生态环境学报 ›› 2025, Vol. 34 ›› Issue (1): 77-88.DOI: 10.16258/j.cnki.1674-5906.2025.01.009
收稿日期:
2024-04-25
出版日期:
2025-01-18
发布日期:
2025-01-21
通讯作者:
* 韦露。E-mail: luwei@hainanu.edu.cn作者简介:
宁静(2001年生),女,硕士,研究方向为生理与毒理学。E-mail: nj1941214320@163.com
基金资助:
NING Jing(), WANG Chun, LU Guanling, WEI Lu*(
)
Received:
2024-04-25
Online:
2025-01-18
Published:
2025-01-21
摘要:
重金属镉(Cd)是一种全球常见的剧毒环境污染物,其可通过氧化应激威胁水生生物健康。褪黑素(Melatonin,MT)是一种已知的抗氧化剂和自由基清除剂,已被证明可有效缓解重金属引起的肠道损伤。然而,MT改善Cd诱导的水生生物肠道组织氧化损伤及微生物多样性的研究较少。该研究以成年斑马鱼(Danio rerio)为实验对象,采用半静态暴露方式,进行30 d的暴露实验,实验分为4组:Con组、Cd组、MT组、Cd+MT组(两种物质混合液),进行肠道病理切片观察,测定肠道过氧化氢(H2O2)和丙二醛(MDA)含量、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)活性,通过肠道菌群16SrDNA高通量测序分析肠道菌群Alpha、Beta多样性、肠道菌群组成、优势菌群相对丰度和各组的生物标志物。结果显示:Cd组的斑马鱼肠壁变薄、肠绒毛出现了部分磨损和脱落,绒毛尖端暴露,肠绒毛上皮间隙增大,空泡化细胞增多,细胞广泛裂解,细胞质损伤分散,同时出现了结缔组织松弛现象,而共同暴露于Cd和MT的斑马鱼肠道组织结构部分已经恢复完整,肠损伤现象明显减少;Cd导致斑马鱼肠道MDA和H2O2含量显著上升,GSH-PX和SOD活性显著下降,而共同处理降低了H2O2和MDA含量、升高了GSH-PX和SOD活性;16SrDNA测序发现Cd导致斑马鱼肠道菌群多样性改变,Shannon指数及Simpsoneven指数升高,优势菌群数目减少,而添加MT一定程度缓解Cd对肠道菌群多样性的影响及菌群失调得到部分恢复。研究表明,褪黑素能减轻镉导致的成年斑马鱼肠道氧化损伤及保护肠道菌群多样性,为开发防治镉中毒的产品提供了理论依据。
中图分类号:
宁静, 王淳, 卢莞玲, 韦露. 斑马鱼暴露于镉和褪黑素引起肠道组织、氧化损伤及微生物多样性变化[J]. 生态环境学报, 2025, 34(1): 77-88.
NING Jing, WANG Chun, LU Guanling, WEI Lu. Exposure of Zebrafish to Cadmium and Melatonin Induces Changes in Gut Organization, Oxidative Damage, and Microbial Diversity[J]. Ecology and Environment, 2025, 34(1): 77-88.
图4 不同处理下斑马鱼肠道Beta多样性分析 图中X轴和Y轴表示两个选定的主成分轴,百分比表示主成分对样本组成差异的解释度值,X轴和Y轴的刻度是相对距离,无实际意义,不同颜色的点代表不同分组的样本,两样本点越接近,表明两样本物种组成越相似
Figure 4 Analysis of zebrafish intestinal Beta diversity under different treatments
图5 斑马鱼肠道菌群组成分析 Venn图中不同的颜色代表不同的分组,重叠部分的数字代表多个分组中共有的物种数目,非重叠部分的数字代表对应分组所特有的物种数目;柱状图的横坐标为不同分组,纵坐标为物种在该组中所占的比例,不同颜色的柱子代表不同的物种,柱子的长短代表该物种所占比例的大小
Figure 5 Analysis of the composition of the intestinal flora of zebrafish
图7 优势菌显著性差异分析 LEfSe多级物种差异判别表中不同颜色节点表示在对应组别中显著富集,且对组间差异存在显著影响的微生物类群;LDA判别柱形图中LDA分值越大,代表物种丰度对差异效果影响越大
Figure 7 Significant difference analysis of dominant bacteria
[1] |
ANDERSON G, KUBERA M, DUDA W, et al., 2013. Increased IL-6 trans-signaling in depression: Focus on the tryptophan catabolite pathway, melatonin and neuroprogression[J]. Pharmacological Reports, 65(6):1647-1654.
PMID |
[2] | BIELMYER G K, JARVIS T A, HARPER B T, et al., 2012. Metal accumulation from dietary exposure in the sea urchin, Strongylocentrotus droebachiensis[J]. Archives of Environmental Contamination and Toxicology, 63(1):86-94. |
[3] | BRENNAN C A, GARRETT W S, 2019. Fusobacterium nucleatum- symbiont, opportunist and oncobacterium[J]. Nature Reviews Microbiology, 17(3):156-166. |
[4] |
BRUGMAN S, 2016. The zebrafish as a model to study intestinal inflammation[J]. Developmental and Comparative Immunology, 64:82-92.
DOI PMID |
[5] | CAMPOY-DIAZ A D, ESCOBAR-CORREAS S, CANIZO B V, et al., 2020. A freshwater symbiosis as sensitive bioindicator of cadmium[J]. Environmental Science and Pollution Research International, 27(3):2580-2587. |
[6] | CHANG X L, LI H, FENG J C, et al., 2019. Effects of cadmium exposure on the composition and diversity of the intestinal microbial community of common carp (Cyprinus carpio L.)[J]. Ecotoxicology and Environmental Safety, 171:92-98. |
[7] |
CHUNG S H, PARK Y S, KIM O S, et al., 2014. Melatonin attenuates dextran sodium sulfate induced colitis with sleep deprivation: Possible mechanism by microarray analysis[J]. Digestive Diseases and Sciences, 59(6):1134-1141.
DOI PMID |
[8] |
DE ABREU M S, GIACOMINI A C.V.V., SYSOEV M, et al., 2019. Modeling gut-brain interactions in zebrafish[J]. Brain Research Bulletin, 148:55-62.
DOI PMID |
[9] |
FU Z S, XI S H, 2020. The effects of heavy metals on human metabolism[J]. Toxicology Mechanisms and Methods, 30(3):167-176.
DOI PMID |
[10] | FURUKAWA S, FUJITA T, SHIMABUKURO M, et al., 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome[J]. The Journal of Clinical Investigation, 114(12):1752-1761. |
[11] |
GALLOWAY T S, LEWIS C, 2016. Marine microplastics spell big problems for future generations[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(9):2331-2333.
DOI PMID |
[12] | GENARIO R, GIACOMINI A C. V.V., de ABREU M S, 2020. Sex differences in adult zebrafish anxiolytic-like responses to diazepam and melatonin[J]. Neuroscience Letters, 714:134548. |
[13] |
GUVEN A, UYSAL B, GUNDOGDU G, et al., 2011. Melatonin ameliorates necrotizing enterocolitis in a neonatal rat model[J]. Journal of Pediatric Surgery, 46(11):2101-2107.
DOI PMID |
[14] | HUANG Y, HONG Y H, WU S, et al., 2023. Prolonged darkness attenuates imidacloprid toxicity through the brain-gut-microbiome axis in zebrafish, Danio rerio[J]. The Science of the Total Environment, 881:163481. |
[15] | JIANG H C, LI R B, ZHAO M Z, et al., 2024. Toxic effects of combined exposure to cadmium and diclofenac on freshwater crayfish (Procambarus clarkii): Insights from antioxidant enzyme activity, histopathology, and gut microbiome[J]. Aquatic Toxicology, 268:106844. |
[16] |
KALUEFF A V, STEWART A M, GERLAI R, 2014. Zebrafish as an emerging model for studying complex brain disorders[J]. Trends in Pharmacological Sciences, 35(2):63-75.
DOI PMID |
[17] |
LIU L L, YAN Y C, WANG J, et al., 2016. Generation of mt:egfp transgenic zebrafish biosensor for the detection of aquatic zinc and cadmium[J]. Environmental Toxicology and Chemistry, 35(8):2066-2073.
DOI PMID |
[18] | MONIRUZZAMAN M, GHOSAL I, DAS D, et al., 2018. Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway[J]. Biological Research, 51(1):17. |
[19] | MOTTA C M, CALIFANO E, SCUDIERO R, et al., 2022. Effects of Cadmium Exposure on Gut Villi in Danio rerio[J]. International Journal of Molecular Sciences, 23(4):1927. |
[20] |
MU D Y, MENG J H, BO X X, et al., 2018. The effect of cadmium exposure on diversity of intestinal microbial community of Rana chensinensis tadpoles[J]. Ecotoxicology and Environmental Safety, 154:6-12.
DOI PMID |
[21] |
NINKOV M, POPOV ALEKSANDROV A, DEMENESKU J, et al., 2015. Toxicity of oral cadmium intake: Impact on gut immunity[J]. Toxicology Letters, 237(2):89-99.
DOI PMID |
[22] |
NIRWANE A, SRIDHAR V, MAJUMDAR A, 2016. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio)[J]. Toxicological Research, 32(2):123-132.
DOI PMID |
[23] |
QIAO R X, SHENG C, LU Y F, et al., 2019. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish[J]. The Science of the Total Environment, 662:246-253.
DOI PMID |
[24] | ROESELERS G, MITTGE E K, STEPHENS W Z, et al., 2011. Evidence for a core gut microbiota in the zebrafish[J]. The ISME Journal, 5(10):1595-1608. |
[25] |
SATARUG S, GARRETT S H, SENS M A, et al., 2010. Cadmium, environmental exposure, and health outcomes[J]. Environmental Health Perspectives, 118(2):182-190.
DOI PMID |
[26] |
SEMOVA I, CARTEN J D, STOMBAUGH J, et al., 2012. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish[J]. Cell Host Microbe, 12(3):277-288.
DOI PMID |
[27] |
SINGH A K, CHANDRA R, 2019. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards[J]. Aquatic Toxicology, 211:202-216.
DOI PMID |
[28] | SOUZA-ARROYO V, FABIÁN J J, BUCIO-ORTIZ L et al., 2022. The mechanism of the cadmium-induced toxicity and cellular response in the liver[J]. Toxicology, 480:153339. |
[29] | TRIPATHY A P, DIXIT P K, PANIGRAHI A K, 2022. Impact of effluent of Pulp & Paper industry on the flora of river basin at Jaykaypur, Odisha, India and its ecological implications[J]. Environmental Research, 204(Part A): 111769. |
[30] |
WRAGG J, MÜLLER F, 2016. Transcriptional regulation during zygotic genome activation in zebrafish and other anamniote embryos[J]. Advances in Genetics, 95:161-194.
DOI PMID |
[31] | WRIGHT D A, WELBOURN P M, 1994. Cadmium in the aquatic environment: a review of ecological, physiological, and toxicological effects on biota[J]. Environmental Reviews 2(2):187-214. |
[32] | XIE S, ZHANG R, LI Z Y, et al., 2022. Indispensable role of melatonin, a scavenger of reactive oxygen species (ROS), in the protective effect of Akkermansia muciniphila in cadmium-induced intestinal mucosal damage[J]. Free radical Biology & Medicine, 193(Part 1):447-458. |
[33] | XU Y Y, ZHAO H Y, WANG Z, et al., 2022. Developmental exposure to environmental levels of cadmium induces neurotoxicity and activates microglia in zebrafish larvae: From the perspectives of neurobehavior and neuroimaging[J]. Chemosphere, 291(Part 1):132802. |
[34] |
YA J, JU Z Q, WANG H Y, et al., 2019. Exposure to cadmium induced gut histopathological damages and microbiota alterations of Chinese toad (Bufo gargarizans) larvae[J]. Ecotoxicology and Environmental Safety, 180:449-456.
DOI PMID |
[35] | ZHAI Q X, YU L L, LI T Q, et al., 2017. Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure[J]. Antonie Van Leeuwenhoek, 110(4):501-513. |
[36] | ZHANG T, XU Z C, WEN L, et al., 2021. Cadmium-induced dysfunction of the blood-brain barrier depends on ROS-mediated inhibition of PTPase activity in zebrafish[J]. Journal of Hazardous Materials, 412:125198. |
[37] | 韩恩恩, 2023. 基于16S rDNA基因测序技术分析不同体长斑马鱼的肠道菌群结构差异[D]. 十堰: 湖北医药学院. |
HAN E E, 2023. Differences in intestinal flora structure of zebrafish of different body lengths based on 16S rDNA gene sequencing[D]. Shiyan: Hubei Medical College. | |
[38] | 蒋竹英, 2023. 褪黑素对动物机体受损伤的保护作用研究进展[J]. 现代畜牧兽医 (3):89-91. |
JIANG Z Y, 2023. Research progress of protective effects of melatonin on damages to animal body[J]. Modern Animal Husbandry and Veterinary Medicine (3):89-91. | |
[39] | 刘君恒, 冯晓飒, 张源, 2021. 锦鲤与草金鱼杂交子代肠道形态和酶学特性[J]. 水产科学, 40(6):905-910. |
LIU J H, FENG X S, ZHANG Y, 2021. Intestinal morphology and enzymatic characterization of the offspring of a cross between koi and grass carp[J]. Aquatic Science, 40(6):905-910. | |
[40] | 秦歌, 马增友, 赵源杰, 等, 2022. 褪黑素在动物机体中的多重作用[J]. 畜牧与兽医, 54(8):145-151. |
QIN G, MA Z Y, ZHAO Y J, et al., 2022. Multiple roles of melatonin in the animal organism[J]. Animal Husbandry and Veterinary Medicine, 54(8):145-151. | |
[41] | 孙乾航, 2021. 慢性暴露三氯卡班对斑马鱼 (Danio rerio) 肠道转录组效应及肠道菌群的影响[D]. 新乡: 河南师范大学. |
SUN Q H, 2021. Effects of chronic exposure to triclocarban on intestinal transcriptome effects and intestinal flora of zebrafish (Danio rerio)[D]. Xinxiang: Henan Normal University. | |
[42] | 涂叶绿, 沙小梅, 庞娟娟, 等, 2019. 铜镉联合胁迫处理对鲫体内重金属和组织病理的影响[J]. 水生生物学报, 43(3):545-553. |
TU Y L, SHA X M, PANG J J, et al., 2019. Effects of combined copper and cadmium stress treatments on heavy metals and histopathology in crucian carp[J]. Journal of Aquatic Biology, 43(3):545-553. | |
[43] | 王颖, 2022. 黄鳝肠道菌群分析及益生菌应用的研究[D]. 南昌: 江西农业大学. |
WANG Y, 2022. Analysis of intestinal flora and application of probiotics in eels[D]. Nanchang: Jiangxi Agricultural University. | |
[44] | 杨瑞瑞, 王兰, 孙敏, 等, 2019. 急性镉暴露对斑马鱼早期胚胎发育的毒性效应[J]. 山西农业科学, 47(3):351-356. |
YANG R R, WANG L, SUN M, et al., 2019. Toxic effects of acute cadmium exposure on early embryonic development in zebrafish[J]. Shanxi Agricultural Science, 47(3):351-356. | |
[45] | 张立敏, 殷书, 菅强, 2009. 黄杆菌属连续耐药性监测结果分析及临床意义[J]. 中国疗养医学, 18(11):1026-1028. |
ZHANG L M, YIN S, JIAN Q, 2009. Analysis of the results of continuous drug resistance monitoring of Flavobacterium spp. and its clinical significance[J]. China Convalescent Medicine, 18(11):1026-1028. | |
[46] | 赵子潇, 2023. 褪黑素通过肠道菌群缓解2型免疫介导结肠炎的机制研究[D]. 济南: 山东大学. |
ZHAO Z X, 2023. Mechanism of melatonin alleviating type 2 immune-mediated colitis through intestinal flora[D]. Ji’nan: Shandong University. | |
[47] | 周建烈, 陈杰鹏, 段丽丽, 等, 2019. 维生素K2(MK-7)防治骨质疏松的作用机制研究进展[J]. 中国骨质疏松杂志, 25(4):539-545. |
ZHOU J L, CHEN J P, DUAN L L, et al., 2019. Progress in the study of the mechanism of action of vitamin K2 (MK-7) in the prevention and treatment of osteoporosis[J]. Chinese Journal of Osteoporosis, 25(4):539-545. |
[1] | 曹振宇, 涂晨, 刘颖, 韩军超, 邢倩雯, 骆永明. 趋磁细菌Magnetospirillum gryphiswaldense MSR-1对镉的生物吸附初步研究[J]. 生态环境学报, 2025, 34(1): 99-107. |
[2] | 李林峰, 徐梓盛, 陈勇, 李奇, 林晓扬, 李义纯. 施硅水平对水稻根表铁膜和体内Cd累积分布的影响[J]. 生态环境学报, 2024, 33(5): 781-790. |
[3] | 张腾云, 王静, 高健磊, 葛文静, 王宗耀, 韩龙. 碱性农田土壤冬小麦不同生育期镉的迁移转化研究[J]. 生态环境学报, 2024, 33(3): 450-459. |
[4] | 刘楚天, 郭栋栋, 侯磊, 梁启斌, 王艳霞, 施艳婷, 戚艳娥. 营养调控影响滇杨幼苗镉积累的效应模型分析[J]. 生态环境学报, 2024, 33(3): 460-468. |
[5] | 官国庆, 黄紫琳, 江龙飞, 罗春玲. 伴矿景天对重金属-多环芳烃复合污染土壤有机污染物消减及微生物的影响[J]. 生态环境学报, 2024, 33(12): 1931-1943. |
[6] | 纪晟莹, 李杰, 李鑫, 陶禹, 陈娟, 王晓玉. 环境与基因型互作对瓜类蔬菜镉积累的影响及产地土壤安全阈值研究[J]. 生态环境学报, 2024, 33(12): 1944-1952. |
[7] | 范婉仪, 涂晨, 王顺扬, 吴昕优, 李烜桢, 骆永明. 不同品种烟草对轻度污染耕地土壤中镉的累积特征与减量修复潜力[J]. 生态环境学报, 2023, 32(8): 1516-1524. |
[8] | 王丽华, 王磊, 许端平, 薛杨. 煤胶体对重金属铜与镉的吸附特征研究[J]. 生态环境学报, 2023, 32(7): 1293-1300. |
[9] | 李治梅, 安娅, 李梅, 王室苹, 秦好丽. 巯基/铁基功能化蒙脱土对土壤镉的钝化行为研究[J]. 生态环境学报, 2023, 32(7): 1301-1312. |
[10] | 李振国, 郝星雨, 贺甜莲, 景蕊, 荣成, 顾承真, 郑新宇. 竹醋液对紫苏镉毒的缓解效应研究[J]. 生态环境学报, 2023, 32(7): 1313-1324. |
[11] | 赵良侠, 高坤, 黄婷婷, 高也, 琚唐丹, 蒋秋阳, 金珩, 熊蕾, 汤在琳, 高灿红. 玉米籽粒高/低镉积累自交系不同生育期的镉累积特性研究[J]. 生态环境学报, 2023, 32(4): 766-775. |
[12] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[13] | 陈桂红. 硫和硅掺杂生物炭对镉污染土壤的修复研究[J]. 生态环境学报, 2023, 32(10): 1854-1860. |
[14] | 徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157. |
[15] | 崔远远, 张征云, 刘鹏, 张运春, 张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响[J]. 生态环境学报, 2023, 32(1): 158-165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||