生态环境学报 ›› 2025, Vol. 34 ›› Issue (1): 56-66.DOI: 10.16258/j.cnki.1674-5906.2025.01.007
汪洋1,2,3,4(), 李帆1,2, 严笑1,*(
), 梅言1, 李培1,2, 黄林1,2, 赵俊杰1,2
收稿日期:
2024-08-20
出版日期:
2025-01-18
发布日期:
2025-01-21
通讯作者:
* 严笑。E-mail: oceanfloorsand@163.com作者简介:
汪洋(1978年生),男,教授,博士,硕士研究生导师,主要从事人居环境与空间规划研究。E-mail: cqwangyang@foxmail.com
基金资助:
WANG Yang1,2,3,4(), LI Fan1,2, YAN Xiao1,*(
), MEI Yan1, LI Pei1,2, HUANG Lin1,2, ZHAO Junjie1,2
Received:
2024-08-20
Online:
2025-01-18
Published:
2025-01-21
摘要:
城市大气环境质量是城市环境质量的关键性控制因素,解耦城市空间形态与大气环境质量间的约束性耦合关系,是建构城市环境高质量发展策略的基础和前提。基于多年MODIS、高精度矢量建筑等多源空间数据,通过暗像元法反演2020—2022年重庆中心城区大气气溶胶光学厚度,以此量化城市大气环境质量,从平面、立体、功能3个维度建立10项表征城市形态的量化指标,借助地理探测器分析各因子对冬季气溶胶的独立和叠加约束效应。研究发现:1)在中心城区全域,冬季气溶胶空间异质性显著,城市表面高程、植被覆盖度、天空开阔度、土地利用因子具有全局约束力,其他因子如建筑密度、容积率等只具有局部约束效果;2)在城市建成区内部,影响气溶胶的主要单因子包括城市表面高程(q=0.574)、植被覆盖度(q=0.524)、土地利用(q=0.506)、距主要道路距离(q=0.352);其他城市形态因子的解释力相对较弱且贡献值大致相同(q=0.29);3)在城市建成区内部,各解释因子表现出明显的叠加约束效应,且叠加解释力q(Xi∩Xj)均强于独立作用,叠加q值处于0.29—0.65之间。该研究为明确城市形态与大气质量的关系提供了科学依据,对城市规划和环境治理具有一定理论和实践意义。
中图分类号:
汪洋, 李帆, 严笑, 梅言, 李培, 黄林, 赵俊杰. 山地高密度城市空间形态对冬季气溶胶格局的约束力探测——重庆中心城区案例研究[J]. 生态环境学报, 2025, 34(1): 56-66.
WANG Yang, LI Fan, YAN Xiao, MEI Yan, LI Pei, HUANG Lin, ZHAO Junjie. Influence of Three-Dimensional Urban Morphology on Winter Aerosol Patterns in High-Density Mountainous City: A Case Study of Chongqing’s Central Urban Area[J]. Ecology and Environment, 2025, 34(1): 56-66.
指标名称 | 计算方法 | 参数含义 |
---|---|---|
建筑密度 (XBD) | Sj ——建筑物基底面积;Sy——用地面积(汪洋等, | |
容积率 (XBVR) | Sz ——总建筑面积;Sy——用地面积(汪洋等, | |
城市表面高程(CSE) | 建筑栅格化后叠加DEM图层,重采样为250 m网格 | 表示人工建筑与地形的叠加高度(汪洋等, |
建筑体积(XAV) | Sj ——建筑物基底面积;F——建筑高度(汪洋等, | |
距主干道距离 (RD) | 基于ArcGIS空间分析,计算建筑几何中心至主干道的最近欧氏距离 | |
天空开阔度 (XSVF) | n——总模拟次数;Paiβj——栅格单元间被遮挡情况;αi ——给定方位角;βj——高度角积分步长(贺文慧等, | |
迎风面积指数 (XFAI) | λf (θ)——垂直于某一风向的建筑迎风面面积与建筑所在地块面积比;Pθ——特定风向的频率,迎风面积指数为16个风向迎风面指数加权和(冯章献等, | |
粗糙度长度 (XRL) | Zd ——零平面位移高度(m);Zh——粗糙元高度(m); λf ——单位地表面积城市建筑迎风面积密度(张强等, | |
归一化植被指数 (XNDVI) | XNDVI= | 基于OLI数据,RNI、R分别表示近红外波段反射值和红色波段反射值(张晓娟等, |
土地利用(LU) | 将土地利用数据采用优势归类法重采样为250 m网格进行统计 | 主要包括工业用地、居住用地、商业用地等15种土地利用形式 |
反演气溶胶光学厚度(AOD) | 利用MODIS数据,根据归一化植被指数(NDVI)确定暗像元,基于暗像元法(贾海峰等, | 使用6S软件通过辐射传输公式构建查找表,根据MODIS数据和查找表进行插值获得AOD |
表1 各因子数量建模方法汇总表
Table 1 Summary table of quantitative modeling methods for each factor
指标名称 | 计算方法 | 参数含义 |
---|---|---|
建筑密度 (XBD) | Sj ——建筑物基底面积;Sy——用地面积(汪洋等, | |
容积率 (XBVR) | Sz ——总建筑面积;Sy——用地面积(汪洋等, | |
城市表面高程(CSE) | 建筑栅格化后叠加DEM图层,重采样为250 m网格 | 表示人工建筑与地形的叠加高度(汪洋等, |
建筑体积(XAV) | Sj ——建筑物基底面积;F——建筑高度(汪洋等, | |
距主干道距离 (RD) | 基于ArcGIS空间分析,计算建筑几何中心至主干道的最近欧氏距离 | |
天空开阔度 (XSVF) | n——总模拟次数;Paiβj——栅格单元间被遮挡情况;αi ——给定方位角;βj——高度角积分步长(贺文慧等, | |
迎风面积指数 (XFAI) | λf (θ)——垂直于某一风向的建筑迎风面面积与建筑所在地块面积比;Pθ——特定风向的频率,迎风面积指数为16个风向迎风面指数加权和(冯章献等, | |
粗糙度长度 (XRL) | Zd ——零平面位移高度(m);Zh——粗糙元高度(m); λf ——单位地表面积城市建筑迎风面积密度(张强等, | |
归一化植被指数 (XNDVI) | XNDVI= | 基于OLI数据,RNI、R分别表示近红外波段反射值和红色波段反射值(张晓娟等, |
土地利用(LU) | 将土地利用数据采用优势归类法重采样为250 m网格进行统计 | 主要包括工业用地、居住用地、商业用地等15种土地利用形式 |
反演气溶胶光学厚度(AOD) | 利用MODIS数据,根据归一化植被指数(NDVI)确定暗像元,基于暗像元法(贾海峰等, | 使用6S软件通过辐射传输公式构建查找表,根据MODIS数据和查找表进行插值获得AOD |
因子 | AV | BD | BVR | CSE | FAI | NDVI | RD | RL | SVF | LU |
---|---|---|---|---|---|---|---|---|---|---|
q statistic | 0.286 | 0.287 | 0.284 | 0.574* | 0.287 | 0.524* | 0.352* | 0.286 | 0.290 | 0.506* |
表2 城市气溶胶单因子探测结果
Table 2 Urban aerosol single factor detection results
因子 | AV | BD | BVR | CSE | FAI | NDVI | RD | RL | SVF | LU |
---|---|---|---|---|---|---|---|---|---|---|
q statistic | 0.286 | 0.287 | 0.284 | 0.574* | 0.287 | 0.524* | 0.352* | 0.286 | 0.290 | 0.506* |
[1] | HOLBEN B N, ECK T F, SLUTSKER I A, et al., 1998. AERONET—A federated instrument network and data archive for aerosol characterization[J]. Remote sensing of environment, 66(1):1-16. |
[2] | LIU Y, ARP H P H, SONG X D, et al., 2017. Research on the relationship between urban form and urban smog in China[J]. Environment and Planning B: Urban Analytics and City Science, 44(2):328-342. |
[3] | RAO L L, XU J, EFREMENKO D S, et al., 2022. Aerosol parameters retrieval from TROPOMI/S5P using physics-based neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15:6473-6484. |
[4] | SI Y D, LU Q F, ZHANG X Y, et al., 2021. A review of advances in the retrieval of aerosol properties by remote sensing multi-angle technology[J]. Atmospheric Environment, 244:117928. |
[5] | WOLFENBARGER J K, SEINFELD J H, 1990. Inversion of aerosol size distribution data[J]. Journal of Aerosol Science, 21(2):227-247. |
[6] | WU X, YUAN J L, WEI T W, et al., 2022. Variation of Aerosol Optical Depth Measured by Sun Photometer at a Rural Site near Beijing during the 2017-2019 Period[J]. Remote Sensing, 14(12):2908. |
[7] | 毕波, 刘博文, 2022. 城市小区建筑对炭疽气溶胶扩散的影响[J]. 中国人民警察大学学报, 38(6):74-77. |
BI B, LIU B W, 2022. Effects of anthrax aerosol diffusion in the housing estate buildings[J]. Journal of China People’s Police University, 38(6):74-77. | |
[8] | 董鑫, 陈效锐, 李艳忠, 等, 2023. 基于地理探测器的四川省大熊猫国家公园生态环境时空变化及其归因分析[J]. 生态学杂志, 42(4):946-955. |
DONG X, CHEN X R, LI Y Z, et al., 2023. Spatiotemporal variation and driving forces of ecological environment of Giant Panda National Park in Sichuan Province based on geographical detector[J]. Chinese Journal of Ecology, 42(4):946-955.
DOI |
|
[9] |
窦睿音, 焦贝贝, 张文洁, 等, 2023. 西部资源型城市绿色发展效率时空分异与驱动力[J]. 自然资源学报, 38(1):238-254.
DOI |
DOU R Y, JIAO B B, ZHANG W J, et al., 2023. Research on spatiotemporal heterogeneity and driving forces of green development efficiency in resource-based cities of Western China[J]. Journal of Natural Resources, 38(1):238-254. | |
[10] | 范庆泉, 储成君, 刘净然, 等, 2020. 环境规制、产业升级与雾霾治理[J]. 经济学报, 7(4):189-213. |
FAN Q Q, CHU C J, LIU J R, et al., 2020. Environmental regulation, industrial upgrading and haze governance[J]. China Journal of Economics, 7(4):189-213. | |
[11] |
冯章献, 王士君, 金珊合, 等, 2019. 长春市城市形态及风环境对地表温度的影响[J]. 地理学报, 74(5):902-911.
DOI |
FENG Z X, WANG S J, JIN S H, et al., 2019. Effects of urban morphology and wind conditions on land surface temperature in Changchun[J]. Acta Geographica Sinica, 74(5):902-911.
DOI |
|
[12] |
贺文慧, 杨昕, 汤国安, 等, 2012. 基于数字高程模型的城市地表开阔度研究——以南京老城区为例[J]. 地球信息科学学报, 14(1):94-100.
DOI |
HE W H, YANG X, TANG G A, et al, 2012. Research on sky view factor in urban area based on urban digital elevation model: A case study of Nanjing old city[J]. Journal of Geo-information Science, 14(1):94-100. | |
[13] |
黄晓军, 宋涛, 王博, 等, 2022. 土地利用规模-结构-形态演变对城市热环境的影响——以西安市主城区为例[J]. 地理科学, 42(5):926-937.
DOI |
HUANG X J, SONG T, WANG B, et al., 2022. Study on the influence of land use evolution of scale, structure and pattern on urban thermal environment: A case study of Xi’an[J]. Scientia Geographica Sinica, 42(5):926-937.
DOI |
|
[14] | 贾海峰, 刘雪华, 2006. 环境遥感原理与应用[M]. 北京: 清华大学出版社有限公司. |
JIA H F, LIU X H, 2006. Principles and Applications of Remote Sensing of Environment[M]. Beijing: Tsinghua University Press Co. | |
[15] | 金科伟, 王薇, 2021. 基于地理信息系统的高密度城市住区天空开阔度研究[J]. 工业建筑, 51(2):1-6, 75. |
JIN K W, WANG W, 2021. Research on sky-view factor of high-density urban residential areas based on Geographic Information System[J]. Industrial Construction, 51(2):1-6, 75. | |
[16] | 李莎, 邹滨, 刘宁, 等, 2022. 面向二/三维城市形态指标的PM2.5浓度调控模拟[J]. 环境科学, 43(9):4425-4437. |
LI S, ZOU B, LIU N, et al., 2022. Simulation of PM2.5 concentration based on optimized indexes of 2D/3D urban form[J]. Environmental Science, 43(9):4425-4437. | |
[17] |
蔺雪芹, 王岱, 2016. 中国城市空气质量时空演化特征及社会经济驱动力[J]. 地理学报, 71(8):1357-1371.
DOI |
LIN X Q, WANG D, 2016. Spatio-temporal evolution characteristics and socio-economic drivers of urban air quality in China[J]. Acta Geographica Sinica, 71(8):1357-1371. | |
[18] | 刘诚, 邓力琛, 钱悦, 等, 2023. 庐山地区黑碳气溶胶变化特征及影响因素分析[J]. 中国环境科学, 43(9):4512-4524. |
LIU C, DENG L C, QIAN Y, et al., 2023. Characteristics and influencing factors of black carbon aerosol in Mountain Lushan[J]. China Environmental Science, 43(9):4512-4524. | |
[19] | 刘吉平, 马长迪, 刘雁, 等, 2017. 基于地理探测器的沼泽湿地变化驱动因子定量分析——以小三江平原为例[J]. 东北师大学报(自然科学版), 49(2):127-135. |
LIU J P, MA C D, LIU Y, et al., 2017. Quantitative study on the driving factors of marsh change based in Geographical Detector: Case study on Small Sanjiang Plain[J]. Journal of Northeast Normal University (Natural Science Edition), 49(2):127-135. | |
[20] |
刘勇洪, 徐永明, 张方敏, 等, 2021. 北京城市空间形态对热岛分布影响研究[J]. 地理学报, 76(7):1662-1679.
DOI |
LIU Y H, XU Y M, ZHANG F M, et al., 2021. Influence of Beijing spatial morphology on the distribution of urban heat island[J]. Acta Geographica Sinica, 76(7):1662-1679.
DOI |
|
[21] |
乜虹, 保广裕, 戴升, 等, 2023. 青海共和盆地PM10质量浓度变化特征及其影响因子研究[J]. 干旱气象, 41(2):301-308.
DOI |
NIE H, BAO G Y, DAI S, et al., 2023. Study on the variation characteristics of PM10 mass concentration and its impact factors over the Gonghe Basin in Qinghai Province[J]. Journal of Arid Meteorology, 41(2):301-308. | |
[22] | 彭超, 李振亮, 向英, 等, 2024. 重庆典型城区冬季碳质气溶胶的污染特征及来源解析[J]. 环境科学, 45(1):48-60. |
PENG C, LI Z L, XIANG Y, et al., 2024. Characteristics and source apportionment of carbonaceous aerosols in the typical urban areas in Chongqing during winter[J]. Environmental Science, 45(1):48-60. | |
[23] | 尚秀丽, 2023. 中国三大城市群生态环境质量与发展取向研究——基于胡焕庸线的生态涵义[J]. 城市发展研究, 30(1):72-81. |
SHANG X L, 2023. Study on the ecological environment quality and development orientation of three major urban agglomerations in China: Based on the ecological meaning of Hu Line[J]. Urban Development Studies, 30(1):72-81. | |
[24] | 孙杰, 任永建, 高媛, 2022. 长江中游城市群大气环境容量演变特征分析[J]. 长江流域资源与环境, 31(1):202-211. |
SUN J, REN Y J, GAO Y, 2022. Evolution characteristics of atmospheric environmental capacity in the midstream urban agglomeration[J]. Resources and Environment in the Yangtze Basin, 31(1):202-211. | |
[25] | 滕菲, 王艳军, 王孟杰, 等, 2022. 长三角城市群城市空间形态与碳收支时空耦合关系[J]. 生态学报, 42(23):9636-9650. |
TENG F, WANG Y J, WANG M J, et al., 2022. Spatiotemporal coupling relationship between urban spatial morphology and carbon budget in Yangtze River Delta urban agglomeration[J]. Acta Ecologica Sinica, 42(23):9636-9650. | |
[26] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1):116-134.
DOI |
WANG J F, XU C D, 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1):116-134.
DOI |
|
[27] |
汪洋, 杨丹, 闵婕, 等, 2021. 山地高密度城市热岛效应的多约束因子格局分析与定量探测——重庆都市区案例研究[J]. 地理研究, 40(3):856-868.
DOI |
WANG Y, YANG D, MIN J, et al., 2021. Spatial pattern analysis and quantitative detection of multi-factor influence for urban heat island effect in a mountainous city: A case study of Chongqing metropolitan circle[J]. Geographical Research, 40(3):856-868. | |
[28] | 吴雅珍, 李丹阳, 张霖, 等, 2023. 气候变化对空气污染影响的模拟研究[J]. 北京大学学报(自然科学版), 59(5):1-18. |
WU Y Z, LI D Y, ZHANG L, et al., 2023. Modeling study on the impact of climate change on air pollution[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 59(5):1-18. | |
[29] | 徐银凤, 汪德根, 沙梦雨, 2019. 双维视角下苏州城市空间形态演变及影响机理[J]. 经济地理, 39(4):75-84. |
XU Y F, WANG D G, SHA M Y, 2019. Morphological evolution and influence mechanism of Suzhou urban space from the perspective of double dimension[J]. Economic Geography, 39(4):75-84. | |
[30] | 杨柳, 沈振兴, 魏军强, 等, 2023. 西安市冬季霾污染过程生物气溶胶浓度变化及其影响因素研究[J]. 环境科学学报, 43(7):233-243. |
YANG L, SHEN Z X, WEI J Q, et al., 2023. Variation and influencing factors of bioaerosols during winter haze episode in Xi’an[J]. Acta Scientiae Circumstantiae, 43(7):233-243. | |
[31] | 岳峰, 傅凡, 戴菲, 等, 2021. 基于遥感反演的绿色空间景观格局对气溶胶污染的影响[J]. 中国园林, 37(9):83-88. |
YUE F, FU F, DAI F, et al., 2021. The impact of green space landscape patterns on aerosols pollution based on remote sensing inversion[J]. Chinese Landscape Architecture, 37(9):83-88. | |
[32] |
张宸铭, 高建华, 黎世民, 等, 2018. 基于路网可达性的城市空间形态集聚分形研究[J]. 地理研究, 37(12):2528-2540.
DOI |
ZHANG C M, GAO J H, LI S M, et al., 2018. Fractal dimension study of urban morphology based on network accessibility[J]. Geographical Research, 37(12):2528-2540. | |
[33] |
张凤, 陈彦光, 李晓松, 2019. 京津冀城市生长和形态的径向维数分析[J]. 地理科学进展, 38(1):65-76.
DOI |
ZHANG F, CHEN Y G, LI X S, 2019. Radial dimension analysis of growth and form of cities in the Beijing-Tianjin-Hebei region[J]. Progress in Geography, 38(1):65-76.
DOI |
|
[34] | 张强, 吕世华, 2003. 城市表面粗糙度长度的确定[J]. 高原气象, 22(1):24-32. |
ZHANG Q, LÜ S H, 2003. Determination of urban surface roughness length[J]. Plateau Meteorology, 22(1):24-32. | |
[35] | 张天禹, 2021. 面向大气污染物扩散的城市空间形态优化研究[D]. 沈阳: 沈阳建筑大学. |
ZHANG T Y, 2021. Optimization of urban spatial form for air pollutant diffusion[D]. Shenyang: Journal of Shenyang Jianzhu University. | |
[36] | 张为师, 徐颖, 惠婧璇, 2023. 中国城市CO2排放和空气质量协同变化特征及驱动因素研究[J]. 中国环境管理, 15(2):38-47. |
ZHANG W S, XU Y, HUI J X, 2023. The spatio-temporal impacts and driving factors of the synergistic effects of reducing pollution and carbon emissions in cities of China[J]. Chinese Journal of Environmental Management, 15(2):38-47. | |
[37] | 张晓娟, 周启刚, 黄丽盺, 等, 2018. 重庆市主城区地表温度与植被覆盖指数关系研究[J]. 土壤通报, 49(2):293-302. |
ZHANG X J, ZHOU Q G, HUANG L X, et al, 2018. Relationship between land surface temperature and NDVI in main urban areas of Chongqing[J]. Chinese Journal of Soil Science, 49(2):293-302. | |
[38] |
周滔, 王笛, 李帆, 2022. 多尺度下城市形态对空气质量的作用机制研究[J]. 地理研究, 41(7):1883-1897.
DOI |
ZHOU T, WANG D, LI F, 2022. The effect and mechanism of multi-scale urban forms on air quality[J]. Geography Research, 41(7):1883-1897. | |
[39] | 邹德慈, 1994. 容积率研究[J]. 城市规划 (1):19-23. |
ZOU D C, 1994. A study on volume ratio[J]. Urban Planning (1):19-23. |
[1] | 张舒涵, 姜海玲, 于海淋, 冯馨慧. 沈阳现代化都市圈景观生态风险时空演变及驱动力分析[J]. 生态环境学报, 2024, 33(9): 1471-1481. |
[2] | 戴晓爱, 马佳欣, 唐艺菱, 李为乐. 甘肃省植被时空动态变化及其归因分析[J]. 生态环境学报, 2024, 33(8): 1163-1173. |
[3] | 王雪融, 龚建周, 俞方圆. 粤港澳大湾区4种生态系统调节服务的互馈关系及机制[J]. 生态环境学报, 2024, 33(7): 1130-1141. |
[4] | 张维琛, 王惺琪, 王博杰. 塔布河流域生态系统服务时空格局及影响因素分析[J]. 生态环境学报, 2024, 33(7): 1142-1152. |
[5] | 廖洪圣, 卫伟, 石宇. 黄土丘陵区典型流域土壤侵蚀时空演变特征及其驱动机制:以祖厉河为例[J]. 生态环境学报, 2024, 33(6): 908-918. |
[6] | 王美娜, 范顺祥, 舒翰俊, 张建杰, 褚力其, 法玉琦. 河南省土壤侵蚀时空分异特征及土壤保持经济价值[J]. 生态环境学报, 2024, 33(5): 730-744. |
[7] | 田叙辰, 魏洪玲, 解胜男, 储启名, 杨婧, 张颖, 肖思秋, 唐中华, 刘英, 李德文. 基于MaxEnt模型的东北地区槭树潜在地理分布[J]. 生态环境学报, 2024, 33(4): 509-519. |
[8] | 李霞, 陈永昊, 陈喆, 张国壮, 唐梦雅. 中国沿海地区植被NDVI时空变化及驱动力分析[J]. 生态环境学报, 2024, 33(2): 180-191. |
[9] | 胡盈盈, 罗红霞, 戴声佩, 禹萱, 邓春梅, 李海亮, 梁伟红, 郑倩. 基于遥感生态指数的海南五指山市生态环境质量评价及成因分析[J]. 生态环境学报, 2024, 33(10): 1624-1633. |
[10] | 田成诗, 孙瑞欣. 长江经济带市域生态环境质量空间分异与影响因素分析——基于三生空间的土地利用转型[J]. 生态环境学报, 2023, 32(7): 1173-1184. |
[11] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[12] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[13] | 王成武, 罗俊杰, 唐鸿湖. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 2023, 32(2): 215-225. |
[14] | 肖成志, 计扬, 李建忠, 张志, 巴仁基, 曹亚廷. 岷江上游生态脆弱性时空分异及驱动因子交互效应分析——以杂谷脑河流域为例[J]. 生态环境学报, 2023, 32(10): 1760-1770. |
[15] | 叶深, 王鹏, 黄祎, 折远洋, 丁明军. 长三角城市群城市空间形态对PM2.5与O3污染空间异质性特征的影响研究[J]. 生态环境学报, 2023, 32(10): 1771-1784. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||