生态环境学报 ›› 2024, Vol. 33 ›› Issue (9): 1471-1481.DOI: 10.16258/j.cnki.1674-5906.2024.09.014

• 研究论文【环境科学】 • 上一篇    下一篇

沈阳现代化都市圈景观生态风险时空演变及驱动力分析

张舒涵(), 姜海玲*(), 于海淋, 冯馨慧   

  1. 吉林师范大学地理科学与旅游学院,吉林 四平 136000
  • 收稿日期:2024-05-10 出版日期:2024-09-18 发布日期:2024-10-18
  • 通讯作者: *姜海玲。E-mail: hai.ling.1986@163.com
  • 作者简介:张舒涵(1999年生),女,硕士研究生,主要研究方向为生态环境遥感。E-mail: jlzhangsh99@163.com
  • 基金资助:
    国家自然科学基金项目(41701424);吉林省教育厅科学技术研究项目(JJKH20230502KJ);吉林省科技发展计划项目(20240701167FG)

Spatio-temporal Evolution and Driving Force Analysis of Landscape Ecological Risk in Shenyang Modern Metropolitan

ZHANG Shuhan(), JIANG Hailing*(), YU Hailin, FENG Xinhui   

  1. College of Geographic Science and Tourism, Jilin Normal University, Siping 136000, P. R. China
  • Received:2024-05-10 Online:2024-09-18 Published:2024-10-18

摘要:

沈阳现代化都市圈作为辽宁省规划构建的关键区域协调发展格局,具有重要的战略地位。多重因素的综合影响改变了城市景观结构,降低了景观生态质量,导致生态环境较为脆弱。从景观层面评估区域的景观生态风险、揭示驱动因素是维护区域生态稳定的关键。基于土地利用、DEM、NDVI、气象、社会经济等数据,构建综合景观生态风险评价模型,全面评估2000―2020年间沈阳现代化都市圈的景观生态风险时空演变特征;借助空间自相关模型,揭示景观生态风险空间分异特征;利用参数最优地理探测器,进一步剖析影响景观生态风险变化的主要驱动因子。结果表明,1)2000―2020年间,沈阳现代化都市圈的景观格局显著变化,以林地与耕地为主。建设用地面积增幅最大,面积增加了1.78×103km2,主要源自于林地和耕地的转入。2)2000―2020年间,区域内生态基本保持稳定。景观生态风险整体呈下降趋势,以较低、中风险区等级为主,生态风险等级降低区域的面积占9.50%,空间上呈现出“西高东低”的分布格局,生态发展有向好势头。3)2000、2010、2020年全局Moran’s I指数值分别为0.534、0.508和0.519,风险高值表明风险分布并非孤立,而是相互关联的,呈显著正相关,具有较强的空间集聚效应。4)单一驱动因素分析,降水量、气温变化、归一化植被指数是驱动景观生态风险变化的主要因素,自然因素对其影响大于社会经济因素。双因子交互探测结果显示,气候因子与地形地貌因子的交互协同效应对景观生态风险的影响最为突出。研究结果可为区域土地资源利用优化和生态风险管控提供科学依据。

关键词: 景观生态风险, 空间自相关分析, 驱动因素, 参数最优地理探测器, 沈阳现代化都市圈

Abstract:

As a key regional coordinated development pattern planned and constructed by Liaoning Province, the modern Shenyang metropolitan area has an important strategic position. The combined influence of multiple factors changes the urban landscape structure, reduces the ecological quality of the landscape, and makes the ecological environment more fragile. Assessing regional landscape ecological risks at the landscape level and revealing the driving factors are key for maintaining regional ecological stability. Based on land use, DEM, NDVI, meteorological, and socio-economic data, a comprehensive landscape ecological risk assessment model was constructed to evaluate the spatiotemporal evolution characteristics of landscape ecological risk in the modern Shenyang metropolitan area from 2000 to 2020. The landscape ecological risk assessment model was used to reveal the spatial differentiation characteristics of ecological risks, using optimal geographical detectors to further explore the main driving factors affecting changes in landscape ecological risks. The results showed that 1) from 2000 to 2020, the landscape pattern of the modern Shenyang metropolitan area changed significantly, mainly in terms of woodland and cultivated land. The area of construction land increased the most, with an increase of 1.78×103 km, mainly from forest land and cultivated land. 2) From 2000 to 2020, the ecology of the region has remained stable. The overall landscape ecological risk showed a downward trend, mainly in the low- and medium-risk areas, with the area with reduced ecological risk accounting for 9.50%. The spatial distribution pattern showed a “high in the west and low in the east”, and ecological development showed a positive trend. 3) The global Moran's I index values for 2000, 2010, and 2020 were 0.534, 0.508, and 0.519, respectively. The high-risk value indicates that the risk distribution was not isolated, but is correlated with each other, showing a significant positive correlation and strong spatial agglomeration effect. 4) Single driver analysis, precipitation, temperature changes, and the normalized vegetation index were the main factors driving changes in landscape ecological risks, and natural factors had a greater impact than socioeconomic factors. The results of the double-factor interactive detection showed that the interactive and synergistic effects of climate and topography had the most prominent impact on landscape ecological risks. The research results can provide a scientific basis for regional land resource utilization optimization and ecological risk management and control.

Key words: landscape ecological risk, spatial autocorrelation, geographic detector, optimal parameters-based geographical detector, Shenyang modern metropolitan

中图分类号: