生态环境学报 ›› 2025, Vol. 34 ›› Issue (4): 556-569.DOI: 10.16258/j.cnki.1674-5906.2025.04.006
张洪波1(), 尹班1, 李春勇1, 崔松云2,3, 和艳2,3, 李小红4, 邓丽仙2,3,*(
)
收稿日期:
2024-11-12
出版日期:
2025-04-18
发布日期:
2025-04-24
通讯作者:
*邓丽仙。E-mail: denglixian123@126.com作者简介:
张洪波(1979年生),男,讲师,博士,从事水文学及水资源方向研究。E-mail: zhanghongbo@kust.edu.cn
基金资助:
ZHANG Hongbo1(), YIN Ban1, LI Chunyong1, CUI Songyun2,3, HE Yan2,3, LI Xiaohong4, DENG Lixian2,3,*(
)
Received:
2024-11-12
Online:
2025-04-18
Published:
2025-04-24
摘要: 水源涵养是生态系统的重要服务功能,对维持区域生态安全和水资源的可持续利用至关重要。明确水源涵养的时空分布特征、变化趋势及驱动因素,对于科学制定水资源保护规划、推进区域生态保护与修复具有重要的理论和实践价值。基于InVEST模型计算红河流域(中国部分)1981-2020年8个时段(每5年为1个时段)的水源涵养功能,采用Sen+Mann-Kendall及自然间断点法分析时空变化特征及其内部差异,并结合地理探测器方法分析其驱动因素。结果表明,1)红河流域(中国部分)多年平均水源涵养深度为68.7 mm,涵养量为5.77×109 m3。近40年间,水源涵养深度以−0.097 mm·a−1的平均速率波动下降、水源涵养量以−7.5×106 m3·a−1的平均速率波动下降。Sen+Mann-Kendall分析结果显示,水源涵养功能变化趋势以基本不变、轻微降低和轻微上升为主。林地、灌木林地和草地在水源涵养中占据主导地位,分别贡献了74.5%、13.8%和7.93%的水源涵养量。主要涵养区域集中在高程400-2400 m和坡度5°-35°的区间,空间分布呈现东南高、西北低的格局。2)自然间断点法分析结果显示,水源涵养重要区面积为8.24×103 km2,占研究区总面积的10.8%,但其水源涵养量占总量的20.2%,水源涵养率高达1.53×105 m3·km−2。3)地理探测器分析结果显示,降水量是水源涵养功能变化的主要驱动因素,土地利用变化则为次要因素。降水量与土地利用类型的交互作用对水源涵养功能空间异质性具有显著影响,超过任何单一因素或其他交互因素。红河流域(中国部分)水源涵养功能呈现出显著的时间演变规律和空间分布特征,降水与土地利用共同构成其时空异质性的关键驱动因素。
中图分类号:
张洪波, 尹班, 李春勇, 崔松云, 和艳, 李小红, 邓丽仙. 近40年红河流域(中国部分)水源涵养功能动态演变特征及驱动因素[J]. 生态环境学报, 2025, 34(4): 556-569.
ZHANG Hongbo, YIN Ban, LI Chunyong, CUI Songyun, HE Yan, LI Xiaohong, DENG Lixian. Characteristics and Drivers of the Dynamic Evolution of Water Conservation Function in the Honghe River Basin (China Section) in the Last 40 Years[J]. Ecology and Environment, 2025, 34(4): 556-569.
数据名称 | 数据来源 | 空间分辨率 |
---|---|---|
研究区边界数据 | 国家冰川冻土沙漠科学数据中心 http://www.ncdc.ac.cn | ‒ |
高程数据 | 地理空间数据云 https://www.gscloud.cn/home | 30 m分辨率 |
气象数据 | 国家青藏高原科学数据中心 https://data.tpdc.ac.cn/ | 1000 m分辨率 |
土地利用/覆盖数据 | 中国科学院空天信息创新研究院 https://data.casearth.cn/ | 30 m分辨率 |
土壤数据 | 国家地球系统科学中心 https://www.geodata.cn/main/ | 250 m分辨率 |
表1 数据来源
Table 1 Data sources
数据名称 | 数据来源 | 空间分辨率 |
---|---|---|
研究区边界数据 | 国家冰川冻土沙漠科学数据中心 http://www.ncdc.ac.cn | ‒ |
高程数据 | 地理空间数据云 https://www.gscloud.cn/home | 30 m分辨率 |
气象数据 | 国家青藏高原科学数据中心 https://data.tpdc.ac.cn/ | 1000 m分辨率 |
土地利用/覆盖数据 | 中国科学院空天信息创新研究院 https://data.casearth.cn/ | 30 m分辨率 |
土壤数据 | 国家地球系统科学中心 https://www.geodata.cn/main/ | 250 m分辨率 |
交互作用 | 判据 |
---|---|
非线性减弱 | $q\left(X_{1} \cap X_{2}\right)<\min \left[q\left(X_{1}\right), q\left(X_{2}\right)\right]$ |
单因子非线性减弱 | $\min \left[q\left(X_{1}\right), q\left(X_{2}\right)\right]<q\left(X_{1} \cap X_{2}\right)<\max \left[q\left(X_{1}\right), q\left(X_{2}\right)\right]$ |
$q\left(X_{1} \cap X_{2}\right)>\max \left[q\left(X_{1}\right), q\left(X_{2}\right)\right]$ | |
独立 | $q\left(X_{1} \cap X_{2}\right)=q\left(X_{1}\right)+q\left(X_{2}\right)$ |
非线性增强 | $q\left(X_{1} \cap X_{2}\right)>q\left(X_{1}\right)+q\left(X_{2}\right)$ |
表2 地理探测器交互作用类型及判定标准
Table 2 Geographic detector interaction types and judgment criteria
交互作用 | 判据 |
---|---|
非线性减弱 | $q\left(X_{1} \cap X_{2}\right)<\min \left[q\left(X_{1}\right), q\left(X_{2}\right)\right]$ |
单因子非线性减弱 | $\min \left[q\left(X_{1}\right), q\left(X_{2}\right)\right]<q\left(X_{1} \cap X_{2}\right)<\max \left[q\left(X_{1}\right), q\left(X_{2}\right)\right]$ |
$q\left(X_{1} \cap X_{2}\right)>\max \left[q\left(X_{1}\right), q\left(X_{2}\right)\right]$ | |
独立 | $q\left(X_{1} \cap X_{2}\right)=q\left(X_{1}\right)+q\left(X_{2}\right)$ |
非线性增强 | $q\left(X_{1} \cap X_{2}\right)>q\left(X_{1}\right)+q\left(X_{2}\right)$ |
Sen’s slope | Z | 变化趋势 | 面积占比/ % | 平均变化趋势/ (mm·a−1) |
---|---|---|---|---|
β>0.1 | |Z|>1.96 | 明显增长 | 0.234 | 5.46 |
β>0.1 | |Z|£1.96 | 轻微增长 | 2.74 | 2.54 |
|β|£0.1 | ‒ | 基本不变 | 67.4 | 0.01 |
β£−0.1 | |Z|£1.96 | 轻微降低 | 29.1 | −0.888 |
β£−0.1 | |Z|>1.96 | 严重降低 | 0.517 | −4.26 |
表3 研究区水源涵养功能变化趋势分级统计
Table 3 Classification statistics on the trends of water conservation function in the studied area
Sen’s slope | Z | 变化趋势 | 面积占比/ % | 平均变化趋势/ (mm·a−1) |
---|---|---|---|---|
β>0.1 | |Z|>1.96 | 明显增长 | 0.234 | 5.46 |
β>0.1 | |Z|£1.96 | 轻微增长 | 2.74 | 2.54 |
|β|£0.1 | ‒ | 基本不变 | 67.4 | 0.01 |
β£−0.1 | |Z|£1.96 | 轻微降低 | 29.1 | −0.888 |
β£−0.1 | |Z|>1.96 | 严重降低 | 0.517 | −4.26 |
图5 1981-2020年降水量、水源涵养量与蒸散发空间分布对比
Figure 5 Comparison of the spatial distribution of precipitation, water retention and evapotranspiration from 1981 to 2020
土地利用 类型 | 多年平均水源涵养 | 1981-2020年变化 | ||||
---|---|---|---|---|---|---|
深度/ mm | 涵养量/ m3 | 面积/ km2 | 涵养量/ m3 | 回归趋势/ (m3·a−1) | ||
耕地(旱地) | 26.7 | 1.80×108 | 1.21×103 | −4.66×107 | −1.59×106 | |
灌溉水田 | 24.8 | 1.14×107 | −1.25×102 | −4.42×106 | −1.60×105 | |
常绿阔叶林 | 90.5 | 1.00×109 | −9.20×102 | −1.37×108 | −4.84×106 | |
落叶阔叶林 | 77.2 | 9.54×108 | 2.19×103 | 1.15×108 | 4.95×106 | |
常绿针叶林 | 68.7 | 1.95×109 | −1.81×103 | −2.27×108 | −7.39×106 | |
灌木林地 | 95.2 | 7.23×108 | 1.25×103 | 7.39×107 | 2.10×106 | |
草地 | 46.2 | 4.17×108 | 32 | −1.95×107 | −8.08×105 | |
湿地 | 11.4 | 1.20×106 | −8 | −2.68×105 | −3.92×103 | |
建设用地 | 13.7 | 7.68×106 | 5.69×102 | 7.53×106 | 2.30×105 | |
裸地 | 12.4 | 3.68×103 | 2 | 2.45×104 | 4.55×102 | |
水域 | 14.3 | 2.29×106 | 40 | 8.96×105 | 2.23×104 |
表4 研究区不同土地利用的水源涵养功能及其变化
Table 4 Water conservation functions and changes in different land uses in the studied area
土地利用 类型 | 多年平均水源涵养 | 1981-2020年变化 | ||||
---|---|---|---|---|---|---|
深度/ mm | 涵养量/ m3 | 面积/ km2 | 涵养量/ m3 | 回归趋势/ (m3·a−1) | ||
耕地(旱地) | 26.7 | 1.80×108 | 1.21×103 | −4.66×107 | −1.59×106 | |
灌溉水田 | 24.8 | 1.14×107 | −1.25×102 | −4.42×106 | −1.60×105 | |
常绿阔叶林 | 90.5 | 1.00×109 | −9.20×102 | −1.37×108 | −4.84×106 | |
落叶阔叶林 | 77.2 | 9.54×108 | 2.19×103 | 1.15×108 | 4.95×106 | |
常绿针叶林 | 68.7 | 1.95×109 | −1.81×103 | −2.27×108 | −7.39×106 | |
灌木林地 | 95.2 | 7.23×108 | 1.25×103 | 7.39×107 | 2.10×106 | |
草地 | 46.2 | 4.17×108 | 32 | −1.95×107 | −8.08×105 | |
湿地 | 11.4 | 1.20×106 | −8 | −2.68×105 | −3.92×103 | |
建设用地 | 13.7 | 7.68×106 | 5.69×102 | 7.53×106 | 2.30×105 | |
裸地 | 12.4 | 3.68×103 | 2 | 2.45×104 | 4.55×102 | |
水域 | 14.3 | 2.29×106 | 40 | 8.96×105 | 2.23×104 |
重要等级 | 功能区等级 | 面积/ km2 | 面积占比/ % | 水源涵养率/ (m3·km−2) |
---|---|---|---|---|
一般重要 | 低功能区 | 2.67×104 | 34.9 | 3.61×104 |
较低功能区 | 1.94×104 | 25.4 | 6.31×104 | |
中等重要 | 中等功能区 | 2.21×104 | 28.9 | 8.91×104 |
重要 | 较高功能区 | 7.16×103 | 9.37 | 1.19×105 |
高功能区 | 1.08×103 | 1.43 | 1.87×105 |
表5 研究区水源涵养功能区特征统计
Table 5 Characteristics of the water conservation function functional areas in the studied area statistics
重要等级 | 功能区等级 | 面积/ km2 | 面积占比/ % | 水源涵养率/ (m3·km−2) |
---|---|---|---|---|
一般重要 | 低功能区 | 2.67×104 | 34.9 | 3.61×104 |
较低功能区 | 1.94×104 | 25.4 | 6.31×104 | |
中等重要 | 中等功能区 | 2.21×104 | 28.9 | 8.91×104 |
重要 | 较高功能区 | 7.16×103 | 9.37 | 1.19×105 |
高功能区 | 1.08×103 | 1.43 | 1.87×105 |
驱动因子 | 降水量 | 蒸散发 | 土地利用 | 高程 | 坡度 |
---|---|---|---|---|---|
q | 0.539 | 0.219 | 0.307 | 0.088 | 0.049 |
p | *** | *** | *** | *** | *** |
表6 各驱动因子对水源涵养功能变化的单个效应
Table 6 Individual effects of drivers on changes in water conservation functions
驱动因子 | 降水量 | 蒸散发 | 土地利用 | 高程 | 坡度 |
---|---|---|---|---|---|
q | 0.539 | 0.219 | 0.307 | 0.088 | 0.049 |
p | *** | *** | *** | *** | *** |
[1] |
DECSI B, VARI A, KOZMA Z, 2020. The effect of future land use changes on hydrologic ecosystem services: A case study from the Zala catchment, Hungary[J]. Biologia Futura, 71(4): 405-418.
DOI PMID |
[2] | COSBY B J, HORNBERGER G M, CLAPP R B, et al., 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research, 20(6): 682-690. |
[3] | COSTANZA R, D'ARGE R, DE G R, et al., 1997. The value of the world’s ecosystem services and natural capital[J]. Nature, 387(6630): 253-260. |
[4] | DROOGERS P, ALLEN R G, 2002. Estimating reference evapotmnspimtion under inaccurate data conditions[J]. Irrigation and Dminage Systems, 16(1): 33-45. |
[5] | JIANG H, WU Y F, 2021. Change trend analysis of the time-series shadow-eliminated vegetation index (SEVI) for the Wuyishan Nature Reserve with the Sen+Mann-Kendall method[J]. IOP Conference Series: Earth and Environmental Science, 658(1): 12-16. |
[6] | LEH D M, MATLOCK D M, CUMMINGS C E, et al., 2013. Quantifying and mapping multiple ecosystem services change in West Africa[J]. Agriculture, Ecosystems and Environment, 165: 6-18. |
[7] | LIANG Y T, XU C D, 2023. Knowledge diffusion of Geodetector: A perspective of the literature review and Geotree[J]. Heliyon, 9(9): 19651-19651. |
[8] | MARTIN K, MARTIN M, JAN W, 2021. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition[J]. Science of The Total Environment, 757(1): 143785. |
[9] | MOMBLANCH A, ARQUIOLA J P, ANDREU J, et al., 2017. Improved modelling of the freshwater provisioning ecosystem service in water scarce river basins[J]. Environmental Modelling & Software, 94(8): 87-99. |
[10] | MONTSE M, RUBAB F B, VIKAS K, et al., 2013. The impact of climate change on water provision under a low flow regime: A case study of the ecosystems services in the Francoli river basin[J]. Journal of Hazardous Materials, 263(12): 224-232. |
[11] |
柏松, 景连东, 李晖, 等, 2017. 基于水源涵养功能的生态红线划定方法研究[J]. 生态环境学报, 26(10): 1665-1670.
DOI |
BAI S, JING LD, LI H, et al., 2017. The demarcation of ecological protection red line based on water conversation function[J]. Ecology and Environmental Sciences, 26(10): 1665-1670. | |
[12] | 代兴兰, 2008. 红河流域泥沙特性与水土保持[J]. 人民珠江, 46(3): 22-23. |
DAI X L, 2008. Sediment characteristics and soil and water conservation in the honghe watershed[J]. Pearl River, 46(3): 22-23. | |
[13] | 傅斌, 徐佩, 王玉宽, 等, 2013. 都江堰市水源涵养功能空间格局[J]. 生态学报, 33(3): 789-797. |
FU B, XU P, WANG Y K, et al., 2013. Spatial Pattern of water retetnion in Dujiagyan County[J]. Acta Ecologica Sinica, 33(3): 789-797. | |
[14] | 韩念龙, 刘子荣, 贾培宏, 等, 2022. 1996-2020年海南岛水源涵养量时空变化及地理探测[J]. 水土保持通报, 42(5): 193-201. |
HAN N L, LIU Z R, JIA P H, et al., 2022. Spatio-temporal changes and geographic detection of water conservation on Hainan Island from 1996 to 2020[J]. Bulletin of Soil and Water Conservation, 42(5): 193-201. | |
[15] | 贾雨凡, 杨勤丽, 胡非池, 等, 2022. 变化环境下的水源涵养能力评估研究进展[J]. 水利水运工程学报 (1): 37-47. |
JIA Y F, YANG Q L, HU F C, et al., 2022. Prospect and progress of water conservation capacity evaluation in a changing environment[J]. Hydro-Science and Engineering (1): 37-47. | |
[16] | 李卉, 朱彤彤, 刘侦海, 等, 2022. 东南亚沿海与内陆植被对洪水事件响应的稳定性差异[J]. 生态学报, 42(16): 6745-6757. |
LI H, ZHU T T, LIU Z H, et al., 2022. Stability differences of coastal and inland vegetation to flood events in Southeast Asia[J]. Acta Ecologica Sinica, 42(16): 6745-6757. | |
[17] |
李惠梅, 李荣杰, 晏旭昇, 等, 2023. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 32(7): 1185-1195.
DOI |
LI H M, LI R J, YAN X S, et al., 2023. The ecological function zoning of Qinghai Lake Basin based on ecological risk assessment[J]. Ecology and Environmental Sciences, 32(7): 1185-1195. | |
[18] | 李双成, 刘金龙, 张才玉, 等, 2011. 生态系统服务研究动态及地理学研究范式[J]. 地理学报, 66(12): 1618-1630. |
LI S C, LIU J L, ZHANG C Y, et al., 2021. The research trends of ecosystem services and the paradigm in geography[J]. Acta Geographica Sinica, 66(12): 1618-1630. | |
[19] | 刘娇, 郎学东, 苏建荣, 等, 2021. 基于INVEST模型的金沙江流域干热河谷区水源涵养功能评估[J]. 生态学报, 41(20): 8099-8111. |
LIU J, LANG X D, SU J R, et al., 2021. Evaluation of water conservation function in the dry-hot valley area of Jinsha River Basin based on InVEST model[J]. Acta Ecologica Sinica, 41(20): 8099-8111. | |
[20] | 刘晶, 鲍振鑫, 刘翠善, 等, 2019. 近20年中国水资源及用水量变化规律与成因分析[J]. 水利水运工程学报 (4): 31-41. |
LIU J, BAO Z X, LIU C S, et al., 2019. Change law and cause analysis of water resources and water consumption in China in past 20 years[J]. Hydro-Science and Engineering (4): 31-41. | |
[21] | 刘世梁, 刘琦, 张兆苓, 等, 2014. 云南省红河流域景观生态风险及驱动力分析[J]. 生态学报, 34(13): 3728-3734. |
LIU S L, LIU Q, ZHANG Z L, et al., 2014. Landscape ecological risk and driving force analysis in Red river Basin[J]. Acta Ecologica Sinica, 34(13): 3728-3734. | |
[22] | 吕乐婷, 任甜甜, 孙才志, 等, 2020. 1980-2016年三江源国家公园水源供给及水源涵养功能时空变化研究[J]. 生态学报, 40(3): 993-1003. |
LÜ L T, REN T T, SUN C Z, et al., 2020. Spatial and temporal changes of water supply and water conservation function in Sanjiangyuan National Park from 1980 to 2016[J]. Acta Ecologica Sinica, 40(3): 993-1003. | |
[23] | 吕明轩, 张红, 贺桂珍, 等, 2024. 黄河流域水源涵养服务功能动态演变及驱动因素[J]. 生态学报, 44(7): 2761-2771. |
LÜ M X, ZHANG H, HE G Z, et al., 2024. Dynamic evolution and driving factors of water conservation service function in the Yellow River Basin[J]. Acta Ecologica Sinica, 44(7): 2761-2771. | |
[24] | 欧阳志云, 朱春全, 杨广斌, 等, 2013. 生态系统生产总值核算: 概念、核算方法与案例研究[J]. 生态学报, 33(21): 6747-6761. |
OUYANG Z Y, ZHU C Q, YANG G B, et al., 2013. Gross ecosystem product: concept, accounting framework and case study[J]. Acta Ecologica Sinica, 33(21): 6747-6761. | |
[25] | 潘韬, 吴绍洪, 戴尔阜, 等, 2013. 基于InVEST模型的三江源区生态系统水源供给服务时空变化[J]. 应用生态学报, 24(1): 183-189. |
PAN T, WU S H, DAI E F, et al., 2013. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model[J]. Chinese Journal of Applied Ecology, 24(1): 183-189. | |
[26] | 王佃来, 刘文萍, 黄心渊, 2013. 基于Sen+Mann-Kendall的北京植被变化趋势分析[J]. 计算机工程与应用, 49(5): 13-17. |
WANG D L, LIU W P, HUANG X Y, 2013. Trend analysis in vegetation cover in Beijing based on Sen+Mann-Kendall method[J]. Computer Engineering and Applications, 49(5): 13-17. | |
[27] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU D C, 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1): 116-134.
DOI |
|
[28] |
王鹭莹, 李小马, 甘德欣, 等, 2024. 长株潭城市群生态系统服务权衡与协同关系的空间异质性及其驱动因素[J]. 生态环境学报, 33(6): 969-979.
DOI |
WANG L Y, LI X M, GAN D X, et al., 2024. Spatial heterogeneity and driving factors of ecosystem service trade-offs and synergies in the Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Ecology and Environmental Sciences, 33(6): 969-979. | |
[29] | 谢淑琴, 2002. 红河流域水文特性[J]. 水文, 22(4): 57-58, 63. |
XIE S Q, 2002. The hydrological characteristics of the Red River Basin[J]. Hydrology, 22(4): 57-58, 63. | |
[30] | 叶长青, 甘淑, 李运刚, 2008. 红河流域降水量的时空变异特征[J]. 云南大学学报(自然科学版), 30(1): 54-60. |
YE C Q, GAN S, LI Y G, 2008. The temporal and spatial variation characteristics analysis of precipitation in Honghe River basin[J]. Journal of Yunnan University: Natural Sciences Edition, 30(1): 54-60. | |
[31] | 余新晓, 周彬, 吕锡芝, 等, 2012. 基于InVEST模型的北京山区森林水源涵养功能评估[J]. 林业科学, 48(10): 1-5. |
YU X X, ZHOU B, LÜ X Z, et al., 2012. Evaluation of water conservation function in mountain forest areas of Beijing based on InVEST model[J]. Scientia Silvae Sinicae, 48(10): 1-5. | |
[32] | 张彪, 李文华, 谢高地, 等, 2009. 森林生态系统的水源涵养功能及其计量方法[J]. 生态学杂志, 28(3): 529-534. |
ZHANG B, LI W H, XIE G D, et al., 2009. Water conservation function and its m easurem ent m ethods of forest ecosystem[J]. Chinese Joumal of Ecology, 28(3): 529-534. | |
[33] | 张彪, 李文华, 谢高地, 等, 2008. 北京市森林生态系统的水源涵养功能[J]. 生态学报, 28(11): 5619-5624. |
ZHANG B, LI W H, XIE G D, et al., 2008. Characteristics of water conservation of forest ecosystem in Beijing[J]. Acta Ecologica Sinica, 28(11): 5618-5624. | |
[34] | 张昌顺, 谢高地, 刘春兰, 等, 2022. 基于水源涵养参照系的中国生态系统水源涵养功能优劣评估[J]. 生态学报, 42(22): 9250-9260. |
ZHANG C S, XIE G D, LIU C L, et al., 2022. Evaluation of water conservation of China’s ecosystems based on benchmark[J]. Acta Ecologica Sinica, 42(22): 9250-9260. | |
[35] |
张福平, 李肖娟, 冯起, 等, 2018. 基于InVEST模型的黑河流域上游水源涵养量[J]. 中国沙漠, 38(6): 1321-1329.
DOI |
ZHANG F P, LI X J, FENG Q, et al., 2018. Spatial and temporal variation of water conservation in the upper reaches of Heihe River Basin Based on InVEST model[J]. Journal of Desert Research, 38(6): 1321-1329.
DOI |
|
[36] | 中华人民共和国生态环境部, 2020. 生态保护红线监管技术规范生态功能评价(试行)[EB/OL]. (2020-11-24) [2024-12-06]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/stzl/202011/W020201127553309828533. |
Ministry of Ecology and Environment of the People's Republic of China,2020. Technical specification for supervision of ecological conservation redline-Ecological function evaluation (on trial)[EB/OL]. (2020-11-24) [2024-12-06]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/stzl/202011/W020201127553309828533. . | |
[37] | 周文佐, 2003. 基于GIS的我国主要土壤类型土壤有效含水量研究[D]. 南京: 南京农业大学: 1-79. |
ZHOU W Z, 2003. Study on available water capacity of main soil types in china based on geographic information system[D]. Nanjing: Nanjing Agricultural University: 1-79. | |
[38] | 周雪彤, 孙文义, 穆兴民, 等, 2023. 1990-2020年三江源水源涵养能力时空变化及影响因素[J]. 生态学报, 43(23): 9844-9855. |
ZHOU X T, SUN W Y, MU X M, et al., 2023. Spatiotemporal variation and influencing factors of water conservation capacity in Three-River Headwaters region from 1990 to 2020[J]. Acta Ecologica Sinica, 43(23): 9844-9855. |
[1] | 张任菲, 肖萌, 刘志成. 京津冀地区景观破碎化的时空异质性及驱动因素研究[J]. 生态环境学报, 2025, 34(3): 461-473. |
[2] | 李曼, 吴东丽, 何昊, 余慧婕, 赵琳, 刘聪, 胡正华, 李琪. 1990-2020年黄河流域碳储量时空演变及驱动因素研究[J]. 生态环境学报, 2025, 34(3): 333-344. |
[3] | 郭昭, 师芸, 刘铁铭, 张雨欣, 闫永智. 2001-2020年秦岭北麓NPP时空格局及驱动因素分析[J]. 生态环境学报, 2025, 34(3): 401-410. |
[4] | 赵忠宝, 李婧, 刘小丹, 柏祥, 刘昊野, 徐晓娜, 耿世刚, 鲁少波. 河北省森林生态产品价值评估及其空间分布驱动因素研究[J]. 生态环境学报, 2025, 34(2): 321-332. |
[5] | 赵乐鋆, 王诗瑶, 赵子渝, 洪星, 李夫星, 吴佳仪, 华婧妤. 2008-2022年华北平原七省市AOD时空变化特征及主要影响因素分析[J]. 生态环境学报, 2025, 34(2): 256-267. |
[6] | 张继, 杨世琦, 赵磊, 冯介玲, 陈艳英. 基于InVEST模型的重庆市“一带三屏”生境质量时空演变特征分析[J]. 生态环境学报, 2025, 34(2): 167-180. |
[7] | 马月伟, 陈玉美, 张盛蓝, 桂雅丽, 陈艳梅. 夹金山脉大熊猫栖息地生境质量与人类活动强度耦合协调研究[J]. 生态环境学报, 2025, 34(2): 197-208. |
[8] | 汪洋, 李帆, 严笑, 梅言, 李培, 黄林, 赵俊杰. 山地高密度城市空间形态对冬季气溶胶格局的约束力探测——重庆中心城区案例研究[J]. 生态环境学报, 2025, 34(1): 56-66. |
[9] | 卢德浩, 郑峰霖, 古佳玮, 帅晓迈, 杨佳曼, 李程, 蔡梦真, 陈红跃. 不同林分类型凋落物和土壤水源涵养能力分析与评价[J]. 生态环境学报, 2025, 34(1): 26-35. |
[10] | 张雯, 郑天, 刘永超, 钟捷, 苏杰, 李加林. 基于电路理论的浙江省生态保护修复关键区域识别[J]. 生态环境学报, 2024, 33(9): 1482-1494. |
[11] | 张舒涵, 姜海玲, 于海淋, 冯馨慧. 沈阳现代化都市圈景观生态风险时空演变及驱动力分析[J]. 生态环境学报, 2024, 33(9): 1471-1481. |
[12] | 唐建亭, 袁杰, 陈宗颜, 李晓燕, 孙子婷. 祁连山南坡土地利用变化及碳储量研究[J]. 生态环境学报, 2024, 33(9): 1353-1361. |
[13] | 戴晓爱, 马佳欣, 唐艺菱, 李为乐. 甘肃省植被时空动态变化及其归因分析[J]. 生态环境学报, 2024, 33(8): 1163-1173. |
[14] | 王雪融, 龚建周, 俞方圆. 粤港澳大湾区4种生态系统调节服务的互馈关系及机制[J]. 生态环境学报, 2024, 33(7): 1130-1141. |
[15] | 张维琛, 王惺琪, 王博杰. 塔布河流域生态系统服务时空格局及影响因素分析[J]. 生态环境学报, 2024, 33(7): 1142-1152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||