生态环境学报 ›› 2024, Vol. 33 ›› Issue (4): 539-547.DOI: 10.16258/j.cnki.1674-5906.2024.04.005
陈弘杰(), 廖洪凯*(
), 龙健, 赵雨鑫, 湛凯翔, 冉泰山, 杨国梅
收稿日期:
2024-03-05
出版日期:
2024-04-18
发布日期:
2024-05-31
通讯作者:
*廖洪凯。E-mail: liaohongkai66@163.com作者简介:
陈弘杰(1999年生),男,硕士研究生,研究方向为土壤环境。E-mail: 984208362@qq.com
基金资助:
CHEN Hongjie(), LIAO Hongkai*(
), LONG JIAN, ZHAO Yuxin, ZHAN Kaixian, RAN Taishan, YANG Guomei
Received:
2024-03-05
Online:
2024-04-18
Published:
2024-05-31
摘要:
强还原土壤灭菌(Reductive soil disinfestation,RSD)是一种高效、安全以及环保的土壤灭菌方法。土壤原生生物是土壤微生物的重要组成部分,对土壤养分循环和植物生长起到一定的促进作用。目前关于强还原土壤灭菌对微生物群落影响的研究报道较多,但大都集中于细菌和真菌群落,较少关注原生生物群落。以长期连作番茄土壤为研究对象,设置4种不同RSD处理(对照组、添加玉米秸秆、添加甘蔗渣和添加玉米秸秆+甘蔗渣),RSD步骤为:按照上述4种不同处理添加有机物料,采用淹水和覆膜的方式隔绝空气,并在35 ℃条件下处理21 d,处理结束后在自然风干的第1、3、7和21天取样,选取第21天的土样进行高通量测序。通过高通量18S rRNA基因扩增子测序技术分析RSD处理后土壤原生生物群落组成和功能群落的变化,利用冗余分析明确影响原生生物群落的关键环境因子。结果表明,在自然风干期间不同RSD处理增加了土壤全碳含量,土壤速效磷含量呈先下降后上升再下降的变化趋势。RSD处理后丝足虫门(Cercozoa)、纤毛门(Cilipohora)以及变形虫门(Amoebozoa)为优势类群,其相对丰度分别为19.2%-25.9%、13.8%-26.9%和12.0%-28.8%。RSD处理提高了捕食型和寄生型原生生物群落的相对丰度,降低了自养型原生生物的相对丰度,并没有改善土壤原生生物群落多样性。土壤速效磷含量和土壤铵态氮含量是影响土壤原生生物群落的关键环境因子,其中土壤速效磷含量与捕食型、自养型和寄生型原生生物功能群落的相对丰度呈现显著相关性。该研究证明了RSD处理对土壤原生生物群落组成和群落功能组成有显著的影响。
中图分类号:
陈弘杰, 廖洪凯, 龙健, 赵雨鑫, 湛凯翔, 冉泰山, 杨国梅. 强还原土壤灭菌对土壤原生生物群落的影响[J]. 生态环境学报, 2024, 33(4): 539-547.
CHEN Hongjie, LIAO Hongkai, LONG JIAN, ZHAO Yuxin, ZHAN Kaixian, RAN Taishan, YANG Guomei. Effects of Reductive Soil Disinfestation on Soil Protist Community[J]. Ecology and Environment, 2024, 33(4): 539-547.
自然风干天数/d | 处理 | pH | w(TC)/(g·kg-1) | w(AP)/(mg·kg-1) | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|
1 d | CK | 7.29±0.282b | 35.6±4.21a | 18.3±3.57a | 24.8±0.491c | 8.20±1.50a |
CS | 7.87±0.114a | 41.6±7.66a | 18.3±3.76a | 57.6±1.81a | 2.20±0.261a | |
SB | 6.84±0.221bc | 37.3±2.37a | 16.9±3.63a | 40.1±4.27b | 0.681±0.193a | |
SBCS | 6.70±0.141c | 41.4±1.93a | 17.7±2.55a | 35.9±3.95b | 5.17±0.143a | |
3 d | CK | 7.23±0.231ab | 34.3±2.25b | 20.9±2.96a | 25. 1±1.08c | 7.05±0.943a |
CS | 7.33±0.196a | 36.8±2.66b | 16.1±2.86ab | 53.1±0.364a | 1.11±0.131b | |
SB | 7.11±0.143ab | 47.6±5.36a | 10.9±1.36b | 39.4±4.23b | 1.35±0.412b | |
SBCS | 6.86±0.0412b | 39.9±0.372ab | 12.7±2.47b | 33.6±2.07b | 0.651±0.153b | |
7 d | CK | 6.86±0.469a | 32.9±1.36b | 23.3±2.99a | 23.6±2.23c | 6.14±0.464a |
CS | 6.88±0.316a | 37.5±3.30ab | 21. 3±2.35a | 51.7±5.46a | 0.198±0.0411b | |
SB | 7.28±0.266a | 43.3±2.01a | 21.7±4.23a | 56.3±1.71a | 1.25±0.278b | |
SBCS | 7.02±0.514a | 38.9±3.38ab | 20.3±4.10a | 41.6±4.01b | 0.261±0.0312b | |
21 d | CK | 7.16±0.232a | 36.0±1.86a | 23.5±9.70a | 28.5±2.20ab | 9.74±1.80b |
CS | 6.79±0.601a | 47.2±7.24a | 17.3±1.22a | 28.9±8.13ab | 18.9±3.47a | |
SB | 7.01±0.539a | 44.5±2.76a | 12.1±2.22a | 42.7±6.60a | 8.28±1.31b | |
SBCS | 7.19±0.528a | 46.9±10.8a | 12.7±2.38a | 23.7±1.23b | 6.82±2.12b |
表1 不同RSD处理下土壤理化性质变化
Table 1 Changes in soil physicochemical properties under different RSD treatments
自然风干天数/d | 处理 | pH | w(TC)/(g·kg-1) | w(AP)/(mg·kg-1) | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|
1 d | CK | 7.29±0.282b | 35.6±4.21a | 18.3±3.57a | 24.8±0.491c | 8.20±1.50a |
CS | 7.87±0.114a | 41.6±7.66a | 18.3±3.76a | 57.6±1.81a | 2.20±0.261a | |
SB | 6.84±0.221bc | 37.3±2.37a | 16.9±3.63a | 40.1±4.27b | 0.681±0.193a | |
SBCS | 6.70±0.141c | 41.4±1.93a | 17.7±2.55a | 35.9±3.95b | 5.17±0.143a | |
3 d | CK | 7.23±0.231ab | 34.3±2.25b | 20.9±2.96a | 25. 1±1.08c | 7.05±0.943a |
CS | 7.33±0.196a | 36.8±2.66b | 16.1±2.86ab | 53.1±0.364a | 1.11±0.131b | |
SB | 7.11±0.143ab | 47.6±5.36a | 10.9±1.36b | 39.4±4.23b | 1.35±0.412b | |
SBCS | 6.86±0.0412b | 39.9±0.372ab | 12.7±2.47b | 33.6±2.07b | 0.651±0.153b | |
7 d | CK | 6.86±0.469a | 32.9±1.36b | 23.3±2.99a | 23.6±2.23c | 6.14±0.464a |
CS | 6.88±0.316a | 37.5±3.30ab | 21. 3±2.35a | 51.7±5.46a | 0.198±0.0411b | |
SB | 7.28±0.266a | 43.3±2.01a | 21.7±4.23a | 56.3±1.71a | 1.25±0.278b | |
SBCS | 7.02±0.514a | 38.9±3.38ab | 20.3±4.10a | 41.6±4.01b | 0.261±0.0312b | |
21 d | CK | 7.16±0.232a | 36.0±1.86a | 23.5±9.70a | 28.5±2.20ab | 9.74±1.80b |
CS | 6.79±0.601a | 47.2±7.24a | 17.3±1.22a | 28.9±8.13ab | 18.9±3.47a | |
SB | 7.01±0.539a | 44.5±2.76a | 12.1±2.22a | 42.7±6.60a | 8.28±1.31b | |
SBCS | 7.19±0.528a | 46.9±10.8a | 12.7±2.38a | 23.7±1.23b | 6.82±2.12b |
组别 | r | p值 |
---|---|---|
CK-CS | 0.536 | 0.0423 |
CK-SB | 0.565 | 0.0314 |
CK-SBCS | 0.576 | 0.0268 |
CS-SB | 0.380 | 0.0346 |
CS-SBCS | 0.318 | 0.0681 |
SB-SBCS | 0.343 | 0.0572 |
表2 Adonis组间差异分析
Table 2 Adonis intergroup difference analysis
组别 | r | p值 |
---|---|---|
CK-CS | 0.536 | 0.0423 |
CK-SB | 0.565 | 0.0314 |
CK-SBCS | 0.576 | 0.0268 |
CS-SB | 0.380 | 0.0346 |
CS-SBCS | 0.318 | 0.0681 |
SB-SBCS | 0.343 | 0.0572 |
Alpha多样性指数 | pH | 全碳 | 速效磷 | 铵态氮 | 硝态氮 |
---|---|---|---|---|---|
Shannon | 0.0881 | -0.395 | 0.398 | 0.245 | 0.0492 |
Simpson | 0.345 | -0.250 | 0.003 | 0.285 | -0.213 |
Chao1 | 0.412 | -0.762 | 0.870 | -0.0653 | -0.160 |
dominance | -0.855 | 0.824 | -0.367 | -0.0592 | 0.769 |
表3 土壤原生生物群落Alpha多样性指数与土壤理化性质间皮尔森相关性
Table 3 Pearson correlation between Alpha diversity index of soil protist community and soil physicochemical properties
Alpha多样性指数 | pH | 全碳 | 速效磷 | 铵态氮 | 硝态氮 |
---|---|---|---|---|---|
Shannon | 0.0881 | -0.395 | 0.398 | 0.245 | 0.0492 |
Simpson | 0.345 | -0.250 | 0.003 | 0.285 | -0.213 |
Chao1 | 0.412 | -0.762 | 0.870 | -0.0653 | -0.160 |
dominance | -0.855 | 0.824 | -0.367 | -0.0592 | 0.769 |
功能类型 | pH | 全碳 | 速效磷 | 铵态氮 | 硝态氮 |
---|---|---|---|---|---|
捕食型 | 0.0641 | 0.502 | -0.964* | 0.0932 | -0.344 |
自养型 | -0.118 | -0.424 | 0.969* | -0.146 | 0.414 |
寄生型 | 0.221 | 0.259 | -0.956* | 0.246 | -0.542 |
表4 土壤原生生物群落功能组成与土壤理化性质间皮尔森相关性
Table 4 Pearson correlation between functional composition of soil protist community and soil physical and soil physicochemical properties
功能类型 | pH | 全碳 | 速效磷 | 铵态氮 | 硝态氮 |
---|---|---|---|---|---|
捕食型 | 0.0641 | 0.502 | -0.964* | 0.0932 | -0.344 |
自养型 | -0.118 | -0.424 | 0.969* | -0.146 | 0.414 |
寄生型 | 0.221 | 0.259 | -0.956* | 0.246 | -0.542 |
[1] | ACOSTA M D, LYNN D H, 2004. Soil ciliate species richness and abundance associated with the rhizosphere of different subtropical plant species[J]. The Journal of Eukaryotic Microbiology, 51(5): 582-588. |
[2] |
ADL S M, BASS D, LANE C E, et al., 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes[J]. Journal of Eukaryotic Microbiology, 66(1): 4-119.
DOI PMID |
[3] | ANTONELLI M, WETZEL C E, ECTOR L, et al., 2017. On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils[J]. Ecological Indicators, 75: 73-81. |
[4] |
ATSUKO U, NOBUO K, KATSUJI U, 2018. Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture[J]. Applied Microbiology and Biotechnology, 102: 6309-6318.
DOI PMID |
[5] | BERNASCONI S M, BAUDER A, BOURDON B, et al., 2011. Chemical and biological gradients along the damma glacier soil chronosequence, Switzerland[J]. Vadose Zone Journal, 10(3): 867-883. |
[6] |
BLOK W, LAMERS J, TERMORSHUIZEN A, et al., 2000. Disease control and pest management control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping[J]. Phytopathology, 90(3): 253-259.
DOI PMID |
[7] |
BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al., 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 10(1): 57-59.
DOI PMID |
[8] |
BONKOWSKI M, 2004. Protozoa and plant growth: The microbial loop in soil revisited[J]. New Phytologist, 162(3): 617-631.
DOI PMID |
[9] |
CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al., 2016. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 13(7): 581-583.
DOI PMID |
[10] |
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al., 2010. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 7(5): 335-336.
DOI PMID |
[11] | CHANDARANA K A, AMARESAN N, 2022. Soil protists: An untapped microbial resource of agriculture and environmental importance[J]. Pedosphere, 32(1): 184-197. |
[12] | CHEN Y L, YANG K J, YE Y, et al., 2021. Reductive soil disinfestation attenuates antibiotic resistance genes in greenhouse vegetable soils[J]. Journal of Hazardous Materials, 420(1): 126632. |
[13] | CLARHOLM M, 1985. Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants[M]. Ecologcal interactions in soil, 4: 355-365. |
[14] |
BICKEL D, 2013. Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions[J]. Statistical Applications in Genetics and Molecular Biology, 12(4): 529-543.
DOI PMID |
[15] | DU L T, HUANG B J, DU N S, et al., 2017. Effects of garlic/cucumber relay intercropping on soil enzyme activities and the microbial environment in continuous cropping[J]. HortScience, 52(1): 78-84. |
[16] | DUPONT A C, GRIFFITHS R I, BELL T, et al., 2016. Differences in soil micro‐eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs[J]. Environmental Microbiology, 18(6): 2010-2024. |
[17] | GEISEN S, BANDOW C, RÖMBKE J, et al., 2014. Soil water availability strongly alters the community composition of soil protists[J]. Pedobiologia, 57(4-6): 205-213. |
[18] | GIOIA F D, OZORES-HAMPTON M, ZHAO X, et al., 2017. Anaerobic soil disinfestation impact on soil nutrients dynamics and nitrous oxide emissions in fresh-market tomato[J]. Agriculture, Ecosystems & Environment, 240: 194-205. |
[19] | GRIFFITHS B S, RÖMBKE J, SCHMELZ R M, et al., 2016. Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function[J]. Ecological Indicators, 69: 213-223. |
[20] |
GROSSMANN L, JENSEN M, HEIDER D, et al., 2016. Protistan community analysis: Key findings of a large-scale molecular sampling[J]. Isme Journal, 10: 2269-79.
DOI PMID |
[21] |
GUO S, XIONG W, HANG X N, et al., 2021. Protists as main indicators and determinants of plant performance[J]. Microbiome, 9(1): 64.
DOI PMID |
[22] |
HANG L, PAN F J, HAN X Z, et al., 2020. A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops[J]. Journal of Integrative Agriculture, 19(3): 866-880.
DOI |
[23] | HAWXHURST C J, MICCIULLA J L, BRIDGES C M, et al., 2023. Soil protists can actively redistribute beneficial bacteria along medicago truncatula roots[J]. Applied and environmental microbiology, 83(3): e01819-22. |
[24] | HUANG X Q, CUI H L, YANG L, et al., 2017. The microbial changes during the biological control of cucumber damping-off disease using biocontrol agents and reductive soil disinfestation[J]. BioControl, 62(1): 97-109. |
[25] | HUANG X Q, LIU L L, WEN T, et al., 2015. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation[J]. Microbiological Research, 181(1): 33-42. |
[26] | HUANG X Q, LIU L L, WEN T, et al., 2016. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation[J]. Applied Microbiology & Biotechnology, 100(12): 5581-5593. |
[27] | HÜNNINGHAUS M, KOLLER R, KRAMER S, et al., 2017. Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues[J]. Pedobiologia, 62: 1-8. |
[28] | KRASHEVSKA V, SANDMANN D, MARAUN M, et al., 2014. Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages[J]. The ISME Journal, 8(5): 1126-1134. |
[29] | LI W H, LIU Q Z, 2019. Changes in fungal community and diversity in strawberry rhizosphere soil after 12 years in the greenhouse[J]. Journal of Integrative Agriculture, 18(5): 677-687. |
[30] | LI X, CHEN J, ZHANG Q Z, et al., 2021. Microbial community responses to multiple soil disinfestation change drivers[J]. Applied Microbiology and Biotechnology, 105(18): 6993-7007. |
[31] | CHEN Y D, DU J F, LI Y, et al., 2022. Evolutions and managements of soil microbial community structure drove by continuous cropping[J]. Frontiers in Microbiology, 13: 839494. |
[32] |
MAGOČ T, SALZBERG S L, 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 27(21): 2957-2963.
DOI PMID |
[33] | MARTIN B D, ERNEST S, 2012. Current usage of symbiosis and associated terminology[J]. International Journal of Biology, 5(1): 32-45. |
[34] |
MENG T Z, REN G D, WANG G F, et al., 2019. Impacts on soil microbial characteristics and their restorability with different soil disinfestation approaches in intensively cropped greenhouse soils[J]. Applied Microbiology and Biotechnology, 103(15): 6369-6383.
DOI PMID |
[35] |
NORIAKI M, YUSO K, SEIJI U, et al., 2013. Development of biological soil disinfestations in Japan[J]. Applied Microbiology and Biotechnology, 97(9): 3801-3809.
DOI PMID |
[36] | NAAMALA J, SMITH D L, 2020. Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change[J]. Agronomy, 10(8): 1179. |
[37] | NGUYEN B A T, CHEN Q L, YAN Z Z, et al., 2021. Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems[J]. Soil Biology and Biochemistry, 160: 108317. |
[38] | OLIVERIO A M, GEISEN S, DELGADO-BAQUERIZO M, et al., 2020. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 6(4): eaax8787. |
[39] |
PEITSCH W K, HOFMANN I, BULKESCHER J, et al., 2005. Drebrin, an actin-binding, cell-type characteristic protein: induction and localization in epithelial skin tumors and cultured keratinocytes[J]. Journal of Investigative Dermatology, 125(4): 761-774.
PMID |
[40] | REGIN R, METTE V, EKELUND F, 2012. Interactions between bacteria, protozoa and nematodes in soil[J]. Acta Protozoologica, 51(3): 223-235. |
[41] | ROSENBERG K, BERTAUX J, KROME K, et al., 2009. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana[J]. The ISME Journal, 3(6): 675-684. |
[42] | SCHIPPERS B A, BAKKER A W, BAKKER P A H M, 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices[J]. Annual Review of Phytopathology, 25(1): 339-358. |
[43] | SCHMIDT O, DYCKMANS J, SCHRADER S, 2016. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates[J]. Biology Letters, 12(1): 20150646. |
[44] |
SCHULZ G, SCHNEIDER D, BRINKMANN N, et al., 2019. Changes in trophic groups of protists with conversion of rainforest into rubber and oil palm plantations[J]. Frontiers in Microbiology, 10: 240.
DOI PMID |
[45] | SEPPEY C V W, SINGER D, DUMACK K, et al., 2017. Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling[J]. Soil Biology and Biochemistry, 112: 68-76. |
[46] | SIMONE G, ISABEL C, ALEXIS C, et al., 2023. Toward a common set of functional traits for soil protists[J]. Soil Biology and Biochemistry, 187: 109207. |
[47] | STEFAN G, CASPER W Q, 2020. Microbial-faunal interactions in the rhizosphere[J]. Rhizosphere Biology: Interactions Between Microbes and Plants, 12: 237-253. |
[48] |
STEFAN G, D A E M, SINA A, et al., 2018. Soil protists: A fertile frontier in soil biology research[J]. FEMS Microbiology Reviews, 42(3): 293-323.
DOI PMID |
[49] | VAULOT D, GEISEN S, MAHÉ F, et al., 2021. pr2-primers: an 18S rRNA primer database for protists[J] Molecular Ecology Resources, 22(1): 168-179. |
[50] | WEN T, HUANG X Q, ZHANG J B, et al., 2015. Effects of water regime, crop residues, and application rates on control of Fusarium oxysporum f. sp. Cubense[J]. Journal of Environmental Sciences, 31(1): 30-37. |
[51] | WU X, RONG L, SAI G, et al., 2019. Microbial amendments alter protist communities within the soil microbiome[J]. Soil Biology and Biochemistry, 135: 379-382. |
[52] | YANG R Y, WEINER J, SHI X J, et al., 2021. Effect of reductive soil disinfestation on the chemical and microbial characteristics of rhizosphere soils associated with Salvia miltiorrhiza production in three cropping systems[J] Applied Soil Ecology, 160(103865): 1-9. |
[53] | ZENG J R, LIU J Z, LU C H, et al., 2020. Intercropping with turmeric or ginger reduce the continuous cropping obstacles that affect Pogostemon cablin (patchouli)[J]. Frontiers in Microbiology, 11(1): 579719. |
[54] | ZHANG B, LI X Z, WANG F Q, et al., 2016. Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its ‘autotoxic circle’[J]. Plant and Soil, 407(1-2): 307-322. |
[55] | ZHANG S Y, ZHANG H F, LIU H M, et al., 2022. Fertilization drives distinct biotic and abiotic factors in regulating functional groups of protists in a 5-year fertilization system[J]. Frontiers in Microbiology, 13: 1036362. |
[56] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2000. Agricultural soil analysis[M]. Beijing: China Agriculture Press. | |
[57] | 蔡祖聪, 张金波, 黄新琦, 等, 2015. 强还原土壤灭菌防控作物土传病的应用研究[J]. 土壤学报, 52(3): 469-476. |
CAI Z C, ZHANG J B, HUANG X Q, et al., 2015. Application of reductive soil disinfestation to suppress soil-borne pathogens[J]. Acta Pedologica Sinica, 52(3): 469-476. | |
[58] | 郭晨曦, 周桂芳, 陈碧华, 等, 2020. 强还原土壤灭菌法 (RSD) 对大棚连续三茬蔬菜生长、产量和病虫害的影响[J]. 河南农业科学, 49(11): 98-109. |
GUO C X, ZHOU G F, CHEN B H, et al., 2020. Effect of reductive soil disinfestation on growth, yield, diseases and insect pests of three continuous cultivation vegetables in plastic greenhouse[J]. Journal of Henan Agricultural Sciences, 49(11): 98-109. | |
[59] | 郭佩瑶, 刘美玲, 曾玉华, 2023. 设施土壤连作障碍及其防控措施研究进展[J]. 西北园艺(果树), 2(1): 1-5. |
GUO P Y, LIU M L, ZENG Y H, 2023. Research progress on continuous cropping obstacles and their prevention and control measures in facility soil[J]. Northwest Horticulture, 2(1): 1-5. | |
[60] |
刘亮亮, 周开胜, 黄新琦, 等, 2021. 低温茬口空闲期土壤强还原消毒对西瓜枯萎病的影响[J]. 应用生态学报, 32(8): 2967-2974.
DOI |
LIU L L, ZHOU K S, HUANG X Q, et al., 2021. Effects of reductive soil disinfestation during Iow-temperature stubble free period on the control of watermelon Fusarium wilt[J]. Chinese Journal of Applied Ecology, 32(8): 2967-2974. | |
[61] | 王光飞, 马艳, 安霞, 等, 2016. 不同有机物料强还原处理对土壤性状影响与防控辣椒疫病效果[J]. 中国土壤与肥料 (5): 124-129. |
WANG G F, MA Y, AN X, et al., 2016. Effect of different intensively reductive treatments by organic materials on soil character and disease control of phytophthora blight of chilli pepper[J]. Soil and Fertilizer Sciences in China (5): 124-129. | |
[62] | 韦中, 宋宇琦, 熊武, 等, 2020. 土壤原生动物--研究方法及其在土传病害防控中的作用[J]. 土壤学报, 58(1): 14-22. |
WEI Z, SONG Y Q, XIONG W, et al., 2020. Soil protozoa: research methods and roles in the biocontrol of soil-borne diseases[J]. Acta Pedologica Sinica, 58(1): 14-22. | |
[63] |
闫宁, 战宇, 苗馨月, 等, 2022. 强还原土壤灭菌处理对人参连作土壤细菌群落结构及土壤酶活的影响[J]. 中国农业科技导报, 24(6): 133-144.
DOI |
YAN N, ZHAN Y, MIAO X Y, et al., 2022. Effects of reductive soil disinfestation on soil bacterial community structure and soil enzyme activity in continuous cropping of ginseng[J] China Journal of Agricultural Science and Technology, 24(6): 133-144. | |
[64] | 叶伟芬, 陆晓林, 姚燕来, 等, 2023. 强还原处理对青菜连作土壤理化性质及产量的影响[J]. 浙江农业科学, 64(2): 355-358. |
YE W F, LU X L, YAO Y L, et al., 2023. Effects of reductive soil disinfestation on physicochemical properties of continuous cropped soil and yield of Brassica chinensis L.[J]. Journal of Zhejiang Agricultural Sciences, 64(2): 355-358. | |
[65] | 赵军, 张晶清, 林于蓝, 等, 2022. 强还原土壤处理驱动的微生物群落稳定性与功能的关联性[J/OL]. 土壤学报,[2024-04-26]. http://kns.cnki.net/kcms/detail/32.1119.P.20221010.1447.002.html. |
ZHAO J, ZHANG J Q, LIN Y L, et al., 2022. Correlation between the stability and function of soil microbial community driven by reductive soil disinfestation[J/OL]. Acta Pedologica Sinica,[2024-04-26]. http://kns.cnki.net/kcms/detail/32.1119.P.20221010.1447.002.html. |
[1] | 黄倩, 朱时应, 李天顺, 李明燕, 索南措, 普布. 西藏热振国家森林公园土壤原生动物群落沿海拔分布格局及其与环境因子的关联特征[J]. 生态环境学报, 2024, 33(4): 499-508. |
[2] | 卫玺玺, 晁鑫艳, 郑景明, 唐可欣, 万龙, 周金星. 贺兰山东、西侧典型植物群落物种多样性差异及其影响因子[J]. 生态环境学报, 2024, 33(4): 520-530. |
[3] | 丁昊, 李长鑫, 丁静, 兰昊. n-damo细菌在不同生态环境中的遗传多样性和潜在功能研究[J]. 生态环境学报, 2024, 33(2): 202-211. |
[4] | 李晴, 张梦悦, 于明乔, 李小璇, 常明, 陈立斌, 丁森. 东莞城市河流大型底栖动物群落结构及影响因子[J]. 生态环境学报, 2024, 33(1): 101-110. |
[5] | 李勋, 张艳, 宋思梦, 周扬, 张健. 西南地区马尾松与乡土阔叶树种凋落叶混合分解过程中的细菌群落特征[J]. 生态环境学报, 2024, 33(1): 12-27. |
[6] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[7] | 顾美英, 唐光木, 张云舒, 黄建, 张志东, 张丽娟, 朱静, 唐琦勇, 楚敏, 徐万里. 有机肥与生物炭对新疆盐碱沙化土壤微生物群落特征的影响[J]. 生态环境学报, 2023, 32(8): 1392-1404. |
[8] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[9] | 李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069. |
[10] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[11] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[12] | 李阳, 侯志勇, 陈薇, 于晓英, 谢永宏, 黄鑫, 谭佩阳, 李继承, 黎尚林, 杨辉. 大围山高山湿地植物多样性与区系组成研究[J]. 生态环境学报, 2023, 32(4): 643-650. |
[13] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[14] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[15] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||