生态环境学报 ›› 2023, Vol. 32 ›› Issue (5): 898-909.DOI: 10.16258/j.cnki.1674-5906.2023.05.008
陈俊芳1,2(), 吴宪1,2, 刘啸林1,2, 刘娟3, 杨佳绒1,2, 刘宇1,2,*(
)
收稿日期:
2022-09-30
出版日期:
2023-05-18
发布日期:
2023-08-09
通讯作者:
*刘宇,E-mail: yuliu@des.ecnu.edu.cn作者简介:
陈俊芳(1999年生),女,硕士研究生,研究方向为土壤微生物生态。E-mail: junfangchen163@163.com
基金资助:
CHEN Junfang1,2(), WU Xian1,2, LIU Xiaolin1,2, LIU Juan3, YANG Jiarong1,2, LIU Yu1,2,*(
)
Received:
2022-09-30
Online:
2023-05-18
Published:
2023-08-09
摘要:
土壤元素化学计量特征在塑造微生物多样性方面起着至关重要的作用,而元素化学计量受到土壤含水量的影响。为探究不同土壤水分条件下,有机碳(OC)、全氮(TN)、全磷(TP)及其元素化学计量特征(C:N、C:P和N:P)如何影响土壤微生物多样性,在浙江省20 hm2亚热带森林动态监测样地内共采集1287份土壤样品。利用Illumina高通量测序技术测定了土壤细菌和真菌的群落组成,并结合土壤理化性质,分析了不同土壤水分下元素和元素化学计量与微生物群落的关系。结果表明,土壤水分能改变元素化学计量特征,进而塑造细菌和真菌群落的多样性。其中,(1)土壤水分显著影响微生物群落的α多样性。相较于高土壤水分,在低土壤水分下,细菌和真菌群落的α多样性分别显著提高了0.830%和2.62%。(2)细菌和真菌的主要门类对土壤水分表现出差异化响应。相较于低土壤水分,高土壤水分显著提高了细菌5个门类和真菌2个门类的相对丰度;并且显著降低了细菌7个门类和真菌2个门类的相对丰度。(3)土壤元素含量和元素化学计量特征与土壤水分呈显著正相关关系。(4)元素化学计量C:N、C:P和N:P与微生物多样性呈显著负相关关系,其相关性不受土壤含水量的影响。综上所述,土壤元素化学计量塑造微生物多样性,且土壤水分的高低并不改变其整体变化趋势。该研究验证了土壤水分对元素化学计量的影响,有助于提高微生物多样性如何响应全球气候变暖引起的土壤水分变化的理解。
中图分类号:
陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909.
CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents[J]. Ecology and Environment, 2023, 32(5): 898-909.
图1 气候变化背景下土壤元素和化学计量与微生物多样性关系的框架图
Figure 1 An illustrative framework of the linkages between elemental stoichiometry and soil microbial diversity under climate change
类别 | r | P |
---|---|---|
细菌 | 0.34 | 0.001 |
真菌 | 0.16 | 0.001 |
表1 土壤水分与细菌和真菌群落组成的关系(曼特尔检验)
Table 1 Relationship of soil moisture and community composition of bacteria and fungi (Mantel test)
类别 | r | P |
---|---|---|
细菌 | 0.34 | 0.001 |
真菌 | 0.16 | 0.001 |
图2 不同土壤水分下细菌和真菌群落的α多样性 “***”代表P<0.001;“*”代表P<0.05
Figure 2 The α diversities of bacterial and fungal community under relatively high vs. low water contents
图4 不同土壤水分下细菌和真菌群落组成 Others指相对丰度<0.5%的类群
Figure 4 Bacterial and fungal community compositions at phylum-level under relatively high vs. low water contents
图5 细菌和真菌主要类群的相对丰度在不同水分条件下的差异对比 “****”代表P<0.0001,“***”代表P<0.001,“**”代表P<0.01,“*”代表P<0.05,ns代表无显著性
Figure 5 Comparisons of the relative abundance of bacterial and fungal major groups under relatively high vs. low water contents
因子 | 相对较高水分 | 相对较低水分 | P |
---|---|---|---|
全氮 | 6.30±2.60 | 3.90±1.10 | <0.001 |
全磷 | 0.40±0.10 | 0.31±0.10 | <0.001 |
有机质 | 109.3±67.4 | 56.4±21.8 | <0.001 |
碳氮比率 | 16.8±6.20 | 14.2±2.50 | <0.001 |
碳磷比率 | 283.7±152.0 | 182.6±75.6 | <0.001 |
氮磷比率 | 16.4±5.70 | 12.6±4.10 | <0.001 |
表2 土壤元素和化学计量在不同土壤水分下的差异比较
Table 2 Comparisons of soil elements and stoichiometry under relatively high vs. low water contents
因子 | 相对较高水分 | 相对较低水分 | P |
---|---|---|---|
全氮 | 6.30±2.60 | 3.90±1.10 | <0.001 |
全磷 | 0.40±0.10 | 0.31±0.10 | <0.001 |
有机质 | 109.3±67.4 | 56.4±21.8 | <0.001 |
碳氮比率 | 16.8±6.20 | 14.2±2.50 | <0.001 |
碳磷比率 | 283.7±152.0 | 182.6±75.6 | <0.001 |
氮磷比率 | 16.4±5.70 | 12.6±4.10 | <0.001 |
图7 不同水分下土壤元素和化学计量与微生物α多样性的关系
Figure 7 Relationships between soil elements and stoichiometry and microbial α diversity under relatively high vs. low water contents
图8 不同水分下土壤元素和化学计量与微生物主要门类的关系 “***”代表P<0.001,“**”代表P<0.01,“*”代表P<0.05
Figure 8 Relationships between soil elements and stoichiometry and the primary microbial phyla under relatively high vs. low water contents
[1] |
AUSTIN A T, VITOUSEK P M, 2012. Introduction to a virtual special issue on ecological stoichiometry and global change[J]. New Phytologist, 196(3): 649-651.
DOI PMID |
[2] |
AUSTIN A T, YAHDJIAN L, STARK J M, et al., 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J]. Oecologia, 141(2): 221-235.
DOI PMID |
[3] |
BARDGETT R D, VAN DER PUTTEN W H, 2014. Belowground biodiversity and ecosystem functioning[J]. Nature, 515(7528): 505-511.
DOI |
[4] |
BARNARD R L, OSBORNE C A, FIRESTINE M K, 2013. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting[J]. The ISME Journal, 7(11): 2229-2241.
DOI |
[5] |
BATTISTUZZI F U, HEDGES S B, 2009. A major clade of prokaryotes with ancient adaptations to life on land[J]. Molecular Biology and Evolution, 26(2): 335-343.
DOI PMID |
[6] |
BOLGER A M, LOHSE M, USADEL B, 2014. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 30(15): 2114-2120.
DOI PMID |
[7] |
DELGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al., 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 502(7473): 672-676.
DOI |
[8] |
DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 7(1): 10541.
DOI |
[9] |
DELGADO-BAQUERIZO M, REICH P B, KHACHANE A N, et al., 2017. It is elemental: soil nutrient stoichiometry drives bacterial diversity[J]. Environmental Microbiology, 19(3): 1176-1188.
DOI URL |
[10] |
DIXON P, 2003. VEGAN, a package of R functions for community ecology[J]. Journal of Vegetation Science, 14(6): 927-930.
DOI URL |
[11] |
EDGAR R C, 2010. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 26(19): 2460-2461.
DOI PMID |
[12] |
ELSER J J, FAGAN W F, KERKHOFF A J, et al., 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytologist, 186(3): 593-608.
DOI PMID |
[13] |
ELSER J J, HAMILTON A, 2007. Stoichiometry and the new biology: the future is now[J]. PLoS Biology, 5(7): e181.
DOI PMID |
[14] |
FINZI A C, AUSTIN A T, CLELAND E E, et al., 2011. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems[J]. Frontiers in Ecology and the Environment, 9(1): 61-67.
DOI URL |
[15] |
HALL E K, SINGER G A, KAINZ M J, et al., 2010. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off[J]. Functional Ecology, 24(4): 898-908.
DOI URL |
[16] |
HUANG J P, YU H P, GUAN X D, et al., 2016. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 6(2): 166-171.
DOI |
[17] |
HOOPER D, BIGNELL D, BROWN V, et al., 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks[J]. BioScience, 50(12): 1049-1061.
DOI URL |
[18] |
HU Z H, CHEN H Y H, YUE C, et al., 2020. Traits mediate drought effects on wood carbon fluxes[J]. Global Change Biology, 26(6): 3429-3442.
DOI PMID |
[19] | JIAO S, PENG Z, QI J, et al., 2021. Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling[J]. mSystems, 6(2): e01052-20. |
[20] |
JOHN R, DALLING J W, HARMS K E, et al., 2007. Soil nutrients influence spatial distributions of tropical tree species[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(3): 864-869.
DOI PMID |
[21] |
LI C H, FULTZ L M, MOORE-KUCERA J, et al., 2018. Soil microbial community restoration in conservation reserve program semi-arid grasslands[J]. Soil Biology and Biochemistry, 118: 166-177.
DOI URL |
[22] |
LIU L B, GUDMUNDSSON L, HAUSER M, et al., 2020. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communications, 11(1): 4892.
DOI PMID |
[23] |
LENNON J T, AANDERUD Z T, LEHMKUHL B K, et al., 2012. Mapping the niche space of soil microorganisms using taxonomy and traits[J]. Ecology, 93(8): 1867-1879.
DOI PMID |
[24] |
MAESTRE FT, DELGADO-BAQUERIZO M, JEFFRIES TC, et al., 2015. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(51): 15684-15689.
DOI PMID |
[25] |
MAGOČ T, SALZBERG S L, 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 27(21): 2957-2963.
DOI PMID |
[26] |
MAKINO W, COTNER J B, STERNER R W, et al., 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry[J]. Functional Ecology, 17(1): 121-130.
DOI URL |
[27] |
MCGILL W B, COLE C V, 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter[J]. Geoderma, 26(4): 267-286.
DOI URL |
[28] |
NEW M, TODD M, HULME M, et al., 2001. Precipitation measurements and trends in the twentieth century[J]. International Journal of Climatology, 21(15): 1889-1922.
DOI URL |
[29] |
OCHOA-HUESO R, COLLINS S L, DELGADO-BAQUERIZO M, et al., 2018. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents[J]. Global Change Biology, 24(7): 2818-2827.
DOI URL |
[30] |
PEÑUELAS J, SARDANS J, 2009. Elementary factors[J]. Nature, 460(7257): 803-804.
DOI |
[31] | QIAO Y, WANG J, LIU H M, et al., 2020. Depth-dependent soil C-N-P stoichiometry in a mature subtropical broadleaf forest[J]. Geoderma, 370: 114357. |
[32] |
QI J J, CHEN B B, GAO J M, et al., 2022. Responses of soil bacterial community structure and function to dry-wet cycles more stable in paddy than in dryland agricultural ecosystems[J]. Global Ecology and Biogeography, 31(2): 362-377.
DOI URL |
[33] |
SARDANS J, RIVAS-UBACH A, PEÑUELAS J, 2012. The elemental stoichiometry of aquatic and terrestrial ecosystems and its. relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives[J]. Biogeochemistry, 111(1): 1-39.
DOI URL |
[34] |
SCHIMEL J, BALSER T C, WALLENSTEIN M, 2007. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 88(6): 1386-1394.
DOI PMID |
[35] |
SCHLOSS P D, WESTCOTT S L, RYABIN T, et al., 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 75(23): 7537-7541.
DOI PMID |
[36] |
SCHLESINGER W H, REYNOLDS J F, CUNNINGHAM G L, et al., 1990. Biological feedbacks in global desertification[J]. Science, 247(4946): 1043-1048.
DOI PMID |
[37] |
SCHWINNING S, SALA O E, 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems[J]. Oecologia, 141(2): 211-220.
PMID |
[38] |
STERNER R W, ELSER J J, 2003. Ecological stoichiometry: The biology of elements from molecules to the biosphere[J]. Journal of Plankton Research, 25(9): 1183.
DOI URL |
[39] |
VAN DER HEIJDEN M G A, BARDGETT R D, VAN STRAALEN N M, 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 11(3): 296-310.
DOI PMID |
[40] | XU L, NAYLOR D, DONG Z, et al., 2018. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(18): E4284-E4293. |
[41] |
ZECHMEISTER-BOLTENSTERN S, KEIBLINGER K M, MOOSHAMMER M, et al., 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J]. Ecological Monographs, 85(2): 133-155.
DOI URL |
[42] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agrochemical analysis[M]. Beijing: China Agriculture Press. | |
[43] | 黄菊莹, 余海龙, 刘吉利, 等, 2018. 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响[J]. 生态学报, 38(15): 5362-5373. |
HUANG J Y, YU H L, LIU J L, et al., 2018. Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China[J]. Acta Ecologica Sinica, 38(15): 5362-5373. | |
[44] | 李一春, 余海龙, 王攀, 等, 2020. 降水量对荒漠草原植物群落多样性和C:N:P生态化学计量特征的影响[J]. 中国草地学报, 42(1): 117-126. |
LI Y C, YU H L, WANG P, et al., 2020. Effects of precipitation on plant community diversity and C:N:P ecological stoichiometry diversity in a desert steppe of Ningxia, Northwestern China[J]. Chinese Journal of Grassland, 42(1): 117-126. | |
[45] | 王誉陶, 李建平, 井乐, 等, 2020. 模拟降雨对黄土高原典型草原土壤化学计量及微生物多样性的影响[J]. 生态学报, 40(5): 1517-1531. |
WANG Y T, LI J P, JING L, et al., 2020. Effects of different precipitation treatments on soil ecological chemistry and microbial diversity in the Loess Plateau[J]. Acta Ecologica Sinica, 40(5): 1517-1531. |
[1] | 郝蕾, 翟涌光, 戚文超, 兰穹穹. 2001-2020年内蒙古植被碳源/碳汇时空动态及对气候因子的响应[J]. 生态环境学报, 2023, 32(5): 825-834. |
[2] | 李晖, 李必龙, 葛黎黎, 韩琛惠, 杨倩, 张岳军. 2000-2021年汾河流域植被时空演变特征及地形效应[J]. 生态环境学报, 2023, 32(3): 439-449. |
[3] | 贾志峰, 刘鹏程, 刘宇, 吴博博, 陈丹姿, 张向飞. 气候变化和人类活动对松辽流域植被覆盖的影响[J]. 生态环境学报, 2023, 32(1): 1-10. |
[4] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[5] | 齐月, 张强, 胡淑娟, 蔡迪花, 赵福年, 陈斐, 张凯, 王鹤龄, 王润元. 黄土高原地区气候变化及其对冬小麦生产潜力的影响[J]. 生态环境学报, 2022, 31(8): 1521-1529. |
[6] | 邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572. |
[7] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[8] | 卢燕宇, 孙维, 方砚秋, 唐为安, 邓汗青, 何冬燕. 基于种植结构的安徽省气候生产潜力估算及粮食安全气候承载力分析[J]. 生态环境学报, 2022, 31(7): 1293-1305. |
[9] | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079. |
[10] | 曹晓云, 祝存兄, 陈国茜, 孙树娇, 赵慧芳, 朱文彬, 周秉荣. 2000—2021年柴达木盆地地表绿度变化及地形分异研究[J]. 生态环境学报, 2022, 31(6): 1080-1090. |
[11] | 雷俊, 张健, 赵福年, 齐月, 张秀云, 李强, 尚军林. 春小麦开花期光合参数对土壤水分和温度变化的响应[J]. 生态环境学报, 2022, 31(6): 1151-1159. |
[12] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
[13] | 邓晓, 武春媛, 杨桂生, 李怡, 李勤奋. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 2022, 31(4): 723-731. |
[14] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
[15] | 石智宇, 王雅婷, 赵清, 张连蓬, 朱长明. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 2022, 31(11): 2111-2123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||