生态环境学报 ›› 2023, Vol. 32 ›› Issue (12): 2236-2248.DOI: 10.16258/j.cnki.1674-5906.2023.12.015
• 环境科学 •
上一篇
丁诗雨1,3,4(), 贾夏2,3,4, 赵永华1,3,4,*(
), 钱会2,3,4, 王欢元3,4, 康宏亮1,3,4, 孙婴婴3,4
收稿日期:
2023-08-12
出版日期:
2023-12-18
发布日期:
2024-02-05
通讯作者:
*赵永华。E-mail: yonghuaz@chd.edu.cn作者简介:
丁诗雨(1999年生),女,硕士研究生,主要研究方向为生态系统服务与景观生态。E-mail: 2017903069@chd.edu.cn
基金资助:
DING Shiyu1,3,4(), JIA Xia2,3,4, ZHAO Yonghua1,3,4,*(
), QIAN Hui2,3,4, WANG Huanyuan3,4, KANG Hongliang1,3,4, SUN Yingying3,4
Received:
2023-08-12
Online:
2023-12-18
Published:
2024-02-05
摘要:
生态功能区在确保国家生态安全方面具有重要作用,但在过度人类活动的影响下,其生态系统正面临着严峻考验。为实现生态功能区的可持续发展需要探究生态系统服务的供需关系。以往研究多关注生态系统服务供需的权衡/协调作用,在生态功能区供需的耦合协调方面还存在空白。以秦巴山生态功能区为例,采用InVEST模型、生态系统服务供需比、四象限模型、相关性分析和耦合协调度模型等方法分析了2000、2010和2020年产水、粮食供给、碳固存和土壤保持4种生态系统服务的供需匹配状况、权衡/协同作用和耦合协调关系。结果表明,1)2000-2020年产水和碳固存服务供需比分别由0.613、0.958降至0.482、0.892;粮食供给和土壤保持服务供需比分别由−0.243、0.948增至0.224、0.971。空间上,产水、碳固存和土壤保持服务均以供应盈余状态为主,耕地较少的中西部地区存在粮食供给不足。2)粮食供给和土壤保持服务供需在低-低空间匹配,产水服务供需表现出高-低空间错配和低-低空间匹配的特点,碳固存服务供需以过剩的高-低错配为主。3)研究期间生态系统服务供给的权衡/协同关系略有变化,除土壤保持与其他服务需求不相关外,其余服务对需求的协同作用都很强,且存在一致性。4)生态系统服务的供需耦合协调度分别0.324、0.297和0.284,呈下降趋势,表现出东部大多数县域的耦合协调程度高于中西部地区的空间格局,主要以中度不协调和勉强协调状态为主。综上,除粮食供给服务外其余生态系统服务处于供大于求状态,研究区空间错配现象明显,且尚未达到基本的耦合协调水平。
中图分类号:
丁诗雨, 贾夏, 赵永华, 钱会, 王欢元, 康宏亮, 孙婴婴. 秦巴山生态功能区生态系统服务供需关系时空演变研究[J]. 生态环境学报, 2023, 32(12): 2236-2248.
DING Shiyu, JIA Xia, ZHAO Yonghua, QIAN Hui, WANG Huanyuan, KANG Hongliang, SUN Yingying. Spatial-temporal Patterns of Supply and Demand of Ecosystem Services in the Ecological Function Area of Qin-Ba Mountains[J]. Ecology and Environment, 2023, 32(12): 2236-2248.
数据 | 单位 | 空间分辨率 | 来源 |
---|---|---|---|
土地利用数据 | ‒ | 30 m×30 m | GlobeLand30全球地理信息公共产品 |
DEM数据 | m | 30 m×30 m | ASTER GDEM V2全球数字高程数据 ( |
归一化植被指数NDVI | ‒ | 1 km×1 km | MODIS数据集 ( |
降水数据潜在蒸散发数据 中国土壤数据集(v1.2) | mm | 1 km×1 km | 国家地球系统科学数据中心 ( |
‒ | 1 km×1 km | 国家青藏高原科学数据中心 ( | |
人口密度数据 | person∙km−2 | 1 km×1 km | 世界人口数据网 ( |
粮食产量 | t | ‒ | 统计年鉴 |
工业、农业、生活用水量 | m3 | ‒ | 水资源公报 |
碳排放量 | t | ‒ | 中国排放清单和数据集 (CEADs) ( |
表1 数据来源
Table 1 Data sources
数据 | 单位 | 空间分辨率 | 来源 |
---|---|---|---|
土地利用数据 | ‒ | 30 m×30 m | GlobeLand30全球地理信息公共产品 |
DEM数据 | m | 30 m×30 m | ASTER GDEM V2全球数字高程数据 ( |
归一化植被指数NDVI | ‒ | 1 km×1 km | MODIS数据集 ( |
降水数据潜在蒸散发数据 中国土壤数据集(v1.2) | mm | 1 km×1 km | 国家地球系统科学数据中心 ( |
‒ | 1 km×1 km | 国家青藏高原科学数据中心 ( | |
人口密度数据 | person∙km−2 | 1 km×1 km | 世界人口数据网 ( |
粮食产量 | t | ‒ | 统计年鉴 |
工业、农业、生活用水量 | m3 | ‒ | 水资源公报 |
碳排放量 | t | ‒ | 中国排放清单和数据集 (CEADs) ( |
[1] |
ALA-HULKKO T, KOTAVAARA O, ALAHUHTA J, et al., 2019. Mapping supply and demand of a provisioning ecosystem service across Europe[J]. Ecological Indicators, 103: 520-529.
DOI URL |
[2] |
COSTANZA R, DE ARGE R, GROOT R D, et al., 1997. The value of the world’s ecosystem services and natural capital[J]. Nature, 387: 253-260.
DOI |
[3] |
FU B J, TAO T, LIU Y X, et al., 2019. New developments and perspectives in physical geography in China[J]. Chinese Geographical Science, 29: 363-371.
DOI |
[4] |
GUAN Q C, HAO J M, REN G P, et al., 2020. Ecological indexes for the analysis of the spatial-temporal characteristics of ecosystem service supply and demand: A case study of the major grain-producing regions in Quzhou, China[J]. Ecological Indicators, 108: 105748.
DOI URL |
[5] |
GONG J, SHI J Y, ZHU C C, et al., 2022. Accounting for land use in an analysis of the spatial and temporal characteristics of ecosystem services supply and demand in a desert steppe of Inner Mongolia, China[J]. Ecological Indicators, 144: 109567.
DOI URL |
[6] |
HAN R, FENG C C, XU N Y, et al., 2020. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China[J]. Science of the Total Environment, 721: 137818.
DOI URL |
[7] |
LI J H, BAI Y, ALATALO J M, et al., 2020. Impacts of rural tourism-driven land use change on ecosystems services. provision in Erhai Lake Basin, China[J]. Ecosystem Services, 42: 101081.
DOI URL |
[8] |
MATHIEU, TINCH, PROVINS, et al., 2018. Catchment management in England and Wales: The role of arguments for ecosystems and their services[J]. Biodiversity and Conservation, 27(2): 1639-1658.
DOI URL |
[9] |
NA L, ZHAO Y L, GUO L, 2022. Coupling coordination analysis of ecosystem services and urbanization in Inner Mongolia, China[J]. Land, 11(10): 1870.
DOI URL |
[10] |
PALOMO I, MARTÍN-LÓPEZ B, POTSCHIN M, et al., 2013. National Parks, buffer zones and surrounding lands: Mapping ecosystem service flows. Ecosystem Services, 4(4): 104-116.
DOI URL |
[11] |
PENG J, WANG X Y, LIU Y X, et al., 2020. Urbanization impact on the supply-demand budget of ecosystem. services: Decoupling analysis[J]. Ecosystem Service, 44: 101139.
DOI URL |
[12] | QIU S J, PENG J, DONG J Q, et al., 2021. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: A case study of Guizhou Province, China[J]. Progress in Physical Geography, 45(1): 98-114. |
[13] |
REDHEAD J W, MAY L, OLIVER T H, et al., 2018. National scale evaluation of the InVEST nutrient retention model in the United Kingdom[J]. Science of the total environment, 610-611: 666-677.
DOI URL |
[14] |
SUN Y X, LIU S L, SHI F N, et al., 2020. Spatio-temporal variations and coupling of human activity intensity and. ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau[J]. Science of the total environment, 743: 140721.
DOI URL |
[15] |
TALUKDAR S, SINGHA P, SHAHFAHAD, et al., 2020. Dynamics of ecosystem services (ESs) in response to land use land cover (LULC) changes in the lower Gangetic plain of India[J]. Ecological Indicators, 112: 106121.
DOI URL |
[16] |
WOLFF S, SCHULP C J E, VERBURG P H, et al., 2015. Mapping ecosystem services demand: A review of current research and future perspectives[J]. Ecological Indicators, 55: 159-171.
DOI URL |
[17] |
WU X, LIU S L, ZHAO S, et al., 2019. Quantification and driving force analysis of ecosystem services supply, demand and balance in China[J]. Science of the total environment, 652: 1375-1386.
DOI URL |
[18] | WEI Y P, WU S L, JIANG C, et al., 2021. Managing supply and demand of ecosystem services in dryland catchments[J]. Current Opinion in Environment Sustainablilty, 48: 10-16. |
[19] |
WANG J, ZHAI T L, LIN Y F, et al., 2019. Spatial imbalance and changes in supply and demand of ecosystem services in China[J]. Science of Total Environment, 657: 781-791.
DOI URL |
[20] |
WANG L J, GONG J W, MA S, et al., 2022a. Ecosystem service supply-demand and socioecological drivers at different spatial scales in Zhejiang Province, China[J]. Ecological Indicators, 140: 109058.
DOI URL |
[21] |
WANG H C, WANG L N, FU X, et al., 2022b. Spatial-temporal pattern of ecosystem service supply-demand and coordination in the Ulansuhai Basin, China[J]. Ecological Indicators, 143: 109406.
DOI URL |
[22] |
XIANG H X, ZHAO J, MAO D H, et al., 2022. Identifying spatial similarities and mismatches between supply and demand of ecosystem servicesfor sustainable Northeast China[J]. Ecological Indicators, 134: 108501.
DOI URL |
[23] |
YIN D Y, YU H C, SHI Y Y, et al., 2023. Matching supply and demand for ecosystem services in the Yellow River Basin, China: A perspective of the water-energy-food nexus[J]. Journal of Cleaner Production, 384: 135469.
DOI URL |
[24] |
ZHANG Z M, PENG J, XU Z H, et al., 2021. Ecosystem services supply and demand response to urbanization: a case study of the Pearl River Delta, China[J]. Ecosystem Service, 49: 101274.
DOI URL |
[25] | 董潇楠, 谢苗苗, 张覃雅, 等, 2018. 承灾脆弱性视角下的生态系统服务需求评估及供需空间匹配[J]. 生态学报, 38(18): 6422-6431. |
DONG X N, XIE M M, ZHANG Q Y, et al., 2018. Ecosystem services demand assessment regarding disaster vulnerability and supply-demand spatial matching[J]. Acta Ecologica Sinica, 38(18): 6422-6431. | |
[26] | 韩增林, 刘澄浩, 闫晓露, 等, 2021. 基于生态系统服务供需匹配与耦合协调的生态管理分区——以大连市为例[J]. 生态学报, 41(22): 9064-9075. |
HAN Z L, LIU C H, YAN X L, et al., 2021. Coupling coordination and matches in ecosystem services supply-demand for ecological zoning management: A case study of Dalian[J]. Acta Ecologica Sinica, 41(22): 9064-9075. | |
[27] |
刘立程, 刘春芳, 王川, 等, 2019. 黄土丘陵区生态系统服务供需匹配研究: 以兰州市为例[J]. 地理学报, 74(9): 1921-1937.
DOI |
LIU L C, LIU C F, WANG C, et al., 2019. Supply and demand matching of ecosystem services in loess hilly region: A case study of Lanzhou[J]. Acta Geographica Sinica, 74(9): 1921-1937.
DOI |
|
[28] |
刘春芳, 王韦婷, 刘立程, 等, 2020. 西北地区县域生态系统服务的供需匹配——以甘肃古浪县为例[J]. 自然资源学报, 35(9): 2177-2190.
DOI |
LIU C F, WANG W T, LIU L C, et al., 2020. Supply-demand matching of county ecosystem services in Northwest China: A case study of Gulangcounty[J]. Journal of Natural Resources, 35(9): 2177-2190.
DOI URL |
|
[29] |
王鹏涛, 张立伟, 李英杰, 等, 2017. 汉江上游生态系统服务权衡与协同关系时空特征[J]. 地理学报, 72(11): 2064-2078.
DOI |
WANG P T, ZHANG L W, LI Y J, et al., 2017. Spatio-temporal characteristics of the trade-off and synergy relationships among multiple ecosystem services in the Upper Reaches of Hanjiang River Basin[J]. Acta Geographic Sinica, 72(11): 2064-2078. | |
[30] |
王茜, 穆琪, 罗漫雅, 等, 2022. 秦岭生态系统服务协同与权衡的时空异质性[J]. 应用生态学报, 33(8): 2057-2067.
DOI |
WANG Q, MU Q, LUO M Y, et al., 2022. Spatial and temporal variations of ecosystem service synergy and trade-off in Qinling Mountains, China[J]. Chinese Journal of Applied Ecology, 33(8): 2057-2067.
DOI |
|
[31] | 徐彩仙, 巩杰, 燕玲玲, 等, 2021. 甘肃白龙江流域土壤保持服务供需风险时空变化[J]. 生态学杂志, 40(5): 1397-1408. |
XU C X, GONG J, YAN L L, et al., 2021. Spatiotemporal changes of supply and demand risk of soil conservation services in Bailongjiang watershed, Gansu Province[J]. Chinese Journal of Ecology, 40(5): 1397-1408. | |
[32] | 余玉洋, 李晶, 周自翔, 等, 2020. 基于多尺度秦巴山区生态系统服务权衡协同关系的表达[J]. 生态学报, 40(16): 5465-5477. |
YU Y Y, LI J, ZHOU Z X, et al., 2020. Multi-scale representation of trade-offs and synergistic relationship among ecosystem services in Qinling-Daba Mountains[J]. Acta Ecologica Sinica, 40(16): 5465-5477. | |
[33] | 张蓬涛, 刘双嘉, 周智, 等, 2021. 京津冀地区生态系统服务供需测度及时空演变[J]. 生态学报, 41(9): 3354-3367. |
ZHANG P T, LIU S J, ZHOU Z, et al., 2021. Supply and demand measurement and spatio-temporal evolution of ecosystem services inBeijing-Tianjin-Hebei Region[J]. Acta Ecologica Sinica, 41(9): 3354-3367. | |
[34] |
赵雪雁, 马平易, 李文青, 等, 2021. 黄土高原生态系统服务供需关系的时空变化[J]. 地理学报, 76(11): 2780-2796.
DOI |
ZHAO X Y, MA P Y, LI W Q, et al., 2021. Spatiotemporal changes of supply and demand relationships of ecosystem services in the Loess Plateau[J]. Acta Geographic Sinica, 76(11): 2780-2796. | |
[35] |
祝汉收, 翟俊, 侯鹏, 等, 2022. 生态系统服务权衡与协同视角下的重点生态功能区保护特征[J]. 地理学报, 77(5): 1275-1288.
DOI |
ZHU H S, ZHAI J, HOU P, et al., 2022. The protection characteristics of key ecological functional zones from the perspective of ecosystem service trade-off and synergy[J]. Acta Geographica Sinica, 77(5): 1275-1288.
DOI |
|
[36] |
赵宇豪, 罗宇航, 易腾云, 等, 2022. 基于生态系统服务供需匹配的深圳市生态安全格局构建[J]. 应用生态学报, 33(9): 2475-2484.
DOI |
ZHAO Y H, LUO Y H, YI T Y, et al., 2022. Constructing an ecological security pattern in Shenzhen, China, by matching the supply and demand of ecosystem service[J]. Chinese Journal of Applied Ecology, 33(9): 2475-2484. | |
[37] |
张平平, 李艳红, 殷浩然, 等, 2022. 中国南北过渡带生态系统碳储量时空变化及动态模拟[J]. 自然资源学报, 37(5): 1183-1197.
DOI |
ZHANG P P, LI Y H, YIN H R, et al., 2022. Spatio-temporal variation and dynamic simulation of ecosystem carbon storage in the north-south transitional zone of China[J]. Journal of Natural Resources, 37(5): 1183-1197.
DOI URL |
|
[38] | 周凡, 周冬梅, 金银丽, 等, 2023. 疏勒河流域生态系统服务供需空间匹配特征[J]. 干旱区地理, 46(3): 471-480. |
ZHOU F, ZHOU D M, JIN Y L, et al., 2023. Spatial matching characteristics of supply and demand of ecosystem services in the Shule River Basin[J]. Arid Land Geography, 46(3): 471-480. |
[1] | 李惠梅, 李荣杰, 晏旭昇, 武非非, 高泽兵, 谭永忠. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 2023, 32(7): 1185-1195. |
[2] | 徐梓津, 张雪松, 陈明曼. 山地岩溶区生态系统服务时空演变特征分析——以贵州省为例[J]. 生态环境学报, 2023, 32(7): 1196-1206. |
[3] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[4] | 巫晨煜, 许帆帆, 魏士博, 樊晶晶, 刘观鹏, 王坤. 渭河流域地表植被覆盖对气候变化的响应研究[J]. 生态环境学报, 2023, 32(5): 835-844. |
[5] | 许静, 廖星凯, 甘崎旭, 周茅先. 基于MSPA与电路理论的黄河流域甘肃段生态安全格局构建[J]. 生态环境学报, 2023, 32(4): 805-813. |
[6] | 李晖, 李必龙, 葛黎黎, 韩琛惠, 杨倩, 张岳军. 2000-2021年汾河流域植被时空演变特征及地形效应[J]. 生态环境学报, 2023, 32(3): 439-449. |
[7] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[8] | 张平江, 党国锋. 基于MCR模型与蚁群算法的洮河流域生态安全格局构建[J]. 生态环境学报, 2023, 32(3): 481-491. |
[9] | 王嘉丽, 冯婧珂, 杨元征, 俎佳星, 蔡文华, 杨健. 南宁市主城区不透水面与热环境效应的空间关系研究[J]. 生态环境学报, 2023, 32(3): 525-534. |
[10] | 朱锦维, 柯新利, 何利杰, 周婷, 王青, 任妍钰. 基于价值链理论的生态产品价值实现机制理论解析[J]. 生态环境学报, 2023, 32(2): 421-428. |
[11] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[12] | 陈文裕, 夏丽华, 徐国良, 余世钦, 陈行, 陈金凤. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报, 2022, 31(7): 1306-1316. |
[13] | 刘香华, 王秀明, 刘谞承, 张音波, 刘飘. 基于外溢生态系统服务价值的广东省生态补偿机制研究[J]. 生态环境学报, 2022, 31(5): 1024-1031. |
[14] | 薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340. |
[15] | 赵安周, 田新乐. 基于GEE平台的1986-2021年黄土高原植被覆盖度时空演变及影响因素[J]. 生态环境学报, 2022, 31(11): 2124-2133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||