生态环境学报 ›› 2022, Vol. 31 ›› Issue (2): 248-256.DOI: 10.16258/j.cnki.1674-5906.2022.02.005
龙靖1,2(), 黄耀1, 刘占锋1, 简曙光1, 魏丽萍1, 王俊1,*(
)
收稿日期:
2021-08-17
出版日期:
2022-02-18
发布日期:
2022-04-14
通讯作者:
*王俊(1983年生),男,副研究员,博士,研究领域为森林生态学和恢复生态学。E-mail: wxj@scbg.ac.cn作者简介:
龙靖(1996年生),男,硕士研究生,研究方向为森林与恢复生态学。E-mail: longjing@scbg.ac.cn
基金资助:
LONG Jing1,2(), HUANG Yao1, LIU Zhanfeng1, JIAN Shuguang1, WEI Liping1, WANG Jun1,*(
)
Received:
2021-08-17
Online:
2022-02-18
Published:
2022-04-14
摘要:
养分再吸收对植物养分收支和生态系统养分循环至关重要,研究热带珊瑚岛特殊生境下优势植物的养分再吸收特征对于深入理解海岛植物适应性和海岛陆域生态系统养分循环具有重要意义。针对中国西沙群岛的热带珊瑚岛生境,以抗风桐(Pisonia grandis)和海岸桐(Guettarda speciose)两种代表性单优乔木为研究对象,比较了其叶片性状和养分再吸收特征,并分析了可能影响养分再吸收过程的因素。结果表明,抗风桐的比叶面积(288.59 cm2∙g-1 vs 150.42 cm2∙g-1)和叶片氮磷比(11.39 vs 2.97)显著高于海岸桐,但叶碳含量、木质素含量、纤维素含量、碳氮比和木质素氮比均显著低于海岸桐,说明抗风桐的适应策略偏向于资源获取,海岸桐则偏向于资源保护。抗风桐和海岸桐的成熟叶片氮磷比均小于14,表明其生长主要受氮限制。抗风桐和海岸桐均具有相对较高的氮再吸收效率(60.28%和52.64%)和较低的磷再吸收效率(49.75%和30.73%),表明二者均趋于采取较保守的氮利用策略。抗风桐和海岸桐叶片磷再吸收程度分别为1.63 mg∙g-1和3.76 mg∙g-1,对磷再吸收不充分(>0.5 mg∙g-1),在富磷的珊瑚岛生态系统中更倾向于从土壤中直接获取磷以满足生长的需求。总之,抗风桐和海岸桐通过协调叶片资源分配、提高叶片氮再吸收效率和降低叶片磷再吸收效率以适应热带珊瑚岛的特殊生境。
中图分类号:
龙靖, 黄耀, 刘占锋, 简曙光, 魏丽萍, 王俊. 西沙热带珊瑚岛典型乔木叶片性状和养分再吸收特征[J]. 生态环境学报, 2022, 31(2): 248-256.
LONG Jing, HUANG Yao, LIU Zhanfeng, JIAN Shuguang, WEI Liping, WANG Jun. Leaf Traits and Nutrient Resorption of Two Woody Species on A Tropical Coral Island[J]. Ecology and Environment, 2022, 31(2): 248-256.
物种 Species | 深度 Depth/cm | pH | 含盐量 Salinity/(g∙kg-1) | w(土壤有机质SOM)/ (g∙kg-1) | w(土壤全氮TN)/ (g∙kg-1) | w(土壤全磷TP)/ (g∙kg-1) | w(土壤有效磷AP)/ (mg∙kg-1) | 土壤氮磷比 w(N)soil:w(P)soil |
---|---|---|---|---|---|---|---|---|
抗风桐 P. grandis | 0‒20 | 7.79±0.16Aa | 0.86±0.16Aa | 175.54±35.75Aa | 12.25±3.15Aa | 72.53±9.52Aa | 181.05±40.59Aa | 0.16±0.03Aa |
20‒40 | 8.08±0.06Aa | 0.65±0.14Aa | 71.20±15.10Ba | 5.48±1.47Aa | 38.14±14.22Aa | 91.76±29.44Aa | 0.28±0.10Aa | |
海岸桐 G. speciosa | 0‒20 | 8.25±0.03Ab | 0.59±0.03Aa | 43.55±3.58Ab | 2.39±0.20Ab | 3.35±0.36Ab | 35.26±4.98Ab | 0.75±0.10Ab |
20‒40 | 8.48±0.06Bb | 0.45±0.04Ba | 16.04±2.02Bb | 1.01±0.21Bb | 4.85±1.17Aa | 29.11±3.03Aa | 0.22±0.03Ba |
表1 抗风桐林和海岸桐林的土壤化学性质
Table 1 Soil chemical properties of P. grandis and G. speciosa forests
物种 Species | 深度 Depth/cm | pH | 含盐量 Salinity/(g∙kg-1) | w(土壤有机质SOM)/ (g∙kg-1) | w(土壤全氮TN)/ (g∙kg-1) | w(土壤全磷TP)/ (g∙kg-1) | w(土壤有效磷AP)/ (mg∙kg-1) | 土壤氮磷比 w(N)soil:w(P)soil |
---|---|---|---|---|---|---|---|---|
抗风桐 P. grandis | 0‒20 | 7.79±0.16Aa | 0.86±0.16Aa | 175.54±35.75Aa | 12.25±3.15Aa | 72.53±9.52Aa | 181.05±40.59Aa | 0.16±0.03Aa |
20‒40 | 8.08±0.06Aa | 0.65±0.14Aa | 71.20±15.10Ba | 5.48±1.47Aa | 38.14±14.22Aa | 91.76±29.44Aa | 0.28±0.10Aa | |
海岸桐 G. speciosa | 0‒20 | 8.25±0.03Ab | 0.59±0.03Aa | 43.55±3.58Ab | 2.39±0.20Ab | 3.35±0.36Ab | 35.26±4.98Ab | 0.75±0.10Ab |
20‒40 | 8.48±0.06Bb | 0.45±0.04Ba | 16.04±2.02Bb | 1.01±0.21Bb | 4.85±1.17Aa | 29.11±3.03Aa | 0.22±0.03Ba |
叶片性状 Leaf traits | 物种 Species | |
---|---|---|
抗风桐 P. grandis | 海岸桐 G. speciosa | |
平均叶面积 MLA/cm2 | 188.01±18.11a | 317.91±38.10b |
比叶面积 SLA/(cm2∙g-1) | 288.59±27.63a | 150.42±11.40b |
成熟叶碳质量分数w(C)gr/(mg∙g-1) | 396.10±9.49a | 472.29±4.70b |
成熟叶氮质量分数w(N)gr/(mg∙g-1) | 28.77±1.43a | 12.54±0.68b |
成熟叶磷质量分数w(P)gr/(mg∙g-1) | 2.64±0.35a | 4.29±0.34b |
成熟叶木质素质量分数 w(lignin)gr/(mg∙g-1) | 144.30±19.49a | 206.16±10.02b |
成熟叶纤维素质量分数 w(cellulose)gr/(mg∙g-1) | 80.40±19.92a | 219.16±9.29b |
衰老叶木质素质量分数 w(lignin)sen/(mg∙g-1) | 126.75±10.24a | 211.69±7.22b |
衰老叶纤维素质量分数 w(cellulose)sen/(mg∙g-1) | 121.59±18.59a | 218.68±5.69b |
成熟叶碳氮比w(C)gr:w(N)gr | 13.89±0.68a | 38.07±1.99b |
成熟叶木质素氮比w(lignin)gr:w(N)gr | 4.95±0.53a | 16.67±1.44b |
成熟叶氮磷比w(N)gr:w(P)gr | 11.39±1.02a | 2.97±0.20b |
表2 抗风桐和海岸桐的叶片性状
Table 2 Leaf traits of P. grandis and G. speciosa
叶片性状 Leaf traits | 物种 Species | |
---|---|---|
抗风桐 P. grandis | 海岸桐 G. speciosa | |
平均叶面积 MLA/cm2 | 188.01±18.11a | 317.91±38.10b |
比叶面积 SLA/(cm2∙g-1) | 288.59±27.63a | 150.42±11.40b |
成熟叶碳质量分数w(C)gr/(mg∙g-1) | 396.10±9.49a | 472.29±4.70b |
成熟叶氮质量分数w(N)gr/(mg∙g-1) | 28.77±1.43a | 12.54±0.68b |
成熟叶磷质量分数w(P)gr/(mg∙g-1) | 2.64±0.35a | 4.29±0.34b |
成熟叶木质素质量分数 w(lignin)gr/(mg∙g-1) | 144.30±19.49a | 206.16±10.02b |
成熟叶纤维素质量分数 w(cellulose)gr/(mg∙g-1) | 80.40±19.92a | 219.16±9.29b |
衰老叶木质素质量分数 w(lignin)sen/(mg∙g-1) | 126.75±10.24a | 211.69±7.22b |
衰老叶纤维素质量分数 w(cellulose)sen/(mg∙g-1) | 121.59±18.59a | 218.68±5.69b |
成熟叶碳氮比w(C)gr:w(N)gr | 13.89±0.68a | 38.07±1.99b |
成熟叶木质素氮比w(lignin)gr:w(N)gr | 4.95±0.53a | 16.67±1.44b |
成熟叶氮磷比w(N)gr:w(P)gr | 11.39±1.02a | 2.97±0.20b |
图1 海岸桐和抗风桐叶片养分再吸收效率和养分再吸收程度 不同大写字母表示NRE和PRE之间存在显著差异(图a、b),不同小写字母表示两个树种之间存在显著差异(n=5,P<0.05)
Figure 1 Leaf nutrient resorption efficiency and proficiency of P. grandis and G. speciosa Different capital letters indicate significant differences at P<0.05 between NRE and PRE within the same species, and different lowercase letters indicated significant differences at P<0.05 between the two species (n=5).
Factor 因子 | 抗风桐P. grandis | 海岸桐G. speciosa | |||
---|---|---|---|---|---|
氮再吸收效率 (NRE) | 磷再吸收效率 (PRE) | 氮再吸收效率 (NRE) | 磷再吸收效率 (PRE) | ||
叶片 Leaf | SLA | 0.590 | 0.700 | 0.304 | 0.731 |
w(C)gr | -0.032 | 0.563 | 0.223 | 0.171 | |
w(N)gr | 0.847 | 0.588 | 0.718 | 0.363 | |
w(P)gr | 0.360 | 0.898* | 0.011 | 0.911* | |
w(lignin)gr | 0.664 | 0.600 | 0.718 | -0.121 | |
w(cellulose)gr | -0.038 | -0.560 | 0.011 | 0.181 | |
w(C)gr:w(N)gr | -0.856 | -0.321 | -0.706 | -0.838 | |
w(lignin)gr:w(N)gr | 0.523 | 0.545 | 0.346 | -0.322 | |
w(N)gr:w(P)gr | -0.035 | -0.887* | 0.562 | -0.695 | |
土壤 Soil | pH | -0.650 | -0.672 | -0.910* | 0.029 |
Salinity | 0.955* | 0.105 | -0.300 | 0.249 | |
SOM | 0.876* | 0.447 | -0.941* | -0.025 | |
TN | 0.970** | 0.287 | -0.779 | -0.214 | |
TP | 0.816 | 0.438 | 0.097 | 0.908* | |
AP | 0.894* | 0.450 | -0.828 | 0.261 | |
N:Psoil | 0.922* | 0.103 | -0.487 | -0.723 |
表3 抗风桐和海岸桐叶片养分再吸收效率与成熟叶片性状和土壤性质之间的相关性分析
Table 3 Pearson correlations between leaf nutrient resorption efficiencies and mature leaf traits, soil properties in the P. grandis and G. speciosa forests
Factor 因子 | 抗风桐P. grandis | 海岸桐G. speciosa | |||
---|---|---|---|---|---|
氮再吸收效率 (NRE) | 磷再吸收效率 (PRE) | 氮再吸收效率 (NRE) | 磷再吸收效率 (PRE) | ||
叶片 Leaf | SLA | 0.590 | 0.700 | 0.304 | 0.731 |
w(C)gr | -0.032 | 0.563 | 0.223 | 0.171 | |
w(N)gr | 0.847 | 0.588 | 0.718 | 0.363 | |
w(P)gr | 0.360 | 0.898* | 0.011 | 0.911* | |
w(lignin)gr | 0.664 | 0.600 | 0.718 | -0.121 | |
w(cellulose)gr | -0.038 | -0.560 | 0.011 | 0.181 | |
w(C)gr:w(N)gr | -0.856 | -0.321 | -0.706 | -0.838 | |
w(lignin)gr:w(N)gr | 0.523 | 0.545 | 0.346 | -0.322 | |
w(N)gr:w(P)gr | -0.035 | -0.887* | 0.562 | -0.695 | |
土壤 Soil | pH | -0.650 | -0.672 | -0.910* | 0.029 |
Salinity | 0.955* | 0.105 | -0.300 | 0.249 | |
SOM | 0.876* | 0.447 | -0.941* | -0.025 | |
TN | 0.970** | 0.287 | -0.779 | -0.214 | |
TP | 0.816 | 0.438 | 0.097 | 0.908* | |
AP | 0.894* | 0.450 | -0.828 | 0.261 | |
N:Psoil | 0.922* | 0.103 | -0.487 | -0.723 |
图2 抗风桐和海岸桐养分再吸收效率与叶片养分含量和土壤养分含量之间的线性回归分析 G. speciosa和P. grandis分别为海岸桐和抗风桐(n=5)
Figure 2 Linear regression between leaf nutrient resorption and leaf nutrient content and soil nutrient content in the P. grandis and G. speciosa G. speciosa and P. grandis are Guettarda speciosa and Pisonia grandis, respectively (n=5)
[1] |
ACHAT D L, NOEMIE P, NICOLAS M, et al, 2018. Nutrient remobilization in tree foliage as affected by soil nutrients and leaf life span[J]. Ecological Monographs, 88(3): 408-428.
DOI URL |
[2] |
AERTS R, 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns?[J]. Journal of Ecology, 84(4): 597-608.
DOI URL |
[3] | AERTS R, CHAPIN F S, 1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 30: 1-67. |
[4] |
AGREN G I, WEIH M, 2012. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype[J]. New Phytologist, 194(4): 944-952.
DOI URL |
[5] |
CHEN H, REED S C, LÜ X T, 2021. Coexistence of multiple leaf nutrient resorption strategies in a single ecosystem[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2021.144951.
DOI |
[6] |
CLEVELAND C C, LIPTZIN D, 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 85: 235-252.
DOI URL |
[7] |
CONNELL J H, LOWMAN M D, 1989. Low-diversity tropical rain forests: some possible mechanisms for their existence[J]. The American Naturalist, 134: 88-119.
DOI URL |
[8] |
CORDELL S, GOLDSTEIN G, MEINZER F C, 2001. Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii[J]. Oecologia, 127(2): 198-206.
DOI URL |
[9] |
CORNELISSEN J H C, QUESTED H M, LOGTESTIJN R S P, et al., 2006. Foliar pH as a new plant trait: Can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?[J]Oecologia, 147: 315-326.
DOI URL |
[10] |
DE CAMPOS M C R, PEARSE S J, OLIVEIRA R S, et al., 2013. Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment[J]. Annals of Botany, 111(3): 445-454.
DOI URL |
[11] |
ELSER J J, BRACKEN M E S, CLELAND E E, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 10(12): 1135-1142.
DOI URL |
[12] |
GLOSER V, 2005. The consequences of lower nitrogen availability in autumn for internal nitrogen reserves and spring growth of Calamagrostis epigejos[J]. Plant Ecology, 179(1): 119-126.
DOI URL |
[13] |
HAN W X, TANG L Y, CHEN Y H, et al., 2013. Relationship between the relative limitation and resorption efficiency of nitrogen vs. phosphorus in woody plants[J]. PLoS One, DOI: 10.1371/journal.pone.0083366.
DOI |
[14] |
HUANG Y, REN H, WANG J, et al., 2020. Relationships between vegetation and soil seed banks along a center-to-edge gradient on a tropical coral island[J]. Ecological Indicators, DOI: 10.1016/j.ecolind.2020.106689.
DOI |
[15] |
JI H W, WEN J H, DU B M, et al., 2018. Comparison of the nutrient resorption stoichiometry of Quercus variabilis Blume growing in two sites contrasting in soil phosphorus content[J]. Annals of Forest Science, DOI: 10.1007/s13595-018-0727-5.
DOI |
[16] |
KILLINGBECK K T, 1992. Inefficient nitrogen resorption in a population of ocotillo (Fouquieria splendens), a drought-deciduous desert shrub[J]. Southwest Naturalist, 37: 35-42.
DOI URL |
[17] | KILLINGBECK K T, 1993. Nutrient resorption in desert shrubs[J]. Revista Chilena de Historia Natural, 66: 345-355. |
[18] |
KILLINGBECK K T, 1996. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency[J]. Ecology, 77(6): 1716-1727.
DOI URL |
[19] |
KOBE R K, LEPCZYK C A, IYER M, 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global dataset[J]. Ecology, 86(10): 2780-2792.
DOI URL |
[20] |
KOERSELMAN W, MEULEMAN A F M, 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 33(6): 1441-1450.
DOI URL |
[21] |
LALIBERTE E, TURNER B L, COSTES T, et al., 2012. Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot[J]. Journal of Ecology, 100(3): 631-642.
DOI URL |
[22] | LAMBERS H, RAVEN J A, SHAVER G R, et al., 2008. Plant nutrient acquisition strategies change with soil age[J]. Trends in Ecology and Evolution, 23(9): 5-103. |
[23] |
LOHBECK M, POORTER L, LEBRIJA-TREJOS E, et al., 2013. Successional changes in functional composition contrast for dry and wet tropical forest[J]. Ecology, 94(6): 1211-1216.
DOI URL |
[24] |
MARON J L, ESTES J A, CROLL D A, et al., 2006. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies[J]. Ecological Monographs, 76(1): 3-24.
DOI URL |
[25] |
MARTY C, LAMAZE T, PORNON A, 2009. Endogenous sink-source interactions and soil nitrogen regulate leaf life-span in an evergreen shrub[J]. New Phytologist, 183(4): 1114-1123.
DOI URL |
[26] |
MCGRODDY M E, DAUFRESNE T, HEDIN L O, 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios[J]. Ecology, 85(9): 2390-2401.
DOI URL |
[27] | NEWBERY D M, ALEXANDER I J, ROTHER J A, 1997. Phosphorus dynamics in a lowland African rain forest: The influence of ectomycorrhizal trees[J]. Ecological Monographs, 67(3): 367-409. |
[28] |
NIINEMETS U, KULL K, 2003. Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees[J]. Acta Oecologica-International Journal of Ecology, 24(4): 209-219.
DOI URL |
[29] |
PANG D B, WANG G Z, LI G J, 2018. Ecological stoichiometric characteristics of two typical plantations in the karst ecosystem of southwestern China[J]. Forests, 9(2): 56.
DOI URL |
[30] |
POORTER L, BONGERS F, 2006. Leaf trait are good predictors of plant performance across 53 rain forest species[J]. Ecology, 87(7): 1733-1743.
DOI URL |
[31] |
RENTERIA L Y, JARAMILLO V J, 2011. Rainfall drives leaf traits and leaf nutrient resorption in a tropical dry forest in Mexico[J]. Oecologia, 165(1): 201-211.
DOI URL |
[32] |
ROWLAND A P, ROBERTS J D, 1994. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods[J]. Communications in Soil Science and Plant Analysis, 25(3-4): 269-277.
DOI URL |
[33] |
SEE C R, YANAI R D, FISK M C, et al., 2015. Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest[J]. Ecology, 96(9): 2488-2498.
DOI URL |
[34] |
SURIYAGODA L D B, RAJAPAKSHA R, PUSHPAKUMARA G, et al., 2018. Nutrient resorption from senescing leaves of epiphytes, hemiparasites and their hosts in tropical forests of Sri Lanka[J]. Journal of Plant Ecology, 11(6): 815-826.
DOI URL |
[35] |
TANG L Y, HAN W X, CHEN Y H, et al., 2013. Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China[J]. Journal of Plant Ecology, 6(5): 408-417.
DOI URL |
[36] |
TSUJII Y, ONODA Y, KITAYAMA K, 2017. Phosphorus and nitrogen resorption from different chemical fractions in senescing leaves of tropical tree species on Mount Kinabalu, Borneo[J]. Oecologia, 185(2): 171-180.
DOI URL |
[37] |
TULLY K L, WOOD T E, SCHWANTES A M, 2013. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentaclethra macroloba[J]. Ecology, 94(4): 930-940.
DOI URL |
[38] |
VERGUTZ L, MANZONI S, PORPORATO A, et al., 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 82(2): 205-220.
DOI URL |
[39] |
WARDLE D A, BELLINGHAM P J, BONNER K I, et al., 2009. Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabird-dominated islands[J]. Ecology, 90(2): 452-464.
DOI URL |
[40] |
WRIGHT I J, WESTOBY M, 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species[J]. Functional Ecology, 17(1): 10-19.
DOI URL |
[41] |
WRIGHT I J, REICH P B, CORNELISSEN J H C, et al., 2005. Assessing the generality of global leaf trait relationships[J]. New Phytologist, 166(2): 485-496.
DOI URL |
[42] |
XU M P, ZHONG Z K, SUN Z Y, et al., 2020. Soil available phosphorus and moisture drive nutrient resorption patterns in plantations on the Loess Plateau[J]. Forest Ecology and Management, DOI: 10.1016/j.foreco.2020.117910.
DOI |
[43] |
YUAN Z Y, CHEN H Y H, 2009a. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation[J]. Global Ecology and Biogeography, 18(1): 11-18.
DOI URL |
[44] |
YUAN Z Y, CHEN H Y H, 2009b. Global trends in senesced-leaf nitrogen and phosphorus[J]. Global Ecology and Biogeography, 18(5): 532-542.
DOI URL |
[45] |
ZHANG J L, ZHANG S B, CHEN Y J, et al., 2015. Nutrient resorption is associated with leaf vein density and growth performance of dipterocarp tree species[J]. Journal of Ecology, 103(3): 541-549.
DOI URL |
[46] |
ZHANG W, ZHANG H, JIAN S G, et al., 2019. Tree plantations influence the abundance of ammonia-oxidizing bacteria in the soils of a coral island[J]. Applied Soil Ecology, 138: 220-222.
DOI URL |
[47] | 龚子同, 张甘霖, 杨飞, 2013. 南海诸岛的土壤及其生态系统特征[J]. 生态环境学报, 22(2): 183-188. |
GONG Z T, ZHANG G L, YANG F, 2013. Soils and the soil ecosystem in the South China Sea Islands[J]. Ecology and Environmental Sciences, 22(2): 183-188. | |
[48] | 广东省植物研究所西沙群岛植物调查队, 1977. 我国西沙群岛的植物和植被[M]. 北京: 科学出版社. |
Exploration Group of Paracel Islands of Institute of Guangdong, 1977. Plants and vegetation of the Paracel Islands[M]. Beijing: Science Press. | |
[49] | 黄宝荣, 欧阳志云, 张慧智, 等, 2009. 海南岛生态环境脆弱性评价[J]. 应用生态学报, 20(3): 639-646. |
HUANG B R, OUYANG Z Y, ZHANG H Z, et al., 2009. Assessment of eco-environmental vulnerability of Hainan Island, China[J]. Chinese Journal of Applied Ecology, 20(3): 639-646. | |
[50] | 李晓盈, 刘东明, 简曙光, 等, 2021. 海岸桐的抗旱生物学特性[J]. 广西植物, 41(6): 914-921. |
LI X Y, LIU D M, JIAN S G, et al., 2021. Biological characteristics of drought resistance of Guettarda speciose[J]. Guihaia, 41(6): 914-921. | |
[51] | 刘光崧, 1996. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社. |
LIU G S, 1996. Soil physical and chemical analysis and description of soil profiles[M]. Beijing: Standards Press of China. | |
[52] | 刘宏伟, 刘文丹, 王微, 等, 2015. 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征[J]. 生态学报, 35(12): 4071-4080. |
LIU H W, LIU W D, WANG W, et al., 2015. Leaf traits and nutrients resorption of major woody species in the karst limestone are of Chongqing[J]. Acta Ecological Sinica, 35(12): 4071-4080. | |
[53] | 刘晓娟, 马克平, 2015. 植物功能性状研究进展[J]. 中国科学: 生命科学, 45(4): 325-339. |
LIU X J, MA K P, 2015. Plant functional traits-concepts, applications and future directions[J]. Scientia Sinica Vitae, 45(4): 325-339.
DOI URL |
|
[54] | 刘晓瞳, 葛晨东, 邹欣庆, 等, 2017. 西沙群岛东岛潟湖沉积物碳、氮元素地球化学特征及其指示的环境变化[J]. 海洋学报, 39(6): 43-54. |
LIU X T, GE C D, ZOU X Q, et al., 2017. Carbon, nitrogen geochemical characteristics and their implications on environmental change in the lagoon sediments of the Dongdao Island of Xisha Islands in South China Sea[J]. Haiyang Xuebao, 39(6): 43-54. | |
[55] | 任海, 简曙光, 张倩媚, 等, 2017. 中国南海诸岛的植物和植被现状[J]. 生态环境学报, 26(10): 1639-1648. |
REN H, JIAN S G, ZHANG Q M, et al., 2017. Plants and vegetation on South China Sea Islands[J]. Ecology and Environmental Sciences, 26(10): 1639-1648. | |
[56] | 王晶媛, 张慧, 虞木奎, 等, 2017. 区域尺度上麻栎叶片性状对环境因子的响应规律[J]. 生态环境学报, 26(5): 754-762. |
WANG J Y, ZHANG H, YU M K, et al., 2017. Response of leaf traits of Quercus acutissima to environmental factors at regional scale[J]. Ecology and Environmental Sciences, 26(5): 754-762. | |
[57] | 王森浩, 朱怡静, 王玉芳, 等, 2019. 西沙群岛主要岛屿不同植被类型对土壤理化性质的影响[J]. 热带亚热带植物学报, 27(4): 383-390. |
WANG S H, ZHU Y J, WANG Y F, 2019. Effect of vegetation types on soil physicochemical property in East Island and Yongxing Island of Xisha Islands[J]. Journal of Tropical and Subtropical Botany, 27(4): 383-390. | |
[58] | 王馨慧, 刘楠, 任海, 等, 2017. 抗风桐 (Pisonia grandis) 的生态生物学特征[J]. 广西植物, 37(12): 1489-1497. |
WANG X H, LIU N, REN H, et al., 2017. Ecological and biological characteristics of Pisonia grandis[J]. Guihaia, 37(12): 1489-1497. | |
[59] | 王雪莹, 2020. 偏远地区海鸟生物传输作用对氮、磷和重金属元素生物地球化学循环的影响[D]. 合肥: 中国科学技术大学. |
WANG X Y, 2020. The impact of seabirds' biological transportation on the biogeochemical cycle of nitrogen, phosphorus and heavy metals in remote areas[D]. Hefei: University of Science and Technology of China. | |
[60] | 张宏达, 1974. 西沙群岛的植被[J]. 植物学报, 16(3): 183-192. |
ZHANG H D, 1974. The vegetation of the His-Sha Islands[J]. Journal of Integrative Plant Biology, 16(3): 183-192. | |
[61] | 周丽丽, 钱瑞玲, 李树斌, 等, 2019. 滨海沙地主要造林树种叶片功能性状及养分重吸收特征[J]. 应用生态学报, 30(7): 2320-2328. |
ZHOU L L, QIAN R L, LI S B, et al., 2019. Leaf functional traits and nutrients resorption among major silviculture tree species in coastal sandy site[J]. Chinese Journal of Applied Ecology, 30(7): 2320-2328. |
[1] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[2] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[3] | 胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755. |
[4] | 张贝儿, 吴建强, 王敏, 熊丽君, 谭娟, 沈城, 黄波涛, 黄沈发. 耕地生态保育工程的土壤健康度评价方法初探[J]. 生态环境学报, 2023, 32(2): 388-396. |
[5] | 夏恩龙, 农珺清, 魏松坡, 刘希珍, 刘广路. 毛竹向阔叶林扩展过程中土壤养分变化特征[J]. 生态环境学报, 2022, 31(6): 1110-1117. |
[6] | 余斐, 叶彩红, 许窕孜, 张中瑞, 朱航勇, 张耕, 华雷, 邓鉴锋, 丁晓纲. 韶关市花岗岩地区森林土壤重金属污染评价[J]. 生态环境学报, 2022, 31(2): 354-362. |
[7] | 盛基峰, 李垚, 于美佳, 韩艳英, 叶彦辉. 氮磷添加对高寒草地土壤养分和相关酶活性的影响[J]. 生态环境学报, 2022, 31(12): 2302-2309. |
[8] | 薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340. |
[9] | 张晓丽, 王国丽, 常芳弟, 张宏媛, 逄焕成, 张建丽, 王婧, 冀宏杰, 李玉义. 生物菌剂对根际盐碱土壤理化性质和微生物区系的影响[J]. 生态环境学报, 2022, 31(10): 1984-1992. |
[10] | 宋贤冲, 蔡雪梅, 陈韬, 潘文, 石媛媛, 唐健, 曹继钊. 不同萌芽代次桉树根际和非根际土壤养分的变化特征[J]. 生态环境学报, 2021, 30(9): 1814-1820. |
[11] | 廖迎春, 段洪浪, 施星星, 孟庆银, 刘文飞, 沈芳芳, 樊后保, 朱涛. 杉木(Cunninghamia lanceolate)人工林生长状况与根系生物量相关性研究[J]. 生态环境学报, 2021, 30(6): 1121-1128. |
[12] | 姜倪皓, 张诗函. 楚雄市西郊云南松林下草本优势种种间联结及环境解释[J]. 生态环境学报, 2021, 30(11): 2109-2120. |
[13] | 徐文印, 张宇鹏, 段成伟, 柴瑜, 宋娴, 李希来. 黄河源不同区域退化高寒草甸土壤养分空间变异研究[J]. 生态环境学报, 2021, 30(10): 1968-1975. |
[14] | 隋阳辉, 高继平, 王延波, 肖万欣, 刘晶, 史磊, 赵海岩, 张洋. 氮肥配施生物炭对旱地土壤养分和玉米根系径级分布的影响[J]. 生态环境学报, 2021, 30(10): 2026-2032. |
[15] | 张子璇, 牛蓓蓓, 李新举. 不同改良模式对滨海盐渍土土壤理化性质的影响[J]. 生态环境学报, 2020, 29(2): 275-284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||