生态环境学报 ›› 2023, Vol. 32 ›› Issue (12): 2115-2127.DOI: 10.16258/j.cnki.1674-5906.2023.12.004
收稿日期:
2023-08-16
出版日期:
2023-12-18
发布日期:
2024-02-05
通讯作者:
*汤家喜。E-mail: tangjiaxi1986@163.com作者简介:
郝丽宇(1997年生),女,硕士研究生,研究方向为环境污染与生态修复。E-mail: hly12345ssdlh@163.com
基金资助:
HAO Liyu1(), HE Miaomiao2, TANG Jiaxi1,3,*(
)
Received:
2023-08-16
Online:
2023-12-18
Published:
2024-02-05
摘要:
全氟化合物(PFASs)是一类具有特殊结构的新型环境污染物,作为一种人工合成的持久性有机化合物,已被广泛应用于消防、工业等多领域,因其对环境的持久性和生物毒性而受到全球关注。PFASs在自然环境中不易降解,且具有一定的亲水性,导致河流水体成为了PFASs的重要的源和汇,对水环境造成了一定的危害。近年来,国内外学者研究并提出了多种有效去除PFASs的修复技术,以减轻其对环境和人体的有害影响。该文简述了PFASs的来源,氟化工企业是环境介质中PFASs的重要来源之一。分析了PFASs在河流水体中的污染现状,河流水体中PFASs的主要来源为点源和非点源,然而非点源污染,尤其是胶体载带PFASs的污染也应加以关注并亟待解决。阐明了河流水体中PFASs的来源与迁移途径,其中工业园区是PFASs的主要来源。该文还总结了水环境中PFASs的物理化学修复技术(吸附技术、过滤技术、化学氧化技术、光化学氧化技术,电化学氧化技术和声化学技术),并对比分析了不同修复技术作用效果的优缺点及未来的发展方向。重点探究了水环境中PFASs非点源的原位修复技术(河岸过滤系统、植物修复技术、人工湿地和生态缓冲带)的修复效果及作用机制。在此基础上,提出了生物炭与生态缓冲带联合修复技术,阻控水环境中PFASs非点源污染,并对其技术的潜力进行了展望。该文旨在为河流水体中PFASs的修复技术提供有效的支持和建议。
中图分类号:
郝丽宇, 何苗苗, 汤家喜. 河流水体全氟化合物的污染现状及修复技术研究进展[J]. 生态环境学报, 2023, 32(12): 2115-2127.
HAO Liyu, HE Miaomiao, TANG Jiaxi. Research Progress on Pollution Situation and Remediation Technology of Perfluoroalkyl Substances in River Water[J]. Ecology and Environment, 2023, 32(12): 2115-2127.
名称 | 基本结构 |
---|---|
PFOA 全氟辛酸 | |
PFOS 全氟辛烷磺酸 | |
PFNA 全氟壬二酸 | |
PFDA 全氟癸酸 | |
PFUnDA 全氟十一酸 | |
PFDoDA 全氟十二烷酸 | |
PFTrDA 全氟十三酸 | |
PFTDA 全氟十四酸 | |
表1 常见的PFASs
Table 1 Common PFASs
名称 | 基本结构 |
---|---|
PFOA 全氟辛酸 | |
PFOS 全氟辛烷磺酸 | |
PFNA 全氟壬二酸 | |
PFDA 全氟癸酸 | |
PFUnDA 全氟十一酸 | |
PFDoDA 全氟十二烷酸 | |
PFTrDA 全氟十三酸 | |
PFTDA 全氟十四酸 | |
流域 | PFASs数量 | 质量浓度/(ng∙L−1) | 参考文献 | ||
---|---|---|---|---|---|
∑PFASs | PFOS | PFOA | |||
印度南部流域 | 13 | 0.39‒3.32 | 0.19‒0.65 | 0.23‒1.06 | Selvaraj et al., |
洛东江 (韩国) | 12 | 0.22‒73.90 | 0.12‒33.20 | 0.12‒42.20 | Lam et al., |
易北河 (德国) | 17 | 7.10‒27.60 | 0.50‒2.90 | 2.80‒9.60 | Ahrens et al., |
布里斯班河 (澳大利亚) | 7 | 0.83‒40.00 | 0.18‒15.00 | 0.13‒1.60 | Gallen et al., |
红河 (越南) | 10 | 4.00‒17.00 | 0.18‒5.30 | 0.09‒18.00 | Duong et al., |
长江 (中国) | 18 | 2.20‒174.56 | 0.23‒12.22 | 6.81‒15.61 | Pan et al., |
黄河 (中国) | 17 | 7.75‒121.63 | 0.95‒15.37 | 0.96‒14.15 | Wang et al., |
珠江 (中国) | 13 | 3.00‒52.00 | 0.71‒8.70 | 0.56‒11.00 | Zhang et al., |
松花江 (中国) | 15 | 6.40‒32.00 | ND | ND‒1.70 | Zhang et al., |
海河 (中国) | 9 | 12.00‒174.00 | 2.02‒17.62 | 14.40‒42.10 | Li et al., |
大凌河 (中国) | 11 | 1.77‒9540.00 | 0.16‒483.00 | ND‒2280.00 | Zhu et al., |
辽河 (中国) | 11 | 44.40‒781.00 | 0.09‒9.50 | 0.67‒61.60 | Chen et al., |
表2 国内外流域水体中溶解态PFASs的质量浓度水平
Table 2 Concentration levels of dissolved PFASs in waters of domestic and international watersheds
流域 | PFASs数量 | 质量浓度/(ng∙L−1) | 参考文献 | ||
---|---|---|---|---|---|
∑PFASs | PFOS | PFOA | |||
印度南部流域 | 13 | 0.39‒3.32 | 0.19‒0.65 | 0.23‒1.06 | Selvaraj et al., |
洛东江 (韩国) | 12 | 0.22‒73.90 | 0.12‒33.20 | 0.12‒42.20 | Lam et al., |
易北河 (德国) | 17 | 7.10‒27.60 | 0.50‒2.90 | 2.80‒9.60 | Ahrens et al., |
布里斯班河 (澳大利亚) | 7 | 0.83‒40.00 | 0.18‒15.00 | 0.13‒1.60 | Gallen et al., |
红河 (越南) | 10 | 4.00‒17.00 | 0.18‒5.30 | 0.09‒18.00 | Duong et al., |
长江 (中国) | 18 | 2.20‒174.56 | 0.23‒12.22 | 6.81‒15.61 | Pan et al., |
黄河 (中国) | 17 | 7.75‒121.63 | 0.95‒15.37 | 0.96‒14.15 | Wang et al., |
珠江 (中国) | 13 | 3.00‒52.00 | 0.71‒8.70 | 0.56‒11.00 | Zhang et al., |
松花江 (中国) | 15 | 6.40‒32.00 | ND | ND‒1.70 | Zhang et al., |
海河 (中国) | 9 | 12.00‒174.00 | 2.02‒17.62 | 14.40‒42.10 | Li et al., |
大凌河 (中国) | 11 | 1.77‒9540.00 | 0.16‒483.00 | ND‒2280.00 | Zhu et al., |
辽河 (中国) | 11 | 44.40‒781.00 | 0.09‒9.50 | 0.67‒61.60 | Chen et al., |
修复技术 | 材料 | 过程 | 优缺点 | 参考文献 |
---|---|---|---|---|
吸附 | 吸附材料 (活性炭、改性生物质、树脂等) | 选用不同种类的吸附剂来吸附PFASs, 以达到去除的效果 | 去除效果好, 但操作维护成本高 | Nzerib et al., |
过滤 | 过滤材料 (纳滤膜和反渗透膜等) | 常用反渗透膜和纳滤膜分离PFASs | 去除效果好, 操作简单, 但膜的替换与高质量浓度滞留液的处理会使成本增高 | Rahman et al., |
高级氧化技术AOPs | 氧化剂(过氧化氢、过硫酸钠、高锰酸钾、高锰酸钠、臭氧等) | 使溶液中产生强氧化性的羟基-OH, 与溶液中的PFASs反应, 转化成为无毒可降解的副产物 | 反应速度慢, 成本高, 氧化过程中产生的短链PFASs可能造成二次污染, 可与其他方法结合使用 | Park et al., |
光化学氧化技术 | 紫外线,可见光等 | 利用紫外线或可见光产生水合电子来去除PFASs | 绿色环保, 可减少二次污染, 但效率低, 成本高, 无法大规模使用 | Chen et al., |
电化学氧化技术 | 电极 (石墨烯, 二氧化铅、氧化钛、二氧化锡等) | 通过直接或间接阳极氧化, 将PFASs吸附在电极上, 被电极直接降解, 或与其他液体反应进行降解 | 去除效率高, 反应时间短, 但反应过程中会产生短链PFASs和有毒副产物, 成本高 | Wang et al., |
声化学技术 | 超声辐射 | 高级氧化处理的一种, 利用超声波辐照形成高温气泡与氧化性强的物质来降解PFASs | 无法大规模使用, 成本高,受外界影响因素多 (如溶液pH、黏滞系数、表面张力系数、溶液温度等) | Dorrance et al., |
表3 水环境中PFASs的物理化学修复技术
Table 3 Physicochemical remediation of PFASs in the aquatic environment
修复技术 | 材料 | 过程 | 优缺点 | 参考文献 |
---|---|---|---|---|
吸附 | 吸附材料 (活性炭、改性生物质、树脂等) | 选用不同种类的吸附剂来吸附PFASs, 以达到去除的效果 | 去除效果好, 但操作维护成本高 | Nzerib et al., |
过滤 | 过滤材料 (纳滤膜和反渗透膜等) | 常用反渗透膜和纳滤膜分离PFASs | 去除效果好, 操作简单, 但膜的替换与高质量浓度滞留液的处理会使成本增高 | Rahman et al., |
高级氧化技术AOPs | 氧化剂(过氧化氢、过硫酸钠、高锰酸钾、高锰酸钠、臭氧等) | 使溶液中产生强氧化性的羟基-OH, 与溶液中的PFASs反应, 转化成为无毒可降解的副产物 | 反应速度慢, 成本高, 氧化过程中产生的短链PFASs可能造成二次污染, 可与其他方法结合使用 | Park et al., |
光化学氧化技术 | 紫外线,可见光等 | 利用紫外线或可见光产生水合电子来去除PFASs | 绿色环保, 可减少二次污染, 但效率低, 成本高, 无法大规模使用 | Chen et al., |
电化学氧化技术 | 电极 (石墨烯, 二氧化铅、氧化钛、二氧化锡等) | 通过直接或间接阳极氧化, 将PFASs吸附在电极上, 被电极直接降解, 或与其他液体反应进行降解 | 去除效率高, 反应时间短, 但反应过程中会产生短链PFASs和有毒副产物, 成本高 | Wang et al., |
声化学技术 | 超声辐射 | 高级氧化处理的一种, 利用超声波辐照形成高温气泡与氧化性强的物质来降解PFASs | 无法大规模使用, 成本高,受外界影响因素多 (如溶液pH、黏滞系数、表面张力系数、溶液温度等) | Dorrance et al., |
[1] |
ABDALLAH M A E, WEMKEN N, DRAGE D S, et al., 2020. Concentrations of perfluoroalkyl substances in human milk from Ireland: implications for adult and nursing infant exposure[J]. Chemosphere, 246: 125724.
DOI URL |
[2] |
ABEL S, PETERS A, TRINKS S, et al., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil[J]. Geoderma, 202-203: 183-191.
DOI URL |
[3] |
AHRENS L, FELIZETER S, STURM R, et al., 2009. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany[J]. Marine Pollution Bulletin, 58(9): 1326-1333.
DOI PMID |
[4] |
AHRENS L, SHOEIB M, VENTO D S, et al., 2011. Polyfluoroalkyl compounds in the Canadian Arctic atmosphere[J]. Environmental Chemistry, 8(4): 399-406.
DOI URL |
[5] |
APPLEMAN T D, HIGGINS C P, QUIÑONES O, et al., 2014. Treatment of poly-and perfluoroalkyl substances in US full-scale water treatment systems[J]. Water Research, 51: 246-255.
DOI URL |
[6] |
ARMITAGE J, COUSINS I T, BUCK R C, et al., 2006. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources[J]. Environmental Science & Technology, 40(22): 6969-6975.
DOI URL |
[7] | AWA S H, HADIBARATA T, 2020. Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review[J]. Water, Air, & Soil Pollution: An International Journal of Environmental Pollution, 231(2): 2638-2647. |
[8] |
BAO J, LI C L, LIU Y, et al., 2020. Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China[J]. Environmental Research, 188: 109751.
DOI URL |
[9] |
BARGHI M, JIN X Z, LEE S, et al., 2018. Accumulation and exposure assessment of persistent chlorinated and fluorinated contaminants in Korean birds[J]. Science of The Total Environment, 645: 220-228.
DOI URL |
[10] |
BERTELKAMP C, VERLIEFDE A R D, SCHOUTTETEN K, et al., 2016. The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: A laboratory-scale column study[J]. Science of The Total Environment, 544: 309-318.
DOI URL |
[11] |
BJÖRNSDOTTER M K, YEUNG L W Y, KARRMAN A, et al., 2021. Mass balance of perfluoroalkyl acids, including trifluoroacetic acid, in a freshwater lake[J]. Environmental Science & Technology, 56(1): 251-259.
DOI URL |
[12] |
BLAINE A C, RICH C D, SEDLACKO E M, et al., 2014. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils[J]. Environmental Science & Technology, 48(14): 7858-7865.
DOI URL |
[13] |
BOLAN N, SARKAR B, YAN Y, et al., 2021. Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soils-to mobilize or to immobilize or to degrade[J]. Journal of Hazardous Materials, 401: 123892.
DOI URL |
[14] |
BROWN J B, CONDER J M, ARBLASTER J A, et al., 2020. Assessing human health risks from per- and polyfluoroalkyl substance (PFAS)-impacted vegetable consumption: A Tiered Modeling Approach[J]. Environmental Science & Technology, 54(23): 15202-15214.
DOI URL |
[15] |
CAI Y Z, WANG X H, WU Y L, et al., 2018. Temporal trends and transport of perfluoroalkyl substances (PFASs) in a subtropical estuary: Jiulong River Estuary, Fujian, China[J]. Science of The Total Environment, 639: 263-270.
DOI URL |
[16] | CASAS G, MARTINEZ-VARELA A, VILA-COSTA M, et al., 2021. Rain amplification of persistent organic pollutants[J]. Environmental Science & Technology, 55(19): 12961-12972. |
[17] |
CHEN M J, LO S L, LEE Y C, et al., 2016. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide[J]. Journal of Hazardous Materials, 303: 111-118.
DOI URL |
[18] |
CHEN S, JIAO X C, GAI N, et al., 2016. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 211: 124-131.
DOI PMID |
[19] |
CHEN X W, ZHU L Y, PAN X Y, et al., 2015. Isomeric specific partitioning behaviors of perfluoroalkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China[J]. Water Research, 80: 235-244.
DOI PMID |
[20] |
CHEN Y C, LO S L, LEE Y C, 2012. Distribution and fate of perfluorinated compounds (PFCs) in a pilot constructed wetland[J]. Desalination and Water Treatment, 37(1-3): 178-184.
DOI URL |
[21] |
CHENG J, VECITIS C D, PARK H, et al., 2008. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects[J]. Environmental Science & Technology, 42(21): 8057-8063.
DOI URL |
[22] |
CUI Q Q, PAN Y T, ZHANG H X, et al., 2018. Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment[J]. Environmental Pollution, 241: 684-691.
DOI PMID |
[23] |
DANLIAN H, RUIHAO X, LI D, et al., 2021. Phytoremediation of poly- and perfluoroalkyl substances: A review on aquatic plants, influencing factors, and phytotoxicity[J]. Journal of Hazardous Materials, 418: 126314-126314.
DOI URL |
[24] |
DAUCHY X, BOITEUX V, COLIN A, et al., 2019. Poly- and perfluoroalkyl substances in runoff water and wastewater sampled at a firefighter training area[J]. Archives of Environmental Contamination and Toxicology, 76: 206-215.
DOI PMID |
[25] |
DI D, LU Y L, ZHOU Y Q, et al., 2022. Perfluoroalkyl acids (PFAAs) in water along the entire coastal line of China: Spatial distribution, mass loadings, and worldwide comparisons[J]. Environment International, 169(9): 107506.
DOI URL |
[26] |
DING G H, XUE H H, ZHANG J, et al., 2018. Occurrence and distribution of perfluoroalkyl substances (PFASs) in sediments of the Dalian Bay, China[J]. Marine Pollution Bulletin, 127: 285-288.
DOI PMID |
[27] |
DLAMINI J C, CARDENAS L M, TESFAMARIAM E H, et al., 2022. Riparian buffer strips influence nitrogen losses as nitrous oxide and leached N from upslope permanent pasture[J]. Agriculture, Ecosystems & Environment, 336: 108031.
DOI URL |
[28] |
DORRANCE L R, KELLOGG S, LOVE A H, 2017. What you should know about per-and polyfluoroalkyl substances (PFAS) for Environmental Claims[J]. Environmental Claims Journal, 29(4): 290-304.
DOI URL |
[29] |
DU Z W, DENG S B, BEI Y, et al., 2014. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents: A review[J]. Journal of Hazardous Materials, 274: 443-454.
DOI URL |
[30] |
DUONG H T, KADOKAMI K, SHIRASAKA H, et al., 2015. Occurrence of perfluoroalkyl acids in environmental waters in Vietnam[J]. Chemosphere, 122: 115-124.
DOI PMID |
[31] |
ESCHAUZIER C, HAFTKA J, STUYFZAND P J, et al., 2010. Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes[J]. Environmental Science & Technology, 44(19): 7450-7455.
DOI URL |
[32] |
FEDERICA C, MARA G, FEDRA C, et al., 2023. Perfluorinated compounds (PFCS) in river waters of central Italy: Monthly variation and ecological risk assessment (ERA)[J]. Archives of Environmental Contamination and Toxicology, 84(3): 332-346.
DOI PMID |
[33] |
FELICIA F, ULRIKA E, ANNA K, et al., 2022. Per- and polyfluoroalkyl substances (PFAS) in sludge from wastewater treatment plants in Sweden — First findings of novel fluorinated copolymers in Europe including temporal analysis[J]. Science of The Total Environment, 846: 157406.
DOI URL |
[34] |
FURL C V, MEREDITH C A, STRYNAR M J, et al., 2011. Relative importance of wastewater treatment plants and non-point sources of perfluorinated compounds to Washington State rivers[J]. Science of The Total Environment, 409(15): 2902-2907.
DOI URL |
[35] |
GALLEN C, BADUEL C, LAI F Y, et al., 2014. Spatio-temporal assessment of perfluorinated compounds in the Brisbane River system, Australia: Impact of a major flood event[J]. Marine Pollution Bulletin, 85(2): 597-605.
DOI PMID |
[36] |
GAN C D, GAN Z W, CUI S F, et al., 2021. Agricultural activities impact on soil and sediment fluorine and perfluorinated compounds in an endemic fluorosis area[J]. Science of The Total Environment, 771: 144809.
DOI URL |
[37] |
GAO Y, FU J, ZENG L, et al., 2014. Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea, Yellow Sea, and East China Sea[J]. Environmental Pollution, 194(1): 60-68.
DOI URL |
[38] |
HANSEN K J, JOHNSON H O, ELDRIDGE J S, et al., 2002. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River[J]. Environmental Science & Technology, 36(8): 1681-1685.
DOI URL |
[39] |
HANSEN M C, BØRRESEN M H, SCHLABACH M, et al., 2010. Sorption of perfluorinated compounds from contaminated water to activated carbon[J]. Journal of Soils and Sediments, 10(2): 179-185.
DOI URL |
[40] |
HANSEN M C, BØRRESEN M H, SCHLABACH M, et al., 2010. Sorption of perfluorinated compounds from contaminated water to activated carbon[J]. Journal of Soils and Sediments, 10(2): 179-185.
DOI URL |
[41] | HERATH I, VITHANAGE M, 2015. Phytoremediation in constructed wetlands[J]. Phytoremediation: Management of Environmental Contaminants, 2: 243-263. |
[42] |
JI B, KANG P Y, WEI T, et al., 2020. Challenges of aqueous per-and polyfluoroalkyl substances (PFASs) and their foreseeable removal strategies[J]. Chemosphere, 250: 126316.
DOI URL |
[43] |
JI Z H, TANG W Z, PEI Y S, 2022. Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal[J]. Chemosphere, 286(Part 1): 131564.
DOI URL |
[44] |
JIAN J M, GUO Y, ZENG L, et al., 2017. Global distribution of perfluorochemicals (PFCs) in potential human exposure source: A review[J]. Environment International, 108: 51-62.
DOI URL |
[45] |
JIAO X, SHI Q, GAN J, 2021. Uptake, accumulation and metabolism of PFASs in plants and health perspectives: A critical review[J]. Critical Reviews in Environmental Science and Technology, 51(23): 2745-2776.
DOI URL |
[46] |
JONES G D, BENCHETLER P V, TATE K W, et al., 2014. Trenbolone acetate metabolite transport in rangelands and irrigated pasture: Observations and conceptual approaches for agro-ecosystems[J]. Environmental Science & Technology, 48(21): 12569-12576.
DOI URL |
[47] |
KALMYKOVA Y, BJÖRKLUND K, STRÖMVALL A M, et al., 2013. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater[J]. Water Research, 47(3): 1317-1328.
DOI PMID |
[48] |
KAMMANN C I, LINSEL S, GÖSSLING J W, et al., 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations[J]. Plant and Soil, 345(1): 195-210.
DOI URL |
[49] |
KOVAČEVIĆ S, RADIŠIĆ M, LAUŠEVIĆ M, et al., 2017. Occurrence and behavior of selected pharmaceuticals during riverbank filtration in The Republic of Serbia[J]. Environmental Science and Pollution Research, 24(2): 2075-2088.
DOI URL |
[50] |
KUMAR K S, MAYILSAMY M, PATIL N N, et al., 2021. Investigation of distribution, sources and flux of perfluorinated compounds in major southern Indian rivers and their risk assessment[J]. Chemosphere, 277: 130228.
DOI URL |
[51] | KUMWIMBA M N, LI X, DE SILVA L, et al., 2021. Large-scale hybrid accidental urban wetland for polluted river purification in northern China: Evidence and implications for urban river management[J]. Environmental Technology & Innovation, 22: 101542. |
[52] |
KURWADKAR S, DANE J, KANEL S R, et al., 2021. Per-and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution[J]. Science of The Total Environment, 809: 151003.
DOI URL |
[53] |
KUTLUCINAR K G, HANDL S, ALLABASHI R, et al., 2022. Non-targeted analysis with high-resolution mass spectrometry for investigation of riverbank filtration processes[J]. Environmental Science and Pollution Research, 29(43): 64568-64581.
DOI |
[54] |
LAM N H, CHO C R, KANNAN K, et al., 2016a. A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles[J]. Journal of Hazardous Materials, 323(Part A): 116-127.
DOI URL |
[55] |
LAM N H, MIN B K, CHO C R, et al., 2016b. Distribution of perfluoroalkyl substances in water from industrialized bays, rivers and agricultural areas in Korea[J]. Toxicology and Environmental Health Sciences, 8: 43-55.
DOI URL |
[56] |
LEE T, SPETH T F, NADAGOUDA M N, 2022. High-pressure membrane filtration processes for separation of Per-and polyfluoroalkyl substances (PFAS)[J]. Chemical Engineering Journal, 431(Part 2): 134023.
DOI URL |
[57] |
LEE Y C, LO S L, CHIUEH P T, et al., 2010. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation[J]. Water Research, 44(3): 886-892.
DOI URL |
[58] |
LEFEVRE E, BOSSA N, GARDNER C M, et al., 2018. Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A[J]. Water Research, 128(1): 102-110.
DOI URL |
[59] |
LENKA S P, KAH M, PADHYE L P, 2021. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. Water Research, 199: 117187.
DOI URL |
[60] |
LI F S, SUN H W, HAO Z N, et al., 2011. Perfluorinated compounds in Haihe River and Dagu drainage canal in Tianjin, China[J]. Chemosphere, 84(2): 265-271.
DOI PMID |
[61] |
LI X Q, HUA Z L, WU J Y, et al., 2021. Removal of perfluoroalkyl acids (PFAAs) in constructed wetlands: Considerable contributions of submerged macrophytes and the microbial community[J]. Water Research, 197: 117080.
DOI URL |
[62] |
LIANG J, GUO L L, XIANG B, et al., 2023. Research updates on the mechanism and influencing factors of the photocatalytic degradation of perfluorooctanoic acid (PFOA) in water environments[J]. Molecules, 28(11): 4489.
DOI URL |
[63] |
LIN J C, HU C Y, LO S L, 2016. Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment[J]. Ultrasonics Sonochemistry, 28: 130-135.
DOI URL |
[64] |
LIN J C, LO S L, HU C Y, et al., 2015. Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions[J]. Ultrasonics Sonochemistry, 22: 542-547.
DOI URL |
[65] |
LIU B L, ZHANG H, YU Y, et al., 2020. Perfluorinated compounds (PFCs) in soil of the Pearl River Delta, China: Spatial distribution, sources, and ecological risk assessment[J]. Archives of Environmental Contamination and Toxicology, 78(2): 182-189.
DOI PMID |
[66] |
LIU C S, HIGGINS C P, WANG F, et al., 2012. Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water[J]. Separation and Purification Technology, 91: 46-51.
DOI URL |
[67] |
LIU H W, WANG H, GAO W F, et al., 2019. Phytoremediation of three herbaceous plants to remove metals from urban runoff[J]. Bulletin of Environmental Contamination and Toxicology, 103(7): 336-341.
DOI |
[68] |
LIU N, WU C, LYU G F, et al., 2021. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA)[J]. Science of The Total Environment, 798(12): 149191.
DOI URL |
[69] |
LIU T, XU S R, LU S Y, et al., 2019. A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors[J]. Science of The Total Environment, 651(Part 2): 2247-2268.
DOI URL |
[70] |
Liu Y, Li T Y, Bao J, et al., 2022. A review of treatment techniques for short-chain perfluoroalkyl substances[J]. Applied Sciences, 12(4): 1941-1941.
DOI URL |
[71] |
MAHINROOSTA R, SENEVIRATHNA L, 2020. A review of the emerging treatment technologies for PFAS contaminated soils[J]. Journal of Environmental Management, 255: 109896.
DOI URL |
[72] | MAYAKADUWAGE S, EKANAYAKE A, KURWADKAR S, et al., 2022. Phytoremediation prospects of per-and polyfluoroalkyl substances: A review[J]. Environmental Research, 212(Part B): 113311. |
[73] |
MCMURDO C J, ELLIS D A, WEBSTER E, et al., 2008. Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA[J]. Environmental Science & Technology, 42(11): 3969-3974.
DOI URL |
[74] |
NSENGA M K, MENG F, ISEYEMI O, et al., 2018. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions[J]. Science of The Total Environment, 639: 742-759.
DOI URL |
[75] |
NZERIBE B N, CRIMI M, MEDEDOVIC THAGARD S, et al., 2019. Physico-chemical processes for the treatment of per-and polyfluoroalkyl substances (PFAS): A review[J]. Critical Reviews in Environmental Science and Technology, 49(10): 866-915.
DOI URL |
[76] |
PAN C G, YING G G, ZHAO J L, et al., 2014. Spatiotemporal distribution and mass loadings of perfluoroalkyl substances in the Yangtze River of China[J]. Science of The Total Environment, 493: 580-587.
DOI URL |
[77] |
PAN C G, YING G G, ZHAO J L, et al., 2015. Spatial distribution of perfluoroalkyl substances in surface sediments of five major rivers in China[J]. Archives of Environmental Contamination and Toxicology, 68(3): 566-576.
DOI URL |
[78] |
PARK S, LEE L S, MEDINA V F, et al., 2016. Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation[J]. Chemosphere, 145: 376-383.
DOI PMID |
[79] |
PAUL A G, JONES K C, SWEETMAN A J, 2009. A first global production, emission, and environmental inventory for perfluorooctane sulfonate[J]. Environmental Science & Technology, 43(2): 386-392.
DOI URL |
[80] |
PI N, NG J Z, KELLY B C, 2017. Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: Results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes[J]. Water Research, 117: 167-174.
DOI PMID |
[81] |
Pramanik K B, Roychand R, Monira S, et al., 2020. Fate of road-dust associated microplastics and per- and polyfluorinated substances in stormwater[J]. Process Safety and Environmental Protection, 144: 236-241.
DOI URL |
[82] |
PREVEDOUROS K, COUSINS I T, BUCK R C, et al., 2006. Sources, fate and transport of perfluorocarboxylates[J]. Environmental Science & Technology, 40(1): 32-44.
DOI URL |
[83] |
QIN Z, ZHAO Z, ADAM A, et al., 2019. The dissipation and risk alleviation mechanism of PAHs and nitrogen in constructed wetlands: the role of submerged macrophytes and their biofilms-leaves[J]. Environment International, 131: 104940.
DOI URL |
[84] |
RAHMAN M F, PELDSZUS S, ANDERSON W B, 2014. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review[J]. Water Research, 50: 318-340.
DOI PMID |
[85] |
RAHMAN M F, PELDSZUS S, ANDERSON W B, 2014. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review[J]. Water Research, 50: 318-340.
DOI PMID |
[86] |
RALPH S, YULING S, JANINE F, et al., 2021. Ice nucleation activity of perfluorinated organic acids[J]. The Journal of Physical Chemistry Letters, 12(13): 3431-3435.
DOI URL |
[87] |
RATTANAOUDOM R, VISVANATHAN C, 2012. Removal of PFOA by hybrid membrane filtration using PAC and hydrotalcite[J]. Desalination and Water Treatment, 32(1-3):1-270.
DOI URL |
[88] | REMUCAL C K, 2019. Spatial and temporal variability of perfluoroalkyl substances in the Laurentian Great Lakes[J]. Environmental Science: Processes & Impacts, 21(12): 18816-1834. |
[89] |
ROSS I, MCDONOUGH J, MILES J, et al., 2018. A review of emerging technologies for remediation of PFASs[J]. Remediation Journal, 28(2): 101-126.
DOI URL |
[90] |
SARWAR N, IMRAN M, SHAHEEN M R, et al., 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives[J]. Chemosphere, 171: 710-721.
DOI PMID |
[91] |
SCHRÖDER H F, JOSÉ H J, GEBHARDT W, et al., 2010. Biological wastewater treatment followed by physicochemical treatment for the removal of fluorinated surfactants[J]. Water Science and Technology, 61(12): 3208-3215.
DOI PMID |
[92] |
SELVARAJ K K, MURUGASAMY M, NIKHIL N P, et al., 2021. Investigation of distribution, sources and flux of perfluorinated compounds in major southern Indian rivers and their risk assessment[J]. Chemosphere, 277: 130228.
DOI URL |
[93] |
SENEVIRATHNA S, TANAKA S, FUJII S, et al., 2010. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers[J]. Chemosphere, 80(6): 647-651.
DOI PMID |
[94] | SHAN G, CHEN X, ZHU L, 2015. Occurrence, fluxes and sources of perfluoroalkyl substances with isomer analysis in the snow of northern China[J]. Journal of Hazardous Materials, 299639-646. |
[95] |
SHAO M H, DING G H, ZHANG J, et al., 2016. Occurrence and distribution of perfluoroalkyl substances (PFASs) in surface water and bottom water of the Shuangtaizi Estuary, China[J]. Environmental Pollution, 216(11): 675-681.
DOI URL |
[96] | SHIMIZU MEGUMI S, RACHAEL M, ARIEL P, et al., 2021. Atmospheric deposition and annual flux of legacy perfluoroalkyl substances and replacement perfluoroalkyl ether carboxylic acids in Wilmington, NC, USA[J]. Environmental Science & Technology Letters, 8(5): 366-372. |
[97] |
SILVANI L, CORNELISSEN G, SMEBYE A B, et al., 2019. Can biochar and designer biochar be used to remediate per- and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils[J]. Science of The Total Environment, 694: 133693.
DOI URL |
[98] |
SIM W J, PARK H J, YOON J K, et al., 2021. Characteristic distribution patterns of perfluoroalkyl substances in soils according to land-use types[J]. Chemosphere, 276: 130167.
DOI URL |
[99] |
SINCLAIR E, KANNAN K, 2006. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants[J]. Environmental Science & Technology, 40(5): 1408-1414.
DOI URL |
[100] |
SITU N, RETI H, XIAOHUI W, et al., 2020. Concentrations and seasonal variations of perfluorinated compounds in sludge from three wastewater treatment plants in China[J]. Analytical Letters, 53(15): 2400-2412.
DOI URL |
[101] |
STUMM W, 1997. Chemical interaction in particle separation[J]. Environmental Science & Technology, 11(2): 1066-1070.
DOI URL |
[102] |
STUTTER M, COSTA F B, 2021. The interactions of site-specific factors on riparian buffer effectiveness across multiple pollutants: A review[J]. Science of The Total Environment, 798: 149238.
DOI URL |
[103] |
SUN Z Y, ZHANG C J, YAN H, et al., 2017. Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China[J]. Chemosphere, 174(5): 127-135.
DOI URL |
[104] |
TANG C Y, FU Q S, CRIDDLE C S, et al., 2007. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater[J]. Environmental Science & Technology, 41(6): 2008-2014.
DOI URL |
[105] |
VAN DER HOEK J P, BERTELKAMP C, VERLIEFDE A R D, et al., 2014. Drinking water treatment technologies in Europe: state of the art-challenges-research needs[J]. Journal of Water Supply: Research and Technology-AQUA, 63(2): 124-130.
DOI URL |
[106] |
VÁSQUEZ L A H, GARCÍA F P, MÉNDEZ J P, et al., 2022. Artificial wetlands and floating islands: Use of macrophytes[J]. South Florida Journal of Development, 3(1): 476-498.
DOI URL |
[107] | VU C T, WU T, 2020. Adsorption of short-chain perfluoroalkyl acids (PFAAs) from water/wastewater[J]. Environmental Science: Water Research & Technology, 6(11): 2958-2972. |
[108] |
VYMAZAL J, BŘEZINOVÁ T D, 2018. Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch[J]. Ecological Engineering, 118: 97-103.
DOI URL |
[109] |
WANG H Y, ZHANG H L, CAI G Q, 2011. An application of phytoremediation to river pollution remediation[J]. Procedia Environmental Sciences, 10(Part C): 1904-1907.
DOI URL |
[110] |
WANG P, LU Y L, WANG T Y, et al., 2014. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities[J]. Environmental Pollution, 190: 115-122.
DOI PMID |
[111] |
WANG S Q, MA L Y, CHEN C, 2020a. Occurrence and partitioning behavior of per- and polyfluoroalkyl substances (PFASs) in water and sediment from the Jiulong Estuary-Xiamen Bay, China[J]. Chemosphere, 238: 124578.
DOI URL |
[112] |
WANG T T, YING G G, HE L Y, et al., 2020c. Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale[J]. Science of The Total Environment, 733: 139383.
DOI URL |
[113] |
WANG T T, YING G G, SHI W J, et al., 2020b. Uptake and translocation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by wetland plants: Tissue-and cell-level distribution visualization with desorption electrospray ionization mass spectrometry (DESI-MS) and transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM-EDS)[J]. Environmental Science & Technology, 54(10): 6009-6020.
DOI URL |
[114] |
WANG W L, GAO J Q, GUO X, et al., 2012. Long-term effects and performance of two-stage baffled surface flow constructed wetland treating polluted river[J]. Ecological Engineering, 49: 93-103.
DOI URL |
[115] |
WANG Y, GUO J Q, SUMITA, et al., 2022. A review of recent advances in detection and treatment technology for perfluorinated compounds[J]. Water, 14(23): 3919.
DOI URL |
[116] |
WANG Z Y, COUSINS I T, SCHERINGER M, et al., 2013. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors[J]. Environment International, 60(10): 242-248.
DOI URL |
[117] |
WANNINAYAKE D M, 2021. Comparison of currently available PFAS remediation technologies in water: A review[J]. Journal of Environmental Management, 283: 111977.
DOI URL |
[118] |
WEI Z H, VAN LE Q, PENG W X, et al., 2021. A review on phytoremediation of contaminants in air, water and soil[J]. Journal of Hazardous Materials, 403: 123658.
DOI URL |
[119] | WICKRAMASINGHE S, JAYAWARDANA C K, 2018. Potential of aquatic macrophytes Eichhornia crassipes, Pistia stratiotes and Salvinia molesta in phytoremediation of textile wastewater[J]. Journal of Water Security, 4: 1-8. |
[120] |
WU D, LI X K, ZHANG J X, et al., 2018. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation[J]. Separation and Purification Technology, 207: 255-261.
DOI URL |
[121] |
WU S T, BASHIR M A, RAZA Q U A, et al., 2023. Application of riparian buffer zone in agricultural non-point source pollution control: A review[J]. Frontiers in Sustainable Food Systems, 7: 985870.
DOI URL |
[122] |
XIAO X, ULRICH B A, CHEN B, et al., 2017. Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon[J]. Environmental Science & Technology, 51(11): 6342-6351.
DOI URL |
[123] |
XIE L N, WANG X C, DONG X J, et al., 2021. Concentration, spatial distribution, and health risk assessment of PFASs in serum of teenagers, tap water and soil near a Chinese fluorochemical industrial plant[J]. Environment International, 146: 106166.
DOI URL |
[124] |
YAN C X, SHENG Y R, JU M, et al., 2020. Relationship between the characterization of natural colloids and metal elements in surface waters[J]. Environmental Science and Pollution Research, 27(25): 31872-31883.
DOI |
[125] |
YAN C X, YANG Y, ZHOU J L, et al., 2015. Selected emerging organic contaminants in the Yangtze Estuary, China: A comprehensive treatment of their association with aquatic colloids[J]. Journal of Hazardous Materials, 283: 14-23.
DOI PMID |
[126] |
YAO Y, VOLCHEK K, BROWN C E, et al., 2014. Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water[J]. Water Science and Technology, 70(12): 1983-1991.
DOI PMID |
[127] |
YI X S, LIN D X, LI J H, et al., 2020. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China[J]. Environmental Science and Pollution Research, 28(30): 40075-40087.
DOI |
[128] |
YIN T R, CHEN H T, REINHARD M, et al., 2017. Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate[J]. Water Research, 125: 418-426.
DOI PMID |
[129] |
YU C R, GAO B, MUNOZ-CARPENA R, 2012. Effect of dense vegetation on colloid transport and removal in surface runoff[J]. Journal of Hydrology, 434-435: 1-6.
DOI URL |
[130] |
YU C R, MUNOZ-CARPENA R, GAO B, et al., 2013. Effects of ionic strength, particle size, flow rate, and vegetation type on colloid transport through a dense vegetation saturated soil system: Experiments and modeling[J]. Journal of Hydrology, 499: 316-323.
DOI URL |
[131] |
ZAK D, BRONVANG B, CARSTENSEN M V, et al., 2018. Nitrogen and phosphorus removal from agricultural runoff in integrated buffer zones[J]. Environmental Science & Technology, 52(11): 6508-6517.
DOI URL |
[132] |
ZHANG C H, JIANG S, TANG J W, et al., 2018a. Adsorptive performance of coal based magnetic activated carbon for perfluorinated compounds from treated landfill leachate effluents[J]. Process Safety and Environmental Protection, 117: 383-389.
DOI URL |
[133] |
ZHANG X, HU T T, YANG L, et al., 2018b. The investigation of perfluoroalkyl substances in seasonal freeze-thaw rivers during spring flood period: A case study in Songhua River and Yalu River, China[J]. Bulletin of Environmental Contamination and Toxicology, 101: 166-172.
DOI |
[134] |
ZHANG Y Y, LAI S C, ZHAO Z, et al., 2013. Spatial distribution of perfluoroalkyl acids in the Pearl River of Southern China[J]. Chemosphere, 93(8): 1519-1525.
DOI PMID |
[135] | ZHAO L J, ZHOU M, ZHANG T, et al., 2013. Polyfluorinated and perfluorinated chemicals in precipitation and runoff from cities across eastern and central China[J]. Archives of Environmental Contamination & Toxicology, 64(2): 198-207. |
[136] | ZHU Z Y, WANG T Y, MENG J, et al., 2015. Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: Seasonal variation, mass flow, and risk assessment[J]. Environmental Science & Pollution Research, 22(13): 10009-10018. |
[137] | ZUSHI Y, MASUNAGA S, 2009. Identifying the nonpoint source of perfluorinated compounds using a geographic information system based approach[J]. Environmental Toxicology and Chemistry: An International Journal, 28(4): 691-700. |
[138] |
ZUSHI Y, TAKEDA T, MASUNAGA S, 2008. Existence of nonpoint source of perfluorinated compounds and their loads in the Tsurumi River basin, Japan[J]. Chemosphere, 71(8): 1566-1573.
DOI PMID |
[139] |
ZUSHI Y, YE F, MOTEGI M, et al., 2011. Spatially detailed survey on pollution by multiple perfluorinated compounds in the Tokyo Bay basin of Japan[J]. Environmental Science & Technology, 45(7): 2887-2893.
DOI URL |
[140] | 仇付国, 刘玉君, 刘子奇, 等, 2020. 水中全/多氟化合物污染现状及控制技术研究进展[J]. 环境科学与技术, 43(10): 229-236. |
QIU F G, LIU Y J, LIU Z Q, et al., 2020. Research progress on the pollution status and control technologies of perfluoroalkyl and polyfluoroalkyl substances in water environment[J]. Environmental Science & Technology, 43(10): 229-236. | |
[141] | 宋杰玉, 徐婵, 李进, 等, 2022. 长江流域全氟化合物污染现状及环境基准探讨[J]. 环境科学与技术, 45(9): 219-229. |
SONG J Y, XU C, LI J, et al., 2022. Preliminary discussion on the pollution status and environmental standards of perfluorinated compounds in the Yangtze river basin[J]. Environmental Science & Technology, 45(9): 219-229. | |
[142] |
汤家喜, 朱永乐, 李玉, 等, 2021. 辽河流域及周边水体中全氟化合物的污染状况及生态风险评价[J]. 生态环境学报, 30(7): 1447-1454.
DOI |
TANG J X, ZHU Y L, LI Y, et al., 2021. Pollution status and ecological risk assessment of perfluorinated compounds in the Liao River Basin and surrounding[J]. Ecology and Environmental Sciences, 30(7): 1447-1454. | |
[143] | 徐颖, 谭婷, 任劲松, 等, 2022. 不同条件下生态缓冲带对氟化物面源污染的阻控效果[J]. 水土保持学报, 36(2): 361-367. |
XU Y, TAN T, REN J S, et al., 2022. Interception and control effects of ecological buffer zone on fluoride non-point source pollution under different conditions[J]. Journal of Soil and Water Conservation, 36(2): 361-367. | |
[144] | 晏彩霞, 2015. 长江口滨岸水中胶体对新型有机污染物环境行为的影响研究[D]. 上海: 华东师范大学. |
YAN C X, 2015. Effect of aquatic colloids on the behavior of selected emerging organic contaminants in the Yangtze Estuary[D]. Shanghai: East China Normal University. | |
[145] | 朱永乐, 汤家喜, 李梦雪, 等, 2021. 全氟化合物污染现状及与有机污染物联合毒性研究进展[J]. 生态毒理学报, 16(2): 86-99. |
ZHU Y L, TANG J X, LI M X, et al., 2021. Contamination status of perfluorinated compounds and its combined effects with organic pollutants[J]. Asian Journal of Ecotoxicology, 16(2): 86-99. | |
[146] |
朱永乐, 汤家喜, 谭婷, 等, 2023. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 32(5): 1001-1006.
DOI |
ZHU Y L, TANG J X, TAN T, et al., 2023. Contaminant characteristic of Per- and poly-fluorinated substances in maize in the surrounding of fluorine chemical park[J]. Ecology and Environmental Sciences, 32(5): 1001-1006. |
[1] | 汤家喜, 朱永乐, 李玉, 向彪, 谭婷. 辽河流域及周边水体中全氟化合物的污染状况及生态风险评价[J]. 生态环境学报, 2021, 30(7): 1447-1454. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||