生态环境学报 ›› 2022, Vol. 31 ›› Issue (2): 239-247.DOI: 10.16258/j.cnki.1674-5906.2022.02.004
杨虎1(), 王佩瑶1, 李小伟1, 王继飞2, 杨君珑1,*(
)
收稿日期:
2021-08-04
出版日期:
2022-02-18
发布日期:
2022-04-14
通讯作者:
*杨君珑(1980年生),男,副教授,博士,研究方向为森林资源经营与森林生态。E-mail: yangjunlong-2002@163.com作者简介:
杨虎(1996年生),男,硕士研究生,研究方向为土壤微生物。E-mail: 1986340981@qq.com
基金资助:
YANG Hu1(), WANG Peiyao1, LI Xiaowei1, WANG Jifei2, YANG Junlong1,*(
)
Received:
2021-08-04
Online:
2022-02-18
Published:
2022-04-14
摘要:
为了解植被对土壤真菌群落结构及其优势菌群影响,利用高通量测序技术,研究了贺兰山东坡山地荒漠草地、浅山灌丛、亚高山针叶林和亚高山草甸4种植被类型土壤真菌多样性及其群落结构。结果表明,(1)贺兰山东坡不同植被类型土壤真菌α多样性由高到低依次为浅山灌丛、山地荒漠草地、亚高山草甸、亚高山针叶林;且亚高山针叶林显著低于其他植被类型。(2)相对丰度1%的真菌共检测到子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、被孢霉门(Mortierellomycota)、球囊菌门(Glomeromycota)、壶菌门(Chytridiomycota)5个门类,其中子囊菌门和担子菌门为主要优势菌群,平均丰度占比分别为46.7%和29.6%;担子菌门在亚高山针叶林中丰度显著高于其他菌门,子囊菌门在山地荒漠草地、浅山灌丛和亚高山草甸植被类型中显著高于其他菌门。(3)从土壤真菌群落组成与环境因子相关性分析可知,植物多样性、pH、年均温、土壤有机质、年均降雨量、土壤含水率及海拔都会显著影响到真菌群落组成;从真菌α多样性指数与植物多样性指数和海拔Pearson相关性分析可知,植物多样性是影响真菌多样性的主要因子。
中图分类号:
杨虎, 王佩瑶, 李小伟, 王继飞, 杨君珑. 贺兰山东坡不同植被类型的土壤真菌多样性及其群落结构[J]. 生态环境学报, 2022, 31(2): 239-247.
YANG Hu, WANG Peiyao, LI Xiaowei, WANG Jifei, YANG Junlong. Distribution of Soil Fungal Diversity and Community Structure in Different Vegetation Types on the Eastern Slopes of Helan Mountains[J]. Ecology and Environment, 2022, 31(2): 239-247.
样地名称 Sample plot | 纬度 Latitude | 经度 Longitude | 海拔 Altitude/m | 土壤类型 Soil type | 优势植物种类 Dominant plant species |
---|---|---|---|---|---|
山地荒漠草地 Mountain desert grassland | 38°35'36"‒ 38°52'3″N | 105°54'22″‒ 106°12'6″E | 1110.6‒ 1878.04 | 灰钙土, 粗骨土 | 阿尔泰狗娃花 Aster altaicus, 细枝补血草 Limonium tenellum, 猪毛蒿 Artemisia scoparia, 短花针茅 Stipa breviflora, 冬青叶兔唇花 Lagochilus ilicifolius |
浅山灌丛 Shallow mountain shrub | 38°35'23″‒ 38°56'0.6"N | 105°55'35"‒ 106°10'40″E | 1263.41‒ 1948.41 | 栗钙土, 粗骨土 | 旱榆 Ulmus glaucescens, 小叶金露梅 Potentilla parvifolia, 蒙古扁桃 Amygdalus mongolica, 黄刺玫 Rosa xanthina, 刺旋花 Convolvulus tragacanthoides, 针枝芸香 Haplophyllum tragacanthoides, 绣线菊 Spiraea salicifolia, 紫丁香 Syringa oblata, 置疑小檗 Berberis dubia, 西北栒子 Cotoneaster zabelii, 甘蒙锦鸡儿 Caragana opulens, 荒漠锦鸡儿 Caragana roborovskyi, 小叶鼠李 Rhamnus parvifolia |
亚高山针叶林 Subalpine coniferous forest | 38°35'4.9"‒ 38°56'1.7"N | 105°52'56.6″‒ 106°11'3.1″E | 2206‒ 2697.09 | 灰褐土 | 青海云杉 Picea crassifolia, 杜松 Juniperus rigida |
亚高山草甸 Subalpine meadow | 38°34'59″‒ 38°46'28″N | 105°52′28″‒ 105°53′56″E | 2504.42‒ 2927.88 | 亚高山 草甸土 | 扁穗冰草 Agropyron cristatum, 甘肃蒿 Artemisia gansuensis, 贝加尔针茅 Stipa Baicalensis, 西山委陵菜 Potentilla sischanensis, 阿拉善鹅观草 Roegneria alashanica, 小红菊 Chrysanthemum chanetii, 赖草 Leymus secalinus, 高山苔草 Carex tristachya |
表1 不同植被类型样地基本概况表
Table 1 Basic overview table of plots of different vegetation types
样地名称 Sample plot | 纬度 Latitude | 经度 Longitude | 海拔 Altitude/m | 土壤类型 Soil type | 优势植物种类 Dominant plant species |
---|---|---|---|---|---|
山地荒漠草地 Mountain desert grassland | 38°35'36"‒ 38°52'3″N | 105°54'22″‒ 106°12'6″E | 1110.6‒ 1878.04 | 灰钙土, 粗骨土 | 阿尔泰狗娃花 Aster altaicus, 细枝补血草 Limonium tenellum, 猪毛蒿 Artemisia scoparia, 短花针茅 Stipa breviflora, 冬青叶兔唇花 Lagochilus ilicifolius |
浅山灌丛 Shallow mountain shrub | 38°35'23″‒ 38°56'0.6"N | 105°55'35"‒ 106°10'40″E | 1263.41‒ 1948.41 | 栗钙土, 粗骨土 | 旱榆 Ulmus glaucescens, 小叶金露梅 Potentilla parvifolia, 蒙古扁桃 Amygdalus mongolica, 黄刺玫 Rosa xanthina, 刺旋花 Convolvulus tragacanthoides, 针枝芸香 Haplophyllum tragacanthoides, 绣线菊 Spiraea salicifolia, 紫丁香 Syringa oblata, 置疑小檗 Berberis dubia, 西北栒子 Cotoneaster zabelii, 甘蒙锦鸡儿 Caragana opulens, 荒漠锦鸡儿 Caragana roborovskyi, 小叶鼠李 Rhamnus parvifolia |
亚高山针叶林 Subalpine coniferous forest | 38°35'4.9"‒ 38°56'1.7"N | 105°52'56.6″‒ 106°11'3.1″E | 2206‒ 2697.09 | 灰褐土 | 青海云杉 Picea crassifolia, 杜松 Juniperus rigida |
亚高山草甸 Subalpine meadow | 38°34'59″‒ 38°46'28″N | 105°52′28″‒ 105°53′56″E | 2504.42‒ 2927.88 | 亚高山 草甸土 | 扁穗冰草 Agropyron cristatum, 甘肃蒿 Artemisia gansuensis, 贝加尔针茅 Stipa Baicalensis, 西山委陵菜 Potentilla sischanensis, 阿拉善鹅观草 Roegneria alashanica, 小红菊 Chrysanthemum chanetii, 赖草 Leymus secalinus, 高山苔草 Carex tristachya |
土壤理化性质和环境因子 Soil physical and chemical properties and environmental factors | 山地荒漠草地 Mountane desert grassland | 浅山灌丛 Shallow mountain shrub | 亚高山针叶林 Subalpine coniferous forest | 亚高山草甸 Subalpine meadow |
---|---|---|---|---|
pH | 8.49±0.28a | 8.10±0.06bc | 7.89±0.12c | 8.18±0.38b |
水分质量分数 w(MC)/% | 2.31±1.20d | 8.09±0.82c | 11.07±1.66b | 14.37±3.49a |
全氮质量分数 w(TN)/(g∙kg-1) | 0.34±0.14a | 0.29±0.07a | 0.29±0.16a | 0.26±0.06a |
全磷质量分数 w(TP)/(g∙kg-1) | 0.76±0.21a | 0.81±0.52a | 0.97±0.63a | 0.82±0.29a |
土壤有机质质量分数 w(SOC)/(g∙kg-1) | 11.22±7.63b | 47.72±60.73ab | 89.73±69.18a | 56.62±49.40ab |
海拔 ALT/m | 1415.90±296.40b | 1503.41±296.16b | 2450.88±162.10a | 2644.76±171.58a |
年均降雨量MAP/mm | 203.11±28.79c | 208.78±20.87c | 239.56±41.29b | 271.11±12.90a |
太阳辐射SRAD/(kJ∙m-2∙d-1) | 16686.79±239.21a | 16671.00±204.54a | 16478.23±356.09a | 16207.64±99.53b |
年均温 MAT/℃ | 7.37±1.45a | 6.59±1.65a | 4.11±2.18b | 2.15±0.25c |
坡向 ASP/(°) | 127.63±48.82a | 116.31±100.87a | 129.30±133.13a | 70.98±14.75a |
坡度 SLOP/(°) 植物多样性指数W 植物丰富度指数R | 11.34±13.99b 1.47±0.47b 1.42±0.47b | 17.89±9.94ab 2.03±0.41a 2.47±0.93a | 21.42±7.52ab 0.42±0.05c 0.26±0.02c | 21.89±3.59a 1.30±0.40b 1.13±0.42b |
表2 不同植被类型土壤理化性质及环境因子
Table 2 Soil physical and chemical properties and environmental factors of different vegetation types
土壤理化性质和环境因子 Soil physical and chemical properties and environmental factors | 山地荒漠草地 Mountane desert grassland | 浅山灌丛 Shallow mountain shrub | 亚高山针叶林 Subalpine coniferous forest | 亚高山草甸 Subalpine meadow |
---|---|---|---|---|
pH | 8.49±0.28a | 8.10±0.06bc | 7.89±0.12c | 8.18±0.38b |
水分质量分数 w(MC)/% | 2.31±1.20d | 8.09±0.82c | 11.07±1.66b | 14.37±3.49a |
全氮质量分数 w(TN)/(g∙kg-1) | 0.34±0.14a | 0.29±0.07a | 0.29±0.16a | 0.26±0.06a |
全磷质量分数 w(TP)/(g∙kg-1) | 0.76±0.21a | 0.81±0.52a | 0.97±0.63a | 0.82±0.29a |
土壤有机质质量分数 w(SOC)/(g∙kg-1) | 11.22±7.63b | 47.72±60.73ab | 89.73±69.18a | 56.62±49.40ab |
海拔 ALT/m | 1415.90±296.40b | 1503.41±296.16b | 2450.88±162.10a | 2644.76±171.58a |
年均降雨量MAP/mm | 203.11±28.79c | 208.78±20.87c | 239.56±41.29b | 271.11±12.90a |
太阳辐射SRAD/(kJ∙m-2∙d-1) | 16686.79±239.21a | 16671.00±204.54a | 16478.23±356.09a | 16207.64±99.53b |
年均温 MAT/℃ | 7.37±1.45a | 6.59±1.65a | 4.11±2.18b | 2.15±0.25c |
坡向 ASP/(°) | 127.63±48.82a | 116.31±100.87a | 129.30±133.13a | 70.98±14.75a |
坡度 SLOP/(°) 植物多样性指数W 植物丰富度指数R | 11.34±13.99b 1.47±0.47b 1.42±0.47b | 17.89±9.94ab 2.03±0.41a 2.47±0.93a | 21.42±7.52ab 0.42±0.05c 0.26±0.02c | 21.89±3.59a 1.30±0.40b 1.13±0.42b |
图2 稀释性曲线 CD:亚高山草甸;GC:浅山灌丛;HM:山地荒漠草地;ZYL:亚高山针叶林。下同
Figure 2 Rarefaction Curve CD: Subalpine meadow; GC: Shallow mountain shrub; HM: Mountane desert grassland; ZYL: Subalpine coniferous forest. The same below
植被类型 Vegetation type | OTU数 OTU number | Ace指数 Ace index | Chao1指数 Chao1index | 香浓指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|
山地荒漠草地 Mountane desert grassland | 237.33±23.75a | 283.04±46.92a | 276.54±32.39a | 5.84±0.99ab | 0.94±0.07a |
浅山灌丛 Shallow mountain shrub | 262.11±73.09a | 296.65±101.08a | 298.98±104.08a | 6.23±0.51a | 0.97±0.01a |
亚高山针叶林 Subalpine coniferous forest | 156.22±25.36b | 187.39±26.40b | 182.95±26.71b | 4.43±0.44c | 0.88±0.04b |
亚高山草甸 Subalpine meadow | 231.89±29.61a | 269.89±36.06a | 268.98±35.05a | 5.47±0.57b | 0.93±0.03a |
表3 不同植被类型土壤真菌OTU数和α多样性指数
Table 3 Soil fungi OTU number and α-diversity index of different vegetation types
植被类型 Vegetation type | OTU数 OTU number | Ace指数 Ace index | Chao1指数 Chao1index | 香浓指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|
山地荒漠草地 Mountane desert grassland | 237.33±23.75a | 283.04±46.92a | 276.54±32.39a | 5.84±0.99ab | 0.94±0.07a |
浅山灌丛 Shallow mountain shrub | 262.11±73.09a | 296.65±101.08a | 298.98±104.08a | 6.23±0.51a | 0.97±0.01a |
亚高山针叶林 Subalpine coniferous forest | 156.22±25.36b | 187.39±26.40b | 182.95±26.71b | 4.43±0.44c | 0.88±0.04b |
亚高山草甸 Subalpine meadow | 231.89±29.61a | 269.89±36.06a | 268.98±35.05a | 5.47±0.57b | 0.93±0.03a |
图4 不同植被类型土壤真菌群落组成堆积图(门水平) 子囊菌门 Ascomycota;担子菌门 Basidiomycota;壶菌门 Chytridiomycota;球囊菌门 Glomeromycota;被孢霉门 Mortierellomycota。下同 The same below
Figure 4 The accumulation diagram of soil fungal community composition of different vegetation types (phylum level)
图5 门分类水平土壤真菌群落与环境因子相关性热图
Figure 5 Heat map of the correlation between soil fungal communities and environmental factors at the phylum classification level *P<0.05; **P<0.01***; P<0.001
[1] |
ADÉLIA V, CELSO M, OSCAR N, et al., 2015. Understanding fungal functional biodiversity during the mitigation of environmentally dispersed pentachlorophenol in cork oak forest soils[J]. Environmental Microbiology, 17(8): 2922-2934.
DOI URL |
[2] |
BEIMFORDE C, FELDBERG K, NYLINDER S, et al., 2014. Estimating the phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data[J]. Molecular Phylogenetics and Evolution, 78(5): 386-398.
DOI URL |
[3] | BELLEMAIN E, CARLSEN T, BROCHMANN C, et al., 2010. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases[J]. BioMed Central, 10(1): 189. |
[4] |
BOSSUYT H, DENEF K, SIX J, et al., 2001. Influence of microbial populations and residue quality on aggregate stability[J]. Applied Soil Ecology, 16(3): 195-208.
DOI URL |
[5] |
COROI M, SKEFFINGTON M S, GILLER P, et al., 2004. Vegetation diversity and stand structure in streamside forests in the south of Ireland[J]. Forest Ecology and Management, 202(1): 39-57.
DOI URL |
[6] |
COX F, BARSOUM N, LILLESKOV E A, et al., 2010. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients[J]. Ecology Letters, 13(9): 1103-1113.
DOI URL |
[7] |
CUI Y X, BING H J, FANG L C, et al., 2019. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau[J]. Geoderma, 338(5): 118-127.
DOI URL |
[8] |
ELIZABETH A G, HEIDI H K, SEAN C, et al., 2009. Topographical and temporal diversity of the human skin microbiome[J]. Science (New York, N.Y.), 324(5931): 1190-1192.
DOI URL |
[9] |
FREY S D, KNORR M, PARRENT J L, et al., 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 196(1): 159-171.
DOI URL |
[10] |
HU H, BORJIGIN S, CHENG Y X, et al., 2014. Effect of abandonment on diversity and abundance of free-living nitrogen-fixing bacteria and total bacteria in the cropland soils of Hulun Buir, Inner Mongolia[J]. PLOS ONE, 9(9): e106714.
DOI URL |
[11] |
HU H, CHEN X J, HOU F J, et al., 2017. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2017.00606.
DOI |
[12] |
LIU J J, SUI Y Y, YU Z H, et al., 2015. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of Northeast China[J]. Soil Biology and Biochemistry, 83(5): 29-39.
DOI URL |
[13] |
MA L N, HUANG W W, GUO C Y, et al., 2012. Soil microbial properties and plant growth responses to carbon and water addition in a temperate steppe: the importance of nutrient availability[J]. PLOS ONE, 7(4): e35165.
DOI URL |
[14] |
MENG H, LI K, NIE M, et al., 2013. Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China[J]. Applied Microbiology and Biotechnology, 97(5): 2219-2230.
DOI URL |
[15] |
NI Y Y, YANG T, ZHANG K P, et al., 2018. Fungal communities along a small-scale elevational gradient in an alpine tundra are determined by soil carbon nitrogen ratios[J]. Frontiers in Microbiology, 9(5): 1815.
DOI URL |
[16] |
ROY M, ROCHET J, MANZI S, et al., 2013. What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale[J]. New Phytologist, 198(4): 1228-1238.
DOI URL |
[17] |
SHENG Y Y, CONG W, YANG L S, et al., 2019. Forest soil fungal community elevational distribution pattern and their ecological assembly processes[J]. Frontiers in Microbiology, 10(5): 2226.
DOI URL |
[18] |
TEDERSOO L, BAHRAM M, PÕLME S, et al., 2014. Global diversity and geography of soil fungi[J]. Science (New York, N.Y.), 346(6213): 1256688.
DOI URL |
[19] |
TRIPATHI B M, KIM M, SINGH D, et al., 2012. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too[J]. Microbial Ecology, 64(2): 474-484.
DOI URL |
[20] |
WANG J T, ZHENG Y M, HU H W, et al., 2015. Soil pH determines the alpha diversity but not beta diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem[J]. Journal of Soils and Sediments, 15(5): 1224-1232.
DOI URL |
[21] |
YANG Y, DOU Y X, HUANG Y M, et al., 2017. Links between soil fungal diversity and plant and soil properties on the Loess Plateau[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2017.02198.
DOI |
[22] |
ZAK D R, HOLMES W E, WHITE D C, et al., 2003. Plant diversity, soil microbial communities, and ecosystem function: Are there anylinks?[J]. Ecology, 84(8): 2042-2050.
DOI URL |
[23] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agrochemical analysis[M]. The 3rd edition. China Agricultural Press, Beijing. | |
[24] | 柴永福, 岳明, 2016. 植物群落构建机制研究进展[J]. 生态学报, 36(15): 4557-4572. |
CHAI Y F, YUE M, 2016. Research advances in plant community assembly mechanisms[J]. Acta Ecologica Sinica, 36(15): 4557-4572. | |
[25] | 陈秀波, 朱德全, 赵晨晨, 等, 2019. 不同林型红松林土壤真菌群落组成和多样性[J]. 土壤学报, 56(5): 1221-1234. |
CHEN X B, ZHU D Q, ZHAO C C, et al., 2019. Community composition and diversity of fungi in soils under different types of Pinus koraiensis forests[J]. Acta Pedologica Sinica, 56(5): 1221-1234. | |
[26] | 谷晓楠, 贺红士, 陶岩, 等, 2017. 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子[J]. 生态学报, 37(24): 8374-8384. |
GU X N, HE H S, TAO Y, et al., 2017. Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain[J]. Acta Ecologica Sinica, 37(24): 8374-8384. | |
[27] | 刘秉儒, 2010. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J]. 生态环境学报, 19(4): 883-888. |
LIU B R, 2010. Changes in soil microbial biomass carbon and nitrogen under typical plant communies along an altitudinal gradient in east side of Helan Mountain[J]. Ecology and Environmental Sciences, 19(4): 883-888. | |
[28] | 刘秉儒, 杨阳, 陈林, 2014. 宁夏荒漠草原4种典型植物群落土壤活性有机碳垂直分布特征[J]. 草地学报, 22(5): 986-990. |
LIU B R, YANG Y, CHEN L, 2014. Distribution characteristics of soil labile organic carbon of four typical plant communities in desert steppe of Ningxia[J]. Acta Agrestia Sinica, 22(5): 986-990. | |
[29] | 刘秉儒, 张秀珍, 胡天华, 等, 2013. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 33(22): 7211-7220. |
LIU B R, ZHANG X Z, HU T H, et al., 2013. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Ecologica Sinica, 33(22): 7211-7220.
DOI URL |
|
[30] | 李聪, 陆梅, 任玉连, 等, 2020. 文山典型亚热带森林土壤氮组分的海拔分布及其影响因子[J]. 北京林业大学学报, 42(12): 63-73. |
LI C, LU M, REN Y L, et al., 2020. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 42(12): 63-73. | |
[31] | 刘国华, 叶正芳, 吴为中, 2012. 土壤微生物群落多样性解析法: 从培养到非培养[J]. 生态学报, 32(14): 4421-4433. |
LIU G H, YE Z F, WU W Z, 2012. Culture-dependent and culture-independent approaches to studying soil microbial diversity[J]. Acta Ecologica Sinica, 32(14): 4421-4433.
DOI URL |
|
[32] | 刘淑霞, 周平, 赵兰坡, 等, 2008. 吉林黑土区玉米田土壤真菌的多样性[J]. 东北林业大学学报, 4(7): 42-46. |
LIU S X, ZHOU P, ZHAO L B, et al., 2008. Diversity of soil fungi in black soil planted with corn in Jilin province[J]. Journal of Northeast Forestry University, 4(7): 42-46. | |
[33] | 楼骏, 柳勇, 李延, 2014. 高通量测序技术在土壤微生物多样性研究中的研究进展[J]. 中国农学通报, 30(15): 256-260. |
LOU J, LIU Y, LI Y, 2014. Review of high-throughput sequencing techniques in studies of soil microbial diversity[J]. Chinese Agricultural Science Bulletin, 30(15): 256-260. | |
[34] | 罗正明, 刘晋仙, 暴家兵, 等, 2020. 五台山亚高山土壤真菌海拔分布格局与构建机制[J]. 生态学报, 40(19): 7009-7017. |
LUO Z M, LIU J X, BAO J B, et al., 2020. E levational distribution patterns and assembly mechanisms of soil fungal community in Mount Wutai, Shanxi, China[J]. Acta Ecologica Sinica, 40(19): 7009-7017. | |
[35] | 乔沙沙, 周永娜, 柴宝峰, 等, 2017. 关帝山森林土壤真菌群落结构与遗传多样性特征[J]. 环境科学, 38(6): 2502-2512. |
QIAO S S, ZHOU Y N, CHAI B F, et al., 2017. Characteristics of fungi community structure and genetic diversity of forests in Guandi mountains[J]. Environmental Science, 38(6): 2502-2512. | |
[36] | 桑昌鹏, 万晓华, 余再鹏, 等, 2017. 凋落物和根系去除对滨海沙地土壤微生物群落组成和功能的影响[J]. 应用生态学报, 28(4): 1184-1196. |
SANG C P, WAN X H, YU Z P, et al., 2017. Effects of litter and root exclusion on soil microbial community composition and function of four plantations in subtropical sandy coastal plain area, China[J]. Chinese Journal of Applied Ecology, 28(4): 1184-1196. | |
[37] | 孙倩, 吴宏亮, 陈阜, 等, 2019. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J]. 微生物学通报, 46(11): 2963-2972. |
SUN Q, WU H L, CHEN F, et al., 2019. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 46(11): 2963-2972. | |
[38] | 盛玉钰, 丛静, 卢慧, 等, 2018. 神农架国家公园林线过渡带土壤真菌多样性[J]. 生态学报, 38(15):5322-5330. |
SHENG Y Y, CONG J, LU H, et al., 2018. Soil fungal diversity of the timberline ecotone in Shennongjia National Park[J]. Acta Ecologica Sinica, 38(15): 5322-5330. | |
[39] | 王诗慧, 常顺利, 李鑫, 等, 2021. 天山林区土壤真菌多样性及其群落结构[J]. 生态学报, 41(1): 124-134. |
WANG S H, CHANG S L, LI X, et al., Soil fungal diversity and its community structure in Tianshan Forest[J]. Acta Ecologica Sinica, 41(1): 124-134. | |
[40] | 袁仁文, 刘琳, 张蕊, 等, 2020. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 36(2): 26-35. |
YUAN R W, LIU L, ZHANG R, et al., 2020. The interaction mechanism between plant rhizosphere secretion and soil microbe: A review[J]. Chinese Agricultural Science Bulletin, 36(2): 26-35. | |
[41] | 张树萌, 黄懿梅, 倪银霞, 等, 2018. 宁南山区人工林草对土壤真菌群落的影响[J]. 中国环境科学, 38(4): 1449-1458. |
ZHANG S M, HUANG Y M, NI Y X, et al., 2018. Effects of artificial forest and grass on soil fungal community at southern Ningxia mountain[J]. China Environmental Science, 38(4): 1449-1458. | |
[42] | 周煜杰, 贾夏, 赵永华, 等, 2021. 秦岭火地塘真菌群落海拔分布格局[J]. 应用生态学报, 32(7): 2589-2596. |
ZHOU Y J, JIA X, ZHAO Y H, et al., 2021. Altitude distribution of fungal community in Huoditang in Qinling Mountains, Northwest, China[J]. Chinese Journal of Applied Ecology, 32(7): 2589-2596. |
[1] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[2] | 张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35. |
[3] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[4] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[5] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
[6] | 刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722. |
[7] | 杨贤房, 陈朝, 郑林, 万智巍, 陈永林, 王远东. 稀土矿区不同土地利用类型土壤细菌群落特征及网络分析[J]. 生态环境学报, 2022, 31(4): 793-801. |
[8] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[9] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
[10] | 张晓丽, 王国丽, 常芳弟, 张宏媛, 逄焕成, 张建丽, 王婧, 冀宏杰, 李玉义. 生物菌剂对根际盐碱土壤理化性质和微生物区系的影响[J]. 生态环境学报, 2022, 31(10): 1984-1992. |
[11] | 孙雪娇, 李吉玫, 张毓涛, 李翔, 芦建江, 佘飞. 天山北坡山地森林林地产流产沙特征及其影响因素分析[J]. 生态环境学报, 2021, 30(9): 1821-1830. |
[12] | 贾晨波, 郭洋, 马成莲, 苏建宇, 徐春燕. 宁杞1号枸杞健康株与根腐病患病株的土壤微生物群落和功能差异[J]. 生态环境学报, 2021, 30(9): 1831-1841. |
[13] | 姚世庭, 芦光新, 邓晔, 党宁, 王英成, 张海娟, 颜珲璘. 模拟增温对土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 2021, 30(7): 1404-1411. |
[14] | 韩芳, 包媛媛, 刘项宇, 张新永, 韦灯会, 张浩然, 田清龙. 不同轮作方式对马铃薯根际土壤真菌群落结构的影响[J]. 生态环境学报, 2021, 30(7): 1412-1419. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||