y L, TIAN M, JIN F, et al., 2020. Coupled effects of urbanization level and dam on microplastics in surface waters in a coastal watershed of Southeast China[J]. Marine Pollution Bulletin, 154: 111089.
DOI URL |
[24] |
JABEEN K, SU L, LI J, et al., 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China[J]. Environmental Pollution, 221: 141-149.
DOI PMID |
[25] |
JIA Q L, DUAN Y S, HAN X L, et al., 2022. Atmospheric deposition of microplastics in the megalopolis (Shanghai) during rainy season: Characteristics, influence factors, and source[J]. Science of The Total Environment, 847: 157609.
DOI URL |
[26] |
JIANG C B, YIN L S, LI Z W, et al., 2019. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 249: 91-98.
DOI PMID |
[27] |
JIN X, FU X D, LU W J, et al., 2023. The effects of riverside cities on microplastics in river water: A case study on the Southern Jiangsu Canal, China[J]. Science of The Total Environment, 858(Part 2): 159783.
DOI URL |
[28] |
KANHAI L K, OFFICER R, LYASHEVSKA O, et al., 2017. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean[J]. Marine Pollution Bulletin, 115(1-2): 307-314.
DOI PMID |
[29] |
KATAOKA T, NIHEI Y, KUDOU K, et al., 2019. Assessment of the sources and inflow processes of microplastics in the river environments of Japan[J]. Environmental Pollution, 244: 958-965.
DOI PMID |
[30] |
KIEU-LE T C, THUONG Q T, TRUONG T N S, et al., 2023. Baseline concentration of microplastics in surface water and sediment of the northern branches of the Mekong River Delta, Vietnam[J]. Marine Pollution Bulletin, 187(1): 114605.
DOI URL |
[31] |
KUNZ A, SCHNEIDER F, ANTHONY N, et al., 2023. Microplastics in rivers along an urban-rural gradient in an urban agglomeration: Correlation with land use, potential sources and pathways[J]. Environmental Pollution, 321: 121096.
DOI URL |
[32] |
LAHENS L, STRADY E, KIEU-LE T C, et al., 2018. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity[J]. Environmental Pollution, 236: 661-671.
DOI PMID |
[33] |
LI J L, OUYANG Z Z, LIU P, et al., 2021. Distribution and characteristics of microplastics in the basin of Chishui River in Renhuai, China[J]. Science of The Total Environment, 773: 145591.
DOI URL |
[34] |
LI J N, YANG D Q, LI L, et al., 2015. Microplastics in commercial bivalves from China[J]. Environmental Pollution, 207: 190-195.
DOI PMID |
[35] |
LIU S, CHEN H, WANG J Z, et al., 2021a. The distribution of microplastics in water, sediment, and fish of the Dafeng River, a remote river in China[J]. Ecotoxicology and Environmental Safety, 228: 113009.
DOI URL |
[36] |
LIU Y, ZHANG J D, CAI C Y, et al., 2020. Occurrence and characteristics of microplastics in the Haihe River: An investigation of a seagoing river flowing through a megacity in northern China[J]. Environmental Pollution, 262: 114261.
DOI URL |
[37] |
LIU Y, ZHANG J D, TANG Y, et al., 2021b. Effects of anthropogenic discharge and hydraulic deposition on the distribution and accumulation of microplastics in surface sediments of a typical seagoing river: The Haihe River[J]. Journal of Hazardous Materials, 404(Part B): 124180.
DOI URL |
[38] |
MERGA L B, REDONDO-HASSELERHARM P E, VAN DEN BRINK P J, et al., 2020. Distribution of microplastic and small macroplastic particles across four fish species and sediment in an African lake[J]. Science of the Total Environment, 741:140527.
DOI URL |
[39] |
NUELLE M T, DEKIFF J H, REMY D, et al., 2014. A new analytical approach for monitoring microplastics in marine sediments[J]. Environmental Pollution, 184: 161-169.
DOI URL |
[40] |
PARK T J, LEE S H, LEE M S, et al., 2020. Occurrence of microplastics in the Han River and riverine fish in South Korea[J]. Science of The Total Environment, 708: 134535.
DOI URL |
[41] |
PENG G Y, XU P, ZHU B S, et al., 2018. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities[J]. Environmental Pollution, 234: 448-456.
DOI PMID |
[42] |
SAAD D, CHAUKE P, CUKROWSKA E, et al., 2022. First biomonitoring of microplastic pollution in the Vaal river using Carp fish (Cyprinus carpio) “as a bio-indicator”[J]. Science of The Total Environment, 836: 155623.
DOI URL |
[43] |
SAMANDRA S, SINGH J, PLAISTED K, et al., 2023. Quantifying environmental emissions of microplastics from urban rivers in Melbourne, Australia[J]. Marine Pollution Bulletin, 189: 114709.
DOI URL |
[44] |
SCHERER C, WEBER A, STOCK F, et al., 2020. Comparative assessment of microplastics in water and sediment of a large European river[J]. Science of The Total Environment, 738: 139866.
DOI URL |
[45] |
SEKUDEWICZ I, DABROWSKA A M, SYCZEWSKI M D, 2021. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland)[J]. Science of The Total Environment, 762: 143111.
DOI URL |
[46] |
SULISTYOWATI L, NURHASANAH, RIANI E, et al., 2022. The occurrence and abundance of microplastics in surface water of the midstream and downstream of the Cisadane River, Indonesia[J]. Chemosphere, 291(Part 3): 133071.
DOI URL |
[47] |
SUN J, DAI X H, WANG Q L, et al., 2019. Microplastics in wastewater treatment plants: Detection, occurrence and removal[J]. Water Research, 152: 21-37.
DOI PMID |
[48] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al., 2004. Lost at sea: Where is all the plastic?[J]. Science, 304(5672): 838-838.
PMID |
[49] |
TIEN C J, WANG Z X, CHEN C S., 2020. Microplastics in water, sediment and fish from the Fengshan River system: Relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish[J]. Environmental Pollution, 265(Part B): 114962.
DOI URL |
[50] |
WAGNER S, KLOCKNER P, STIER B, et al., 2019. Relationship between discharge and river plastic concentrations in a rural and an urban catchment[J]. Environmental Science & Technology, 53(17): 10082-10091.
DOI URL |
[51] |
WANG G L, LU J J, TONG Y B, et al., 2020a. Occurrence and pollution characteristics of microplastics in surface water of the Manas River Basin, China[J]. Science of The Total Environment, 710: 136099.
DOI URL |
[52] |
WANG S D, ZHANG C N, PAN Z K, et al., 2020b. Microplastics in wild freshwater fish of different feeding habits from Beijiang and Pearl River Delta regions, south China[J]. Chemosphere, 258: 127345.
DOI URL |
[53] |
WANG X J, BOLAN N, TSANG D C W, et al., 2021, A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications[J]. Journal of Hazardous Materials, 402: 123496.
DOI URL |
[54] |
WEI Y T, DOU P, XU D Y, et al., 2022. Microplastic reorganization in urban river before and after rainfall[J]. Environmental Pollution, 314: 120326.
DOI URL |
[55] |
WEN S B, YU C W, LIN F, et al., 2022. Comparative assessment of microplastics in surface water and sediments of Meishe River, Haikou, China[J]. Sustainability, 14(20): 13099.
DOI URL |
[56] |
WU F X, WANG J F, JIANG S H, et al., 2022. Effect of cascade damming on microplastics transport in rivers: A large-scale investigation in Wujiang River, Southwest China[J]. Chemosphere, 299: 134455.
DOI URL |
[57] |
WU P F, TANG Y Y, DANG M, et al., 2020. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area[J]. Science of The Total Environment, 717: 135187.
DOI URL |
[58] |
XU C Y, ZHOU G, LU J W, et al., 2022. Spatio-vertical distribution of riverine microplastics: Impact of the textile industry[J]. Environmental Research, 211: 112789.
DOI URL |
[59] |
XU Y Y, CHAN F K S, JOHNSON M, et al., 2021. Microplastic pollution in Chinese urban rivers: The influence of urban factors[J]. Resources, Conservation and Recycling, 173: 105686.
DOI URL |
[60] |
YAN M T, NIE H Y, XU K H, et al., 2019. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China[J]. Chemosphere, 217: 879-886.
DOI PMID |
[61] |
YIN L S, WEN X F, HUANG D L, et al., 2022. Abundance, characteristics, and distribution of microplastics in the Xiangjiang river, China[J]. Gondwana Research, 107: 123-133.
DOI URL |
[62] |
YUAN W K, CHRISTIE-OLEZA J A, XU E G, et al., 2022. Environmental fate of microplastics in the world’s third-largest river: Basin-wide investigation and microplastic community analysis[J]. Water Research, 210: 118002.
DOI URL |
[63] |
YUAN W K, LIU X N, WANG W F, et al., 2019. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 170: 180-187.
DOI PMID |
[64] |
ZHAO W L, HUANG W, YIN M C, et al., 2020. Tributary inflows enhance the microplastic load in the estuary: A case from the Qiantang River[J]. Marine Pollution Bulletin, 156: 111152.
DOI URL |
[65] |
ZHAO X L, LIU Z H, CAI L, et al., 2023. Occurrence and distribution of microplastics in surface sediments of a typical river with a highly eroded catchment, a case of the Yan River, a tributary of the Yellow River[J]. Science of The Total Environment, 863:160932.
DOI URL |
[66] |
ZHOU G Y, WANG Q G, ZHANG J, et al., 2020. Distribution and characteristics of microplastics in urban waters of seven cities in the Tuojiang River basin, China[J]. Environmental Research, 189: 109893.
DOI URL |
[67] | 崔盼盼, 张晶晶, 胥荣威, 等, 2022. 纤维微塑料污染的产生及其影响因素[J]. 纺织学报, 43(3): 193-200. |
CUI P P, ZHANG J J, XU R W, et al., 2021. Pollution of fibrous microplastics and its influencing factors[J]. Journal of Textile Research, 43(3):193-200. | |
[68] | 邸琰茗, 黄炳彬, 叶芝菡, 等, 2020. 北运河生态健康快速评价研究[J]. 北京水务 (4): 52-58. |
DI Y M, HUANG B B, YE Z H, et al., 2020. Study on the rapid evaluation of ecological health in the North Canal[J]. Beijing Water (4): 52-58. | |
[69] |
樊珂宇, 高原, 赖子尼, 等, 2022. 珠三角河网鱼类微塑料污染特征研究[J]. 生态环境学报, 31(8): 1590-1598.
DOI |
FAN K Y, GAO Y, LAI Z N, et al., 2022. Characteristics of microplastic pollution in fish in the Pearl River Delta[J]. Ecology and Environmental Sciences, 31(8): 1590-1598. | |
[70] | 范梦苑, 黄懿梅, 张海鑫, 等, 2022. 湟水河流域地表水体微塑料分布, 风险及影响因素[J]. 环境科学, 43(10): 4430-4439. |
FAN M Y, HUANG Y M, ZHANG H X, et al., 2022. Distribution, risk, and influencing factors of microplastics in surface water of Huangshui River basin[J]. 43(10): 4430-4439. | |
[71] | 胡嘉敏, 左剑恶, 李頔, 等, 2021. 北京城市河流河水和沉积物中微塑料的组成与分布[J]. 环境科学, 42(11): 5275-5283. |
HU J M, ZUO J E, LI D, et al., 2021. Composition and distribution of microplastics in the water and sediments of urban rivers in Beijing[J]. Environmental Science, 42(11): 5275-5283. | |
[72] | 李高俊, 熊雄, 詹晨熙, 等, 2022. 南渡江水体微塑料污染现状研究[J]. 环境科学学报, 42(2): 205-212. |
LI G J, XIONG X, ZHAN C X, et al., 2022. Occurrence of microplastics in the water of the Nandu Jiang River[J]. Acta Scientiae Circumstantiae, 42(2): 205-212. | |
[73] | 李晓玉, 王鹏, 邵光艺, 等, 2022. 基于水面无人船快速监测的温榆河-北运河水质分析与评价[J]. 环境化学, 41(5): 1568-1578. |
LI X Y, WANG P, SHAO G Y, et al., 2022. Water quality assessment of partial Wenyu River-Beiyun River (Tongzhou section) based on rapid monitoring of unmanned surface vehicle[J]. Environmental Chemistry, 41(5): 1568-1578. | |
[74] | 刘思琪, 唐文乔, 2022. 上海主要河流鱼类肠道内的微塑料污染研究[J]. 长江流域资源与环境, 31(6): 1324-1333. |
LIU S Q, TANG W Q, 2022. Investigation on microplastic pollution of the fish in main rivers of Shanghai[J]. Resources and Environment in the Yangtze Basin, 31(6): 1324-1333. | |
[75] | 门聪, 李頔, 左剑恶, 等, 2022. 北京市通州区河流中微塑料组成的空间分布及潜在来源解析[J]. 环境科学, 43(7): 3656-3663. |
MEN C, LI D, ZUO J E, et al., 2022. Spatial variation and potential sources of microplastics in rivers in Tongzhou district, Beijing[J]. Environmental Science, 43(7): 3656-3663.
DOI URL |
|
[76] | 莫晶, 杨青瑞, 彭文启, 等, 2021. 生态补水后永定河北京山区段河流生境质量评价[J]. 中国农村水利水电 (2): 30-36. |
MO J, YANG Q R, PENG W Q, et al., 2021. Habitat quality evaluation of Yongding River in Beijing mountain section after ecological rehydration[J]. China Rural Water and Hydropower (2): 30-36. | |
[77] | 潘雄, 林莉, 张胜, 等, 2021. 丹江口水库及其入库支流水体中微塑料组成与分布特征[J]. 环境科学, 42(3): 1372-1379. |
PAN X, LIN L, ZHANG S, et al., 2021. Composition and distribution characteristics of microplastics in Danjiangkou Reservoir and its tributaries[J]. Environmental Science, 42(3): 1372-1379. | |
[78] | 孙思宇, 孟悦, 李垒, 等, 2022. 北运河流域水质时空分布特征及综合评价[J]. 北京水务 (1): 29-34. |
SUN S Y, MENG Y, LI L, et al., 2022. Temporal and spatial distribution characteristic and evaluation analysis of surface water quality in Beiyun River[J]. Beijing Water (1): 29-34. | |
[79] | 杨毅, 唐伟明, 刘军梅, 2017. 北京城市副中心河湖环境用水配置初步构想[J]. 水利发展研究, 17(1): 58-62. |
YANG Y, TANG W M, LIU J M, 2017. Preliminary conception of environmental water allocation in sub-central rivers and lakes of Beijing City[J]. Water Resources Development Research, 17(1): 58-62. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[3] | 童永杰, 汪毅, 华玉妹, 赵建伟, 刘广龙, 蒋永参. 有机电子供体影响下硝酸盐和铁对磷转化的驱动作用[J]. 生态环境学报, 2023, 32(7): 1263-1274. |
[4] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[5] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[6] | 张广毅, 张嘉涛, 王晓伟. 湖泊底泥微生物燃料电池中磷形态分布及释放研究[J]. 生态环境学报, 2023, 32(3): 590-598. |
[7] | 杨奇丽, 窦韦丽, 刘之文, 郭景, 吕刚. 正构烷烃示源的阜新细河河道石油烃类污染特征及其影响因素分析[J]. 生态环境学报, 2023, 32(3): 599-608. |
[8] | 李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420. |
[9] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[10] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[11] | 李双双, 蔡铭灿, 汪庆, 齐丽英, 魏贺红, 王纯. 淡水环境中微塑料与生物膜的相互作用及其生态效应研究进展[J]. 生态环境学报, 2023, 32(11): 2041-2049. |
[12] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
[13] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
[14] | 樊艳翔, 雷社平, 解建仓. 广东省河流水体富营养化综合评价及分异特征——基于博弈论组合赋权法与VIKOR模型[J]. 生态环境学报, 2023, 32(10): 1811-1821. |
[15] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||