生态环境学报 ›› 2023, Vol. 32 ›› Issue (6): 1062-1069.DOI: 10.16258/j.cnki.1674-5906.2023.06.007
李海鹏2(), 黄月华3,4,*(
), 孙晓东5, 曹启民1,**(
), 符芳兴1, 孙楚涵3
收稿日期:
2023-02-21
出版日期:
2023-06-18
发布日期:
2023-09-01
通讯作者:
**曹启民(1974年生),研究员,博士,研究方向为土壤环境修复。E-mail: 271093491@qq.com作者简介:
李海鹏(1996年生),男,技术员,硕士,研究方向为土传病害防控。E-mail: 2417289841@qq.com基金资助:
LI Haipeng2(), HUANG Yuehua3,4(
), SUN Xiaodong5, CAO Qimin1,**(
), FU Fangxing1, SUN Chuhan3
Received:
2023-02-21
Online:
2023-06-18
Published:
2023-09-01
摘要:
青枯病对农田土壤环境的影响深远。为探究海南砖红壤质地和细菌群落与番茄青枯病发生的关系,为农业防治青枯病提供参考依据,以海南农田砖红壤为对象,番茄为茄科模式作物,采用大田试验,分别在3种不同质地砖红壤试验田设置了6个处理组(砂土对照、砂土+接种青枯菌、壤土对照、壤土+接种青枯菌、黏土对照与黏土+接种青枯菌),采用伤根接种法,通过定期采集发病植株和土壤样品,统计植株发病率、测定土壤理化性质和微生物多样性。结果表明:(1)接种青枯菌后番茄植株均出现青枯病症状,壤土、砂土、黏土发病率分别为:52.3%、77.9%、95.1%,病情指数分别为:20.3、52.1、83.2;(2)患病植株中壤土pH值远低于砂土和黏土;砂土和壤土pH值与发病率显著负相关(P<0.05),土壤有机质、有效磷含量均与发病率呈负相关;(3)发病植株所在土壤细菌α多样性指标比健康植株所在土壤更低,砂土芽孢杆菌属(Bacillus)相对丰度高于壤土和黏土,黏土中雷尔氏菌属(Ralstonia)、德沃斯氏菌属(Devosia)、中慢生根瘤菌属(Mesorhizobium)、慢生根瘤菌属(Bradyrhizobium)、硝化螺菌属(Nitrospira)、unclassified_Gemmatimonadaceae属与Haliangium属相对丰度比砂土和壤土高;壤土中与土壤养分有关的苔藓杆菌属(Bryobacter)、地杆菌属(Terrabacter)相对丰度均高于砂土和黏土。综上说明海南农田不同质地砖红壤番茄青枯病发病率不同,且土壤pH值是影响发病率的关键因素,番茄青枯病的发生会导致土壤有机质和有效磷的流失,同时会降低土壤细菌多样性。
中图分类号:
李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069.
LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan[J]. Ecology and Environment, 2023, 32(6): 1062-1069.
土壤质地 | 日均气温/℃ | 日均降雨量/mm | 采样地 | 气候 |
---|---|---|---|---|
砂土 | 19.7 | 2.75 | 文城 | 热带季风气候 |
黏土 | 19.5 | 1.64 | 永发 | 热带季风气候 |
壤土 | 20.0 | 2.56 | 大成 | 热带季风气候 |
表1 试验期间田地环境概况
Table1 The survey results of field environment during the experiment
土壤质地 | 日均气温/℃ | 日均降雨量/mm | 采样地 | 气候 |
---|---|---|---|---|
砂土 | 19.7 | 2.75 | 文城 | 热带季风气候 |
黏土 | 19.5 | 1.64 | 永发 | 热带季风气候 |
壤土 | 20.0 | 2.56 | 大成 | 热带季风气候 |
处理组 | D/%1) | Di2) |
---|---|---|
砂土对照组 | 0 | 0 |
壤土对照组 | 0 | 0 |
黏土对照组 | 0 | 0 |
砂土处理组 | 77.9±4.9B3) | 52.1±5.7B |
壤土处理组 | 52.3±11.3C | 20.3±2.4C |
黏土处理组 | 95.1±4.8A | 83.2±12.2A |
表2 各质地土壤番茄植株发病率及病情指数
Table 2 Disease incidence and disease severity index of three different textural soil
处理组 | D/%1) | Di2) |
---|---|---|
砂土对照组 | 0 | 0 |
壤土对照组 | 0 | 0 |
黏土对照组 | 0 | 0 |
砂土处理组 | 77.9±4.9B3) | 52.1±5.7B |
壤土处理组 | 52.3±11.3C | 20.3±2.4C |
黏土处理组 | 95.1±4.8A | 83.2±12.2A |
土壤理化性质 | 处理组 | 土壤质地 | |||||
---|---|---|---|---|---|---|---|
砂土 | 壤土 | 黏土 | |||||
pH | 对照组 | 5.41±0.04B1) | **2) | 4.84±0.09C | ** | 5.79±0.05A | ns |
处理组 | 5.05±0.06B | 4.39±0.04C | 5.79±0.14A | ||||
w(OM)/ ‰ | 对照组 | 7.20±0.98B | ns2) | 15.40±1.48aA | ns | 17.57±1.89aA | ns |
处理组 | 7.10±1.41B | 13.70±0.36aA | 16.90±2.36aA | ||||
w(AN)/ (mg·kg-1) | 对照组 | 68.83±5.60B | ns | 138.47±12.03aA | ns | 137.43±19.26aA | ns |
处理组 | 73.83±2.42b | 128.93±19.35ab | 147.50±17.14a | ||||
w(AP)/ (mg·kg-1) | 对照组 | 55.30±7.84A | ns | 17.32±3.22bB | ns | 3.83±1.26cB | ns |
处理组 | 47.13±5.79aA | 14.53±4.56bB | 3.67±0.06bB | ||||
w(AK)/ (mg·kg-1) | 对照组 | 39.30±8.78C | ns | 73.04±6.71B | ns | 129.97±14.40A | * 2) |
处理组 | 27.97±6.16C | 62.23±9.36B | 182.93±17.52A | ||||
SP/ % | 对照组 | 45.43±2.00B | ns | 56.13±1.84aA | ns | 59.68±3.61aA | * |
处理组 | 43.37±4.04a | 48.39±7.52a | 51.90±2.92a |
表3 3种质地土壤理化性质比较
Table 3 Comparison of physicochemical properties among three different textural soil
土壤理化性质 | 处理组 | 土壤质地 | |||||
---|---|---|---|---|---|---|---|
砂土 | 壤土 | 黏土 | |||||
pH | 对照组 | 5.41±0.04B1) | **2) | 4.84±0.09C | ** | 5.79±0.05A | ns |
处理组 | 5.05±0.06B | 4.39±0.04C | 5.79±0.14A | ||||
w(OM)/ ‰ | 对照组 | 7.20±0.98B | ns2) | 15.40±1.48aA | ns | 17.57±1.89aA | ns |
处理组 | 7.10±1.41B | 13.70±0.36aA | 16.90±2.36aA | ||||
w(AN)/ (mg·kg-1) | 对照组 | 68.83±5.60B | ns | 138.47±12.03aA | ns | 137.43±19.26aA | ns |
处理组 | 73.83±2.42b | 128.93±19.35ab | 147.50±17.14a | ||||
w(AP)/ (mg·kg-1) | 对照组 | 55.30±7.84A | ns | 17.32±3.22bB | ns | 3.83±1.26cB | ns |
处理组 | 47.13±5.79aA | 14.53±4.56bB | 3.67±0.06bB | ||||
w(AK)/ (mg·kg-1) | 对照组 | 39.30±8.78C | ns | 73.04±6.71B | ns | 129.97±14.40A | * 2) |
处理组 | 27.97±6.16C | 62.23±9.36B | 182.93±17.52A | ||||
SP/ % | 对照组 | 45.43±2.00B | ns | 56.13±1.84aA | ns | 59.68±3.61aA | * |
处理组 | 43.37±4.04a | 48.39±7.52a | 51.90±2.92a |
土壤α多样性指数 | 处理组 | 砂土 | 显著性标记 | 壤土 | 显著性标记 | 黏土 | 显著性标记 |
---|---|---|---|---|---|---|---|
Shannon | 对照组 | 9.29±0.03bB | ** | 8.97±0.23cB | * | 9.51±0.09aA | ns |
处理组 | 8.17±0.08cB | 8.44±0.14bB | 9.38±0.10A | ||||
Chao1 | 对照组 | 2117.55±35.24aA | ** | 1621.72±99.54B | * | 2156.47±10.15aA | * |
处理组 | 1761.48±43.87B | 1330.85±55.02C | 2074.57±41.19A |
表4 3种质地土壤细菌α多样性指数比较
Table 4 Comparison of the α microbial diversity among three different textural soil
土壤α多样性指数 | 处理组 | 砂土 | 显著性标记 | 壤土 | 显著性标记 | 黏土 | 显著性标记 |
---|---|---|---|---|---|---|---|
Shannon | 对照组 | 9.29±0.03bB | ** | 8.97±0.23cB | * | 9.51±0.09aA | ns |
处理组 | 8.17±0.08cB | 8.44±0.14bB | 9.38±0.10A | ||||
Chao1 | 对照组 | 2117.55±35.24aA | ** | 1621.72±99.54B | * | 2156.47±10.15aA | * |
处理组 | 1761.48±43.87B | 1330.85±55.02C | 2074.57±41.19A |
图1 青枯病发生后各质地土壤细菌群落在属水平相对丰度前10名的物种组成 图中细菌相对丰度为其所属土壤样本中在属水平上相对丰度超过0.1%的细菌群落总和的比例,LSCK:砂土对照组,LLCK:壤土对照组,LCCK:黏土对照组,LSIRS:砂土处理组,LLIRS:壤土处理组,LCIRS:黏土处理组。下同 Bryobacter:苔藓杆菌属;Massilia:马赛菌属;Sinomonas:中华单胞菌属;Sphingomonas:鞘氨醇杆菌属;unclassified_Gemmatimonadaceae,unclassified_Acidobacteriales,Burkholderia_Caballeronia_Paraburkholderia,unclassified_ Micrococcaceae,unclassified_Bacteria未找到中文名
Figure 1 The soil bacterial communities in different textural soil were composed of the species with top 10 highest relative abundance at the genus level after occurence of bacterial wilt
图2 青枯病发生后各质地土壤对照与接种青枯菌处理组间差异显著细菌群落在属水平上相对丰度热图 Acidibacter:酸杆菌属;Bacillus:芽孢杆菌属;Devosia:德沃斯氏菌属;Mesorhizobium:中慢生根瘤菌;Noviherbaspirillum:新草螺菌属;Nitrospira:硝化螺菌属;Ralstonia:雷尔氏菌属;Nocardioides:类诺卡氏菌属;Terrabacter:地杆菌属;Bradyrhizobium:慢生根瘤菌属;Gemmatimonas:芽单胞菌属;Haliangium, Candidatus_Solibacter未找到中文名
Figure 2 Heat map of the relative abundance of soil bacterial communities in different textural soil with the significant difference between the control and inoculation with Ralstonia solanacearum treatment at the genus level
图3 不同质地土壤发病率与环境因子的相关分析以及各处理组理化、微生物α多样性指标的PCoA分析
Figure 3 Correlation analysis of different textural soils’ disease incidence and soil environmental factors and the PCoA analysis of each treatments’ physicochemical and microbial α diversity indicators
[1] |
BARBOSA J Z, HUNGRIA M, DA SILVA SENA J V, et al., 2021. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil[J]. Applied Soil Ecology, 163: 103913.
DOI URL |
[2] |
BOLGER A M, LOHSE M, USADEL B, 2014. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 30(15): 2114-2120.
DOI PMID |
[3] |
BONANOMI G, ANTIGNANI V, CAPODILUPO M, et al., 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases[J]. Soil Biology & Biochemistry, 42(2): 136-144.
DOI URL |
[4] |
CAO Y F, THOMASHOW L S, LUO Y, et al., 2022. Resistance to bacterial wilt caused by Ralstonia solanacearum depends on the nutrient condition in soil and applied fertilizers: A meta-analysis[J]. Agriculture Ecosystems & Environment, 329: 107874.
DOI URL |
[5] |
CHEN D L, WANG X X, CARRION V J, et al., 2022. Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies[J]. Soil Biology & Biochemistry, 167: 108599.
DOI URL |
[6] |
CHEN S, QI G F, MA G Q, et al., 2020. Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community[J]. Microbiological Research, 231: 126373.
DOI URL |
[7] |
CHEN Z M, WANG Q, MA J W, et al., 2020. Fungal community composition change and heavy metal accumulation in response to the long-term application of anaerobically digested slurry in a paddy soil[J]. Ecotoxicology and Environmental Safety, 196: 110453.
DOI URL |
[8] | CONRADIE T, JACOBS K, 2020. Seasonal and agricultural response of Acidobacteria present in two fynbos rhizosphere soils[J]. Diversity-Basel, 12(7): 277. |
[9] |
EDGAR R C, HAAS B J, CLEMENTE J C, et al., 2011. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 27(16): 2194-2200.
DOI PMID |
[10] | FAN J, TAN J, WANG R, et al., 2021. Factors affecting disease severity of tobacco bacterial wilt[J]. Tobacco Science & Technology, 54(10): 20-28. |
[11] |
FAN Y J, HU X M, ZHAO Y Y, et al., 2020. Urease producing microorganisms for coal dust suppression isolated from coal: Characterization and comparative study[J]. Advanced Powder Technology, 31(9): 4095-4106.
DOI URL |
[12] | FAOSTAT, 2020. Value of Agricultural Production[EB/OL]. 2020. [2022-10-31]. https://www.fao.org/8015a9d5-a9ff-482f-ba23-1862d4e21677 |
[13] |
GAO Y, LU J Y, LIN C L, et al., 2019. Biochar suppresses bacterial wilt of tomato by improving soil chemical properties and shifting soil microbial community[J]. Microorganisms, 7(12): 676.
DOI URL |
[14] |
HOLOCHOVA P, MASLANOVA I, SEDLACEK I, et al., 2020. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths[J]. Systematic and Applied Microbiology, 43(5): 126112.
DOI URL |
[15] |
LI J, WANG S, LUO J F, et al., 2021. Potential of chamomile recutita plant material to inhibit urease activity and reduce NH3 volatilization in two agricultural soils[J]. Atmosphere, 12(9): 1223.
DOI URL |
[16] |
LI Q C, WANG L L, FU Y, et al., 2022. Transformation of soil organic matter subjected to environmental disturbance and preservation of organic matter bound to soil minerals: A review[J]. Journal of Soils and Sediments, 23: 1485-1500.
DOI |
[17] |
LIN W W, LIN M H, ZHOU H Y, et al., 2019. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards[J]. PloS One, 14(5): e0217018.
DOI URL |
[18] |
LIU L J, SUN C L, LIU S R, et al., 2015. Bioorganic fertilizer enhances soil suppressive capacity against bacterial wilt of tomato[J]. PloS One, 10(4): e0121304.
DOI URL |
[19] |
LIU Y Q, WANG Y H, KONG W L, et al., 2020. Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels[J]. Amb Express, 10(1): 108.
DOI |
[20] |
LIU Y Q, WU L, WU X W, et al., 2017. Analysis of microbial diversity in soil under ginger cultivation[J]. Scientifica, DOI: 10.1155/2017/8256865.
DOI |
[21] |
MAMPHOGORO T P, BABALOLA O O, AIYEGORO O A, 2020. Sustainable management strategies for bacterial wilt of sweet peppers (Capsicum annuum) and other Solanaceous crops[J]. Journal of Applied Microbiology, 129(3): 496-508.
DOI PMID |
[22] |
MI Y Z, ZHAO X L, LIU F F, et al., 2021. Changes in soil quality, bacterial community and anti-pepper Phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains[J]. European Journal of Soil Biology, 105: 103329.
DOI URL |
[23] | MNDZEBELE B, NCUBE B, FESSEHAZION M, et al., 2020. Effects of cowpea-amaranth intercropping and fertilizer application on soil phosphatase activities, available soil phosphorus, and crop growth response[J]. Agronomy-Basel, 10(1): 79. |
[24] |
NAKAHARA H, MORI K, MORI T, et al., 2021. Induction of spontaneous phenotype conversion in Ralstonia solanacearum by addition of iron compounds in liquid medium[J]. Journal of Microbiological Methods, 186: 106233.
DOI URL |
[25] |
ROBERTS D P, DENNY T P, SCHELL M A, 1988. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity[J]. Journal of bacteriology, 170(4): 1445-1451.
DOI URL |
[26] |
ROS G H, 2012. Predicting soil N mineralization using organic matter fractions and soil properties: A re-analysis of literature data[J]. Soil Biology & Biochemistry, 45: 132-135.
DOI URL |
[27] |
SU L, QIU P F, FANG Z Y, et al., 2022. Potassium phosphite enhances the antagonistic capability of Bacillus amyloliquefaciens to manage tomato bacterial wilt[J]. Plant Disease, 106(2): 654-660.
DOI URL |
[28] | TAFESSE S, BRAAM C, VAN MIERLO B, et al., 2021. Association between soil acidity and bacterial wilt occurrence in potato production in Ethiopia[J]. Agronomy-Basel, 11(8): 1541. |
[29] |
TALWAR C, NAGAR S, KUMAR R, et al., 2020. Defining the environmental adaptations of genus Devosia: Insights into its expansive short peptide transport system and positively selected genes[J]. Scientific Reports, 10(1): 1151.
DOI |
[30] |
TCHAKOUNTE G V T, BERGER B, PATZ S, et al., 2018. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil[J]. Microbiological Research, 214: 47-59.
DOI PMID |
[31] |
WANG B, SUN H, YANG W C, et al., 2022. Potential utilization of vitamin C industrial effluents in agriculture: Soil fertility and bacterial community composition[J]. Science of the Total Environment, 851(Part 2): 158253.
DOI URL |
[32] | WANG L, QIU S, GUO J, et al, 2021. Light irradiation enables rapid start-up of nitritation through suppressing nxrb gene expression and stimulating ammoniaoxidizing bacteria[J]. Environmental Science & Technology, 55(19): 13297-13305. |
[33] |
WANG R, ZHANG H C, SUN L G, et al., 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports, 7(1): 343.
DOI PMID |
[34] |
WANG T T, HAO Y W, ZHU M Z, et al., 2019. Characterizing differences in microbial community composition and function between Fusarium wilt diseased and healthy soils under watermelon cultivation[J]. Plant and Soil, 438(1-2): 421-433.
DOI |
[35] | XIAN L, YU G, WEI Y L, et al., 2020. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition[J]. Cell Host & Microbe, 28(4): 548-557. |
[36] |
XUE G, ZHANG L L, FAN X Y, et al., 2022. Responses of soil fertility and microbiomes of atrazine contaminated soil to remediation by hydrochar and persulfate[J]. Journal of Hazardous Materials, 435: 128944.
DOI URL |
[37] | XUE H, LOZANO-DURAN R, MACHO A P, 2020. Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum[J]. Plants-Basel, 9(4): 516. |
[38] | YANG Z N, LIU Z S, WANG K H, et al., 2022. Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites[J]. Environmental Science & Ecotechnology, 10: 100169. |
[39] |
YIN S J, ZHANG X, SUO F Y, et al., 2022. Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil[J]. Chemosphere, 298: 134191.
DOI URL |
[40] |
ZHANG C S, LIN Y, TIAN X Y, et al., 2017. Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance[J]. Applied Soil Ecology, 112: 90-96.
DOI URL |
[41] |
ZHENG B X, BI Q F, HAO X L, et al., 2017. Massilia phosphatilytica sp nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil[J]. International Journal of Systematic and Evolutionary Microbiology, 67(8): 2514-2519.
DOI URL |
[42] |
ZHENG X F, LIU B, ZHU Y J, et al., 2019. Bacterial community diversity associated with the severity of bacterial wilt disease in tomato fields in southeast China[J]. Canadian Journal of Microbiology, 65(7): 538-549.
DOI PMID |
[43] |
ZHU F X, ZHU C Y, ZHOU D M, et al., 2019. Fate of di (2-ethylhexyl) phthalate and its impact on soil bacterial community under aerobic and anaerobic conditions[J]. Chemosphere, 216: 84-93.
DOI PMID |
[44] | 高升升, 2020. 高氮投入促进烟草青枯病爆发机理研究[D]. 重庆: 西南大学:26-32. |
GAO S S, 2020. Study on mechanism of high nitrogen input promoting outbreak of tobacco bacterial wilt[D]. Chongqing: Southwest University:26-32. | |
[45] | 梁捷, 2020. 海南省典型作物系统中砖红壤的环境基准值及环境容量研究[D]. 海口: 海南大学: 1-4. |
LIANG J, 2020. Study on environmental standard value and environmental capacity of brick red soil in typical crop system of Hainan Province[D]. Haikou: Hainan University: 1-4. | |
[46] | 孙小茗, 2006. 钾离子跨细胞膜吸收过程受铵影响的机理探讨[D]. 扬州: 扬州大学:40-53. |
SUN X M, 2006. Study on the mechanism of ammonium affecting the absorption of potassium ions across cell membranes[D]. Yangzhou: Yangzhou University:40-53. | |
[47] | 王杰, 龙世芳, 王正文, 等, 2020. 番茄青枯病防治研究进展[J]. 中国蔬菜 (1): 22-30. |
WANG J, LONG S F, WANG Z W, et al., 2020. Research progress in control of tomato bacterial wilt[J]. China Vegetables (1): 22-30. | |
[48] | 王贻鸿, 赵云峰, 孔凡玉, 等, 2018. 酸碱度对烟草青枯菌生长特性的影响[J]. 烟草科技, 51(9): 27-32. |
WANG Y H, ZHAO Y F, KONG F Y, et al, 2018. Effects of pH on growth characteristics of Ralstonia solanacearum in tobacco[J]. Tobacco Science & Technology, 51(9): 27-32. | |
[49] |
肖健, 陈思宇, 孙妍, 等, 2022. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 48(5): 1222-1234.
DOI |
XIAO J, CHEN S Y, SUN Y, et al, 2022. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications[J]. Acta Agronomica Sinica, 48(5): 1222-1234.
DOI |
|
[50] | 曾文青, 2021. 砧用冬瓜枯萎病抗性鉴定、转录组分析及嫁接适应性研究[D]. 南宁: 广西大学:11-12. |
ZENG W Q, 2021. Resistance identification, transcriptome analysis and grafting adaptability study of rootstocks wax gourd to Fusarium wilt[D]. Nanning: Guangxi University:11-12. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[3] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[4] | 钱莲文, 余甜甜, 梁旭军, 王义祥, 陈永山. 茶园土壤酸化改良中生物炭应用5 a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. |
[5] | 杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908. |
[6] | 刘志君, 崔丽娟, 李伟, 李晶, 雷茵茹, 朱怡诺, 王汝苗, 窦志国. 互花米草入侵对盐城滨海湿地nirS型反硝化细菌多样性及群落结构的影响[J]. 生态环境学报, 2022, 31(4): 704-714. |
[7] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[8] | 姜晶, 阮呈杰, 陈霄宇, 吴仪, 汪永创. 微塑料模拟老化及其对污染物吸附行为影响研究进展[J]. 生态环境学报, 2022, 31(11): 2263-2274. |
[9] | 刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001. |
[10] | 姜晶, 邓精灵, 盛光遥. 生物炭老化及其对重金属吸附影响研究进展[J]. 生态环境学报, 2022, 31(10): 2089-2100. |
[11] | 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. |
[12] | 孙战, 王圣洁, 杨锦昌, 魏永成, 林春花, 马海宾. 木麻黄根区土壤理化特性及酶活性与青枯病发生关联分析[J]. 生态环境学报, 2022, 31(1): 70-78. |
[13] | 郑智恒, 熊康宁, 容丽, 池永宽. 两种等级喀斯特石漠化地区生物结皮对土壤养分恢复的影响[J]. 生态环境学报, 2021, 30(6): 1202-1212. |
[14] | 林丽, 代磊, 林泽北, 吴际通, 颜伟, 王志杰. 黔中城市森林群落植物多样性及其与土壤理化性质的关系[J]. 生态环境学报, 2021, 30(11): 2130-2141. |
[15] | 茹淑华, 赵欧亚, 侯利敏, 肖广敏, 王策, 孙世友, 张国印, 王凌, 刘蕾. 8种钝化剂产品对不同镉污染土壤理化性质和镉有效性的影响[J]. 生态环境学报, 2021, 30(10): 2085-2092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||