生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 805-813.DOI: 10.16258/j.cnki.1674-5906.2023.04.018
收稿日期:
2022-11-01
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*作者简介:
许静(1983年生),女,教授,博士,研究方向为生态经济学。E-mail: xujing@lzufe.edu.cn
基金资助:
XU Jing1,*(), LIAO Xingkai2, GAN Qixu2, ZHOU Maoxian1
Received:
2022-11-01
Online:
2023-04-18
Published:
2023-07-12
摘要:
作为高质量发展的前提和基础,生态安全格局构建不仅能够警示潜在重大生态环境问题,而且有利于维护生态系统的健康稳定。以黄河流域甘肃段为研究区,采用形态学空间格局分析(MSPA)方法,融合基于InVEST模型的生境质量评估及生态服务功能空间分布,识别生态源地并进行分级。综合自然地理与社会经济因素构建阻力面,依据随机游走理论提取生态廊道,基于电路模型辨识生态夹点、障碍点等关键生态节点,并在此基础上结合甘肃省国土空间规划,构建研究区生态安全格局。结果表明:生态源地主要分布于研究区南部和东部边缘,空间分布不均且破碎化,总面积1.08×104 km2,其中核心生态源地2.45×103 km2;识别生态廊道257条,总长度6.06×103 km,其中关键陆地生态廊道22条,长度50.7 km,关键河流生态廊道40条,长度494 km;识别生态夹点109处,面积206 km2,识别一级生态障碍点37处,面积1.59×103 km2。综合构建了“一轴、两核、多区”的生态安全格局,“一轴”为生态保护、修复与生态建设轴,该轴以南、以北分别承担重要的生态安全维护任务、生态保护与修复前提下的生态建设任务。“两核”分别为渭河与洮河流域的两个生态保护核心区,需要优先进行生态保护。“多区”分别为甘南水源涵养区,大通河、庄浪河生态修复区,陇东生态修复区,陇西生态建设区。本研究将MSPA与InVEST模型相结合进行源地识别,在分析机制与识别过程上互为补充,并基于电路理论模拟种群迁徙与扩散,显著提高了源地与廊道识别的准确性,可以为黄河流域甘肃段国土空间开发、生态保护及生态安全维护提供参考。
中图分类号:
许静, 廖星凯, 甘崎旭, 周茅先. 基于MSPA与电路理论的黄河流域甘肃段生态安全格局构建[J]. 生态环境学报, 2023, 32(4): 805-813.
XU Jing, LIAO Xingkai, GAN Qixu, ZHOU Maoxian. Construction of Ecological Security Pattern Based on MSPA and Circuit Theory in Gansu Section of the Yellow River Basin[J]. Ecology and Environment, 2023, 32(4): 805-813.
用地类型 | 生境质量 | 胁迫因子 | ||
---|---|---|---|---|
耕地 | 人造地表 | 裸地 | ||
耕地 | 0.3 | 0.1 | 0.6 | 0.3 |
林地 | 1.0 | 0.4 | 0.7 | 0.5 |
草地 | 0.7 | 0.2 | 0.6 | 0.4 |
灌木地 | 0.8 | 0.4 | 0.6 | 0.5 |
湿地 | 0.9 | 0.3 | 0.6 | 0.3 |
水体 | 1.0 | 0.2 | 0.7 | 0.4 |
人造地表 | 0.1 | 0.1 | 0.1 | 0.2 |
裸地 | 0.2 | 0.3 | 0.6 | 0.1 |
冰川和永久积雪 | 1.0 | 0.4 | 0.6 | 0.4 |
表1 不同土地利用/覆盖类型对胁迫因子的敏感度
Table 1 Sensitivity of different land use/cover types to stress factors
用地类型 | 生境质量 | 胁迫因子 | ||
---|---|---|---|---|
耕地 | 人造地表 | 裸地 | ||
耕地 | 0.3 | 0.1 | 0.6 | 0.3 |
林地 | 1.0 | 0.4 | 0.7 | 0.5 |
草地 | 0.7 | 0.2 | 0.6 | 0.4 |
灌木地 | 0.8 | 0.4 | 0.6 | 0.5 |
湿地 | 0.9 | 0.3 | 0.6 | 0.3 |
水体 | 1.0 | 0.2 | 0.7 | 0.4 |
人造地表 | 0.1 | 0.1 | 0.1 | 0.2 |
裸地 | 0.2 | 0.3 | 0.6 | 0.1 |
冰川和永久积雪 | 1.0 | 0.4 | 0.6 | 0.4 |
阻力因子 | 权重 | 指标 | 阻力系数 |
---|---|---|---|
土地覆盖类型 | 0.357 | 耕地 | 60 |
林地 | 15 | ||
草地 | 50 | ||
灌木地 | 80 | ||
湿地 | 10 | ||
水体 | 5 | ||
人造地表 | 150 | ||
裸地 | 100 | ||
冰川和永久积雪 | 90 | ||
高程 | 0.0385 | 736-1662 | 1 |
1662-2205 | 100 | ||
2205-2880 | 200 | ||
2880-3328 | 300 | ||
3328-4861 | 500 | ||
坡度 | 0.0497 | 0-4.5 | 1 |
4.5-9.0 | 100 | ||
9.0-13.9 | 200 | ||
13.9-20.6 | 300 | ||
20.6-60.5 | 500 | ||
距道路距离 | 0.0630 | >4000 | 1 |
3000-4000 | 100 | ||
2000-3000 | 300 | ||
1000-2000 | 500 | ||
0-1000 | 800 | ||
距河流距离 | 0.192 | 0-1000 | 1 |
1000-2000 | 100 | ||
2000-3000 | 200 | ||
3000-4000 | 300 | ||
>4000 | 500 | ||
夜间灯光指数 | 0.300 | 0.2-4.6 | 1 |
4.6-17.8 | 100 | ||
17.8-45.4 | 200 | ||
45.4-129.1 | 300 | ||
129.1-282.3 | 500 |
表2 阻力因子赋值
Table 2 Assignment of resistance factors
阻力因子 | 权重 | 指标 | 阻力系数 |
---|---|---|---|
土地覆盖类型 | 0.357 | 耕地 | 60 |
林地 | 15 | ||
草地 | 50 | ||
灌木地 | 80 | ||
湿地 | 10 | ||
水体 | 5 | ||
人造地表 | 150 | ||
裸地 | 100 | ||
冰川和永久积雪 | 90 | ||
高程 | 0.0385 | 736-1662 | 1 |
1662-2205 | 100 | ||
2205-2880 | 200 | ||
2880-3328 | 300 | ||
3328-4861 | 500 | ||
坡度 | 0.0497 | 0-4.5 | 1 |
4.5-9.0 | 100 | ||
9.0-13.9 | 200 | ||
13.9-20.6 | 300 | ||
20.6-60.5 | 500 | ||
距道路距离 | 0.0630 | >4000 | 1 |
3000-4000 | 100 | ||
2000-3000 | 300 | ||
1000-2000 | 500 | ||
0-1000 | 800 | ||
距河流距离 | 0.192 | 0-1000 | 1 |
1000-2000 | 100 | ||
2000-3000 | 200 | ||
3000-4000 | 300 | ||
>4000 | 500 | ||
夜间灯光指数 | 0.300 | 0.2-4.6 | 1 |
4.6-17.8 | 100 | ||
17.8-45.4 | 200 | ||
45.4-129.1 | 300 | ||
129.1-282.3 | 500 |
[1] |
DAI L, LIU Y B, LUO X Y, 2021. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China[J]. Science of the Total Environment, 754: 141868.
DOI URL |
[2] |
DING M M, LIU W, XIAO L, et al., 2022. Construction and optimization strategy of ecological security pattern in a rapidly urbanizing region: A case study in central-south China[J]. Ecological Indicators, 136: 108604.
DOI URL |
[3] | DONG J Q, PENG J, LIU Y X, et al., 2020. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities[J]. Landscape and Urban Planning, 199: 10381. |
[4] |
FORMAN R T T, GODRON M, 1981. Patches and structural components for a landscape ecology[J]. BioScience, 31(10): 733-740.
DOI URL |
[5] |
FU Y J, SHI X Y, HE J, et al., 2020. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China[J]. Ecological Indicators, 112: 106030.
DOI URL |
[6] |
GAO J B, DU F J, ZUO L Y, et al., 2021. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern[J]. Landscape Ecology, 36(7): 2113-2133.
DOI |
[7] |
GAO Y, WU Z F, LOU Q S, et al., 2012. Landscape ecological security assessment based on projection pursuit in Pearl River Delta[J]. Environmental Monitoring and Assessment, 184(4): 2307-2319.
DOI PMID |
[8] |
JIN X X, WEI L Y, WANG Y, et al., 2021. Construction of ecological security pattern based on the importance of ecosystem service functions and ecological sensitivity assessment: A case study in Fengxian County of Jiangsu Province, China[J]. Environment, Development and Sustainability, 23(1): 563-590.
DOI |
[9] |
KANG J M, ZHANG X, ZHU X W, et al., 2021. Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China[J]. Global Ecology and Conservation, 26: e01472.
DOI URL |
[10] |
LI S C, XIAO W, ZHAO Y L, et al., 2020a. Incorporating ecological risk index in the multi-process MCRE model to optimize the ecological security pattern in a semi-arid area with intensive coal mining: A case study in northern China[J]. Journal of Cleaner Production, 247: 119143.
DOI URL |
[11] |
LI Z T, LI M, XIA B C, 2020b. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation[J]. Ecological Indicators, 114: 106319.
DOI URL |
[12] |
MCRAE B H, HALL S A, BEIER P, et al., 2012. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits[J]. PloS One, 7(12): e52604.
DOI URL |
[13] | MERRIAM G, 1984. Connectivity: A fundamental ecological characteristic of landscape pattern. Methodology in landscape ecological research and planning: proceedings, 1st seminar[J]. International Association of Landscape Ecology, 11: 5-15. |
[14] |
OUYANG X, WANG Z B, ZHU X, 2019. Construction of the ecological security pattern of urban agglomeration under the framework of supply and demand of ecosystem services using bayesian network machine learning: Case study of the Changsha-Zhuzhou-Xiangtan urban agglomeration, China[J]. Sustainability, 11(22): 1-16.
DOI URL |
[15] |
PENG J, YANG Y, LIU Y X, et al., 2018. Linking ecosystem services and circuit theory to identify ecological security patterns[J]. Science of the total environment, 644: 781-790.
DOI URL |
[16] | PENG J, ZHAO S Q, DONG J Q, et al., 2019. Applying ant colony algorithm to identify ecological security patterns in megacities[J]. Environmental Modelling & Software, 117: 214-222. |
[17] | RICHARD T T, MICHEL G, 1986. Landscape Ecology[M]. New York: John Wiley & Sons, 1: 10-14. |
[18] |
SOILLE P, VOGTP , 2009. Morphological segmentation of binary patterns[J]. Pattern Recognition Letters, 30(4): 456-459.
DOI URL |
[19] | SU Y X, CHEN X Z, LIAO J S, et al., 2016. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions[J]. Urban Forestry & Urban Greening, 19: 35-46. |
[20] |
WANG H J, BAO C, 2021. Scenario modeling of ecological security index using system dynamics in Beijing-Tianjin-Hebei urban agglomeration[J]. Ecological Indicators, 125: 107613.
DOI URL |
[21] | WU L, ZHOU J, LI Z H, 2020. Applying of GA-BP neural network in the land ecological security evaluation[J]. IAENG International Journal of Computer Science, 47(1): 11-18. |
[22] |
YUAN Y, BAI Z K, ZHANG J, et al., 2022. Increasing urban ecological resilience based on ecological security pattern: A case study in a resource-based city[J]. Ecological Engineering, 175: 106486.
DOI URL |
[23] |
ZHANG L Q, PENG J, LIU Y X, et al., 2017. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing-Tianjin-Hebei region, China[J]. Urban Ecosystems, 20(3): 701-714.
DOI URL |
[24] |
ZOU S J, ZHANG L, HUANG X, et al., 2022. Early ecological security warning of cultivated lands using RF-MLP integration model: A case study on China's main grain-producing areas[J]. Ecological Indicators, 141: 109059.
DOI URL |
[25] | 樊影, 王宏卫, 杨胜天, 等, 2021. 基于生境质量和生态安全格局的阿勒泰地区生态保护关键区域识别[J]. 生态学报, 41(19): 7614-7626. |
FAN Y, WANG H W, YANG S T, et al., 2021. Identification of ecological protection crucial areas in Altay Prefecture based on habitat quality and ecological security pattern[J]. Acta Ecologica Sinica, 41(19): 7614-7626. | |
[26] | 韩会庆, 罗绪强, 郜红娟, 等, 2018. 土地利用变化对乌江源区生态系统服务价值的影响[J]. 水土保持研究, 25(4): 270-273, 282. |
HAN H Q, LUO X Q, GAO H J, et al., 2018. Impacts of land use change on ecosystem service values in source region of Wujiang[J]. Research Soil and Water Conservation, 25(4): 270-273, 282. | |
[27] | 汉瑞英, 赵志平, 肖能文, 等, 2022. 基于最小累积阻力差值模型的北京市生态安全格局构建[J]. 水土保持通报, 42(3): 95-102. |
HAN R Y, ZHAO Z P, XIAO N W, et al., 2022. Construction of ecological security pattern in Beijing City based on minimum resistance mode[J]. Bulletin of Soil and Water Conservation, 42(3): 95-102. | |
[28] | 刘春芳, 王川, 2018. 基于土地利用变化的黄土丘陵区生境质量时空演变特征——以榆中县为例[J]. 生态学报, 38(20): 7300-7311. |
LIU C F, WANG C, 2018. Spatio-temporal evolution characteristics of habitat quality in the Loess Hilly Region based on land use change: A case study in Yuzhong county[J]. Acta Ecologica Sinica, 38(20): 7300-7311. | |
[29] | 马雨欣, 杨琅, 李泞吕, 等, 2022. 基于生态系统服务重要性和生态系统脆弱性的临沧市生态安全格局构建[J]. 云南大学学报(自然科学版), 44(5): 1090-1100. |
MA Y X, YANG L, LI N L, et al., 2022. Construction of ecological security pattern in Lincang City on the importance of ecosystem services and ecosystem vulnerability[J]. Journal of Yunnan University (Natural Sciences Edition), 44(5): 1090-1100. | |
[30] |
欧定华, 夏建国, 张莉, 等, 2015. 区域生态安全格局规划研究进展及规划技术流程探讨[J]. 生态环境学报, 24(1): 163-173.
DOI URL |
OU D H, XIA J G, ZHANG L, et al., 2015. Research progress on regional ecological security pattern planning and discussion of planning technique flow[J]. Ecology and Environmental Sciences, 24(1): 163-173. | |
[31] | 彭洁, 蔡海生, 张学玲, 等, 2022. 基于主导生态功能的抚河流域国土空间生态安全格局分析[J]. 生态学报, 42(18): 7430-7444. |
PENG J, CAI H S, ZHANG X L, et al., 2022. Spatial pattern analysis of ecological security in Fuhe River Basin based on dominant ecological function[J]. Acta Ecologica Sinica, 42(18): 7430-7444. | |
[32] |
陶培峰, 李萍, 丁忆, 等, 2022. 基于生态重要性评价与最小累积阻力模型的重庆市生态安全格局构建[J]. 测绘通报 (1): 15-20, 38.
DOI |
TAO P F, LI P, DING Y, et al., 2022. Construction of ecological security pattern based on ecological importance assessment and minimum cumulative resistance model in Chongqing City[J]. Bulletin of Surveying and Mapping (1): 15-20, 38.
DOI |
|
[33] | 王海云, 匡耀求, 文薪荐, 等, 2022. 粤港澳大湾区生态网络构建及廊道优化[J]. 中国环境科学, 42(5): 2289-2298. |
WANG H Y, KUANG Y Q, WEN X J, et al., 2022. Ecological network construction and corridor optimization in Guangdong-Hong Kong- Macao Greater Bay Area[J]. China Environmental Science, 42(5): 2289-2298. | |
[34] | 王文浩, 2011. 甘南黄河重要水源补给生态功能区湿地保护与修复思路[J]. 生态经济 (1): 387-389. |
WANG W H, 2011. Yellow river water supply Gannan important ecological functions of wetlands areas and restoration of thinking[J]. Ecological Economy (1): 387-389. | |
[35] | 王雪然, 万荣荣, 潘佩佩, 2022. 太湖流域生态安全格局构建与调控——基于空间形态学-最小累积阻力模型[J]. 生态学报, 42(5): 1968-1980. |
WANG X R, WAN R R, PAN P P, 2022. Construction and adjustment of ecological security pattern based on MSPA-MCR Model in Taihu Lake Basin[J]. Acta Ecologica Sinica, 42(5): 1968-1980. | |
[36] |
魏建兵, 郑泓, 程雨露, 等, 2022. 基于CiteSpace的生态安全格局研究进展[J]. 生态环境学报, 31(4): 835-844.
DOI URL |
WEI J B, ZHENG H, CHENG Y L, et al., 2022. Advances in research of ecological security patterns, based on CiteSpace[J]. Ecology and Environmental Sciences, 31(4): 835-844. | |
[37] | 许峰, 尹海伟, 孔繁花, 等, 2015. 基于MSPA与最小路径方法的巴中西部新城生态网络构建[J]. 生态学报, 35(19): 6425-6434. |
XU F, YIN H W, KONG F H, et al., 2015. Developing ecological networks based on MSPA and the least-cost path method: A case study in Bazhong western new district[J]. Acta Ecologica Sinica, 35(19): 6425-6434. | |
[38] |
易浪, 孙颖, 尹少华, 等, 2022. 生态安全格局构建: 概念、框架与展望[J]. 生态环境学报, 31(4): 845-856.
DOI URL |
YI L, SUN Y, YIN S H, et al., 2022. Construction of ecological security pattern: Concept, framework and prospect[J]. Ecology and Environmental Sciences, 31(4): 845-856. | |
[39] | 俞孔坚, 1999. 生物保护的景观生态安全格局[J]. 生态学报, 19(1): 10-17. |
YU K J, 1999. Landscape ecological security patterns in biological conservation[J]. Acta Ecologica Sinica, 19(1): 10-17. | |
[40] |
袁少雄, 宫清华, 陈军, 等, 2021. 广东省自然保护区生态网络评价及其生态修复建议[J]. 热带地理, 41(2): 431-440.
DOI |
YUAN S X, GONG Q H, CHEN J, et al., 2021. Evaluation of an ecological network of nature reserves in Guangdong Province, and suggestions for ecological restoration[J]. Tropical Geography, 41(2): 431-440.
DOI |
|
[41] | 张海铃, 叶长盛, 胡梦姗, 2023. 基于生态安全格局的环鄱阳湖城市群生态修复关键区域识别及修复策略[J]. 水土保持研究, 30(2): 393-402. |
ZHANG H L, YE C S, HU M S, 2023. Identification and restoration strategy of key areas of ecological restoration in urban agglomeration around Poyang Lake based on ecological security pattern[J]. Research of Soil and Water Conservation, 30(2): 393-402. | |
[42] | 周璟, 王宏卫, 谈波, 等, 2022. 开都河流域生态安全格局构建与生态修复分区识别[J]. 生态学报, 42(24): 1-11. |
ZHOU J, WANG H W, TAN B, et al., 2022. Construction of ecological security pattern and identification of ecological rehabilitation zones in Kaidu River Basin[J]. Acta Ecologica Sinica, 42(24): 1-11. |
[1] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[2] | 张平江, 党国锋. 基于MCR模型与蚁群算法的洮河流域生态安全格局构建[J]. 生态环境学报, 2023, 32(3): 481-491. |
[3] | 朱锦维, 柯新利, 何利杰, 周婷, 王青, 任妍钰. 基于价值链理论的生态产品价值实现机制理论解析[J]. 生态环境学报, 2023, 32(2): 421-428. |
[4] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[5] | 陈乐, 卫伟. 西北旱区典型流域土地利用与生境质量的时空演变特征[J]. 生态环境学报, 2022, 31(9): 1909-1918. |
[6] | 刘香华, 王秀明, 刘谞承, 张音波, 刘飘. 基于外溢生态系统服务价值的广东省生态补偿机制研究[J]. 生态环境学报, 2022, 31(5): 1024-1031. |
[7] | 韦家怡, 李铖, 吴志峰, 张莉, 吉冬青, 程炯. 粤港澳大湾区生态安全格局及重要生态廊道识别[J]. 生态环境学报, 2022, 31(4): 652-662. |
[8] | 魏建兵, 郑泓, 程雨露, 王阳. 基于CiteSpace的生态安全格局研究进展[J]. 生态环境学报, 2022, 31(4): 835-844. |
[9] | 易浪, 孙颖, 尹少华, 魏晓. 生态安全格局构建:概念、框架与展望[J]. 生态环境学报, 2022, 31(4): 845-856. |
[10] | 相恒星, 张健, 王宗明, 毛德华. 松嫩平原生态系统服务供需研究[J]. 生态环境学报, 2021, 30(8): 1769-1776. |
[11] | 齐静, 邓伟, 周渝, 刘婷, 罗旭. 重庆市生态保护红线成效评估方法与应用[J]. 生态环境学报, 2021, 30(7): 1532-1540. |
[12] | 周笛轩, 林永标, 汪雁佳, 刘占锋, 周丽霞. 南亚热带不同人工林生态系统服务功能评估[J]. 生态环境学报, 2021, 30(5): 907-919. |
[13] | 郭彩云, 张雷, 高孝威, 苏艳龙, 李琳, 王晓江, 杨九艳. 内蒙古大青山4种典型植被类型生态系统服务权衡与协同[J]. 生态环境学报, 2021, 30(10): 1999-2009. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||