生态环境学报 ›› 2024, Vol. 33 ›› Issue (2): 202-211.DOI: 10.16258/j.cnki.1674-5906.2024.02.004
收稿日期:
2023-10-31
出版日期:
2024-02-18
发布日期:
2024-04-03
通讯作者:
*丁静。E-mail: dingjing@usts.edu.cn作者简介:
丁昊(1999年生),男,硕士研究生,主要从事环境微生物研究。E-mail: ttdd199@outlook.com
基金资助:
DING Hao1(), LI Changxin1, DING Jing1,2,*(
), LAN Hao1
Received:
2023-10-31
Online:
2024-02-18
Published:
2024-04-03
摘要:
反硝化厌氧甲烷氧化(DAMO)是自然环境中减少甲烷排放的关键过程。近年来研究发现,亚硝酸盐依赖型厌氧甲烷氧化(n-damo)细菌在湖泊、河流、稻田和生物反应器等环境中表现出不同的分布特征和群落格局。然而,以往的环境调研主要集中在单一生态环境或样本类型,使得n-damo细菌在全球生态格局中的总体作用和分布特征仍然存在一定的未知。此外,在描述不同生态环境中n-damo细菌多样性时,16S rRNA和pmoA基因之间的具体区别或偏好性尚不清楚。因此,为了填补这一研究空白,基于n-damo细菌的两个关键基因,即16S rRNA和pmoA,通过生物信息学分析来评估不同生态系统中n-damo细菌的多样性特征。研究发现,16S rRNA和pmoA基因所揭示的n-damo细菌遗传多样性和潜在功能存在差异。保守性更高的16S rRNA基因在湿地环境中多样性最高,而在人工富集环境中多样性最低。pmoA基因则在淡水环境中表现出最高的多样性,但也同样在人工富集环境中表现出最低的多样性。热图和韦恩图显示,淡水环境和湿地环境中n-damo细菌的相似性最高,但人工富集和咸水环境下的n-damo细菌与其他环境差异显著。此外,系统发育分析显示,16S rRNA与pmoA基因具有不同的同源模式,16S rRNA因其保守性而具有较高的同源性,而pmoA基因则表现出更多的簇族分化。这些结果为了解DAMO微生物对不同生态系统中甲烷减排和碳氮生物地球化学循环的贡献提供了重要见解。此外,未来n-damo细菌的环境调研工作应同时分析16S rRNA和pmoA基因,从而对n-damo细菌的分布和功能进行更加科学地综合评价。
中图分类号:
丁昊, 李长鑫, 丁静, 兰昊. n-damo细菌在不同生态环境中的遗传多样性和潜在功能研究[J]. 生态环境学报, 2024, 33(2): 202-211.
DING Hao, LI Changxin, DING Jing, LAN Hao. Genetic and Functional Diversity of N-damo Bacteria in Different Environments[J]. Ecology and Environment, 2024, 33(2): 202-211.
环境分类 | 取样点 | 基因序列号 | 基因下载链接 |
---|---|---|---|
淡水 | 钱塘江, 中国 | KC503558−KC503613 | https://www.ncbi.nlm.nih.gov/nuccore/KC503558 |
黄河河口, 中国 | KP296952−KP297013 | https://www.ncbi.nlm.nih.gov/nuccore/KP296952 | |
东平湖和东昌湖, 中国 | KX827637−KX827722 | https://www.ncbi.nlm.nih.gov/nuccore/KX827637 | |
三峡水库, 中国 | KT355451−KT355465 | https://www.ncbi.nlm.nih.gov/nuccore/KT355481 | |
三峡水库, 中国 | KP708851−KP708984 | https://www.ncbi.nlm.nih.gov/nuccore/KP708851 | |
京北运河, 中国 | KX422868−KX423093 | https://www.ncbi.nlm.nih.gov/nuccore/KX422868 | |
密云水库, 中国 | KX138657−KX138999 | https://www.ncbi.nlm.nih.gov/nuccore/KX138657 | |
杭州西湖, 中国 | JX531998−JX532016 | https://www.ncbi.nlm.nih.gov/nuccore/JX531998 | |
密云水库, 中国 | KU213424−KU213471, KU238923−KU239099 | https://www.ncbi.nlm.nih.gov/nuccore/KU213424 | |
咸水 | 椒江口, 中国 | KC512249−KC512301 | https://www.ncbi.nlm.nih.gov/nuccore/KC512249 |
小干岛, 中国 | KM888217−KM888243 | https://www.ncbi.nlm.nih.gov/nuccore/KM888217 | |
巴丹吉林沙漠湖泊, 中国 | KX088716−KX088777 | https://www.ncbi.nlm.nih.gov/nuccore/KX088716 | |
长江入海口, 中国 | KX260358−KX260611 | https://www.ncbi.nlm.nih.gov/nuccore/KX260358 | |
漳江口, 中国 | KX511990−KX512001, KX512004, KX512006, KX523271 | https://www.ncbi.nlm.nih.gov/nuccore/KX511990 | |
富集 | 长期施肥的稻田, 中国 | KC935359−KC935361 | https://www.ncbi.nlm.nih.gov/nuccore/KC935359 |
济南市污水处理厂, 中国 | KY078436−KY078444 | https://www.ncbi.nlm.nih.gov/nuccore/KY078436 | |
小干岛, 中国 | KM888188−KM888216 | https://www.ncbi.nlm.nih.gov/nuccore/KM888188 | |
莱茵河, 荷兰 | FJ621548−FJ621550, FJ621557−FJ621562 | https://www.ncbi.nlm.nih.gov/nuccore/FJ621548 | |
湿地 | 下渚湖和西溪湿地, 中国 | KC905814−KC905856 | https://www.ncbi.nlm.nih.gov/nuccore/KC905814 |
下渚湖和西溪湿地, 中国 | KF769237−KF769268 | https://www.ncbi.nlm.nih.gov/nuccore/KF769237 | |
下渚湖湿地, 中国 | KF358721−KF358757 | https://www.ncbi.nlm.nih.gov/nuccore/KF358721 | |
珠江口, 中国 | KR348530−KR348718 | https://www.ncbi.nlm.nih.gov/nuccore/KR348530 | |
洱海湿地, 中国 | KY313904−KY314112 | https://www.ncbi.nlm.nih.gov/nuccore/KY313904 | |
人工湿地, 中国 | KP726359−KP726376 | https://www.ncbi.nlm.nih.gov/nuccore/KP726359 | |
长期施肥的水田, 中国 | JN704416−JN704466, KM403456−KM403485 | https://www.ncbi.nlm.nih.gov/nuccore/JN704416 |
表1 16S rRNA基因下载序列信息
Table 1 The information of downloaded 16S rRNA gene sequences
环境分类 | 取样点 | 基因序列号 | 基因下载链接 |
---|---|---|---|
淡水 | 钱塘江, 中国 | KC503558−KC503613 | https://www.ncbi.nlm.nih.gov/nuccore/KC503558 |
黄河河口, 中国 | KP296952−KP297013 | https://www.ncbi.nlm.nih.gov/nuccore/KP296952 | |
东平湖和东昌湖, 中国 | KX827637−KX827722 | https://www.ncbi.nlm.nih.gov/nuccore/KX827637 | |
三峡水库, 中国 | KT355451−KT355465 | https://www.ncbi.nlm.nih.gov/nuccore/KT355481 | |
三峡水库, 中国 | KP708851−KP708984 | https://www.ncbi.nlm.nih.gov/nuccore/KP708851 | |
京北运河, 中国 | KX422868−KX423093 | https://www.ncbi.nlm.nih.gov/nuccore/KX422868 | |
密云水库, 中国 | KX138657−KX138999 | https://www.ncbi.nlm.nih.gov/nuccore/KX138657 | |
杭州西湖, 中国 | JX531998−JX532016 | https://www.ncbi.nlm.nih.gov/nuccore/JX531998 | |
密云水库, 中国 | KU213424−KU213471, KU238923−KU239099 | https://www.ncbi.nlm.nih.gov/nuccore/KU213424 | |
咸水 | 椒江口, 中国 | KC512249−KC512301 | https://www.ncbi.nlm.nih.gov/nuccore/KC512249 |
小干岛, 中国 | KM888217−KM888243 | https://www.ncbi.nlm.nih.gov/nuccore/KM888217 | |
巴丹吉林沙漠湖泊, 中国 | KX088716−KX088777 | https://www.ncbi.nlm.nih.gov/nuccore/KX088716 | |
长江入海口, 中国 | KX260358−KX260611 | https://www.ncbi.nlm.nih.gov/nuccore/KX260358 | |
漳江口, 中国 | KX511990−KX512001, KX512004, KX512006, KX523271 | https://www.ncbi.nlm.nih.gov/nuccore/KX511990 | |
富集 | 长期施肥的稻田, 中国 | KC935359−KC935361 | https://www.ncbi.nlm.nih.gov/nuccore/KC935359 |
济南市污水处理厂, 中国 | KY078436−KY078444 | https://www.ncbi.nlm.nih.gov/nuccore/KY078436 | |
小干岛, 中国 | KM888188−KM888216 | https://www.ncbi.nlm.nih.gov/nuccore/KM888188 | |
莱茵河, 荷兰 | FJ621548−FJ621550, FJ621557−FJ621562 | https://www.ncbi.nlm.nih.gov/nuccore/FJ621548 | |
湿地 | 下渚湖和西溪湿地, 中国 | KC905814−KC905856 | https://www.ncbi.nlm.nih.gov/nuccore/KC905814 |
下渚湖和西溪湿地, 中国 | KF769237−KF769268 | https://www.ncbi.nlm.nih.gov/nuccore/KF769237 | |
下渚湖湿地, 中国 | KF358721−KF358757 | https://www.ncbi.nlm.nih.gov/nuccore/KF358721 | |
珠江口, 中国 | KR348530−KR348718 | https://www.ncbi.nlm.nih.gov/nuccore/KR348530 | |
洱海湿地, 中国 | KY313904−KY314112 | https://www.ncbi.nlm.nih.gov/nuccore/KY313904 | |
人工湿地, 中国 | KP726359−KP726376 | https://www.ncbi.nlm.nih.gov/nuccore/KP726359 | |
长期施肥的水田, 中国 | JN704416−JN704466, KM403456−KM403485 | https://www.ncbi.nlm.nih.gov/nuccore/JN704416 |
环境分类 | 取样点 | 基因序列号 | 基因下载链接 |
---|---|---|---|
淡水 | 琵琶湖, 日本 | AB661605−AB661625 | https://www.ncbi.nlm.nih.gov/nuccore/AB661605 |
三峡水库, 中国 | KT355466−KT355470 | https://www.ncbi.nlm.nih.gov/nuccore/KT355466 | |
三峡水库, 中国 | KP743748, KP743761−KP743802 | https://www.ncbi.nlm.nih.gov/nuccore/KP743748 | |
京北运河, 中国 | KX423094, KX423110, KX423121, KX423128, KX423138 KX423345, KX423347, KX423354, KX423357, KX423363, KX423366, KX423370-KX423372 | https://www.ncbi.nlm.nih.gov/nuccore/KX423094 | |
贝加尔湖, 俄罗斯 | MN603447−MN603470 | https://www.ncbi.nlm.nih.gov/nuccore/MN603447 | |
东江, 中国 | KX000960−KX001202, KX001578−KX001760 | https://www.ncbi.nlm.nih.gov/nuccore/KX000960 | |
密云水库, 中国 | KX083099—KX083138 | https://www.ncbi.nlm.nih.gov/nuccore/KX083099 | |
密云水库, 中国 | KX423253−KX423258, KX423261−KX423262, KX423267−KX423268, KX423271−KX423274, KX423277−KX423278, KX423283−KX423284, KX423287−KX423294, KX423299−KX423314, KX423322−KX423339 | https://www.ncbi.nlm.nih.gov/nuccore/KX423253 | |
东江, 中国 | KU301341−KU301381, KU301383, KU301385, KU301387, KU301390, KU301393, KU301395−KU301397, KU301399, KU301401, KU301403−KU301406, KU301408−KU301619, KU301621, KU301624, KU301628, KU301632, KU301636−KU301637, KU301640, KU301643, KU301646, KU301651−KU301654 | https://www.ncbi.nlm.nih.gov/nuccore/KU301341 | |
东江, 中国 | KT944916−KT944955, KT944959, KT944962− KT944963, KT944968, KT944970, KT944972, KT944974, KT944976, KT944983−KT944984, KT944990−KT944991, KT944994, KT944996 | https://www.ncbi.nlm.nih.gov/nuccore/KT944916 | |
东江, 中国 | KU052404, KU052413, KU052416−KU052427 | https://www.ncbi.nlm.nih.gov/nuccore/KU052404 | |
咸水 | 青海-西藏盐湖, 中国 | JQ429431−JQ429432 | https://www.ncbi.nlm.nih.gov/nuccore/JQ429431 |
椒江口, 中国 | KC512302−KC512381 | https://www.ncbi.nlm.nih.gov/nuccore/KC512302 | |
小干岛, 中国 | KM979290−KM979340 | https://www.ncbi.nlm.nih.gov/nuccore/KM979290 | |
长江河口, 中国 | KX268870−KX269065 | https://www.ncbi.nlm.nih.gov/nuccore/KX268870 | |
富集 | 稻田土壤, 日本 | AB767281−AB767293 | https://www.ncbi.nlm.nih.gov/nuccore/AB767281 |
稻田土壤, 中国 | KC935362−KC935371 | https://www.ncbi.nlm.nih.gov/nuccore/KC935362 | |
小干岛, 中国 | KM979290−KM979341 | https://www.ncbi.nlm.nih.gov/nuccore/KM979290 | |
济南市污水处理厂, 中国 | KY078446−KY078449 | https://www.ncbi.nlm.nih.gov/nuccore/KY078446 | |
稻田土壤, 中国 | MG397071−MG397099 | https://www.ncbi.nlm.nih.gov/nuccore/MG397071 | |
稻田土壤, 日本 | LC168160−LC168162 | https://www.ncbi.nlm.nih.gov/nuccore/LC168160 | |
湿地 | 布伦斯萨默海德泥炭地, 荷兰 | JX262153−JX262155 | https://www.ncbi.nlm.nih.gov/nuccore/JX262153 |
下渚湖和西溪湿地, 中国 | KC905884−KC905908 | https://www.ncbi.nlm.nih.gov/nuccore/KC905884 | |
米埔湿地, 中国 | KJ718849−KJ718873 | https://www.ncbi.nlm.nih.gov/nuccore/KJ718849 | |
下渚湖湿地, 中国 | KF358758−KF358771 | https://www.ncbi.nlm.nih.gov/nuccore/KF358758 | |
洱海湿地, 中国 | MF419820−MF420340 | https://www.ncbi.nlm.nih.gov/nuccore/MF419820 | |
长江下游稻田土壤, 中国 | KF546848−KF547007 | https://www.ncbi.nlm.nih.gov/nuccore/KF546848 | |
长期施肥的水田, 中国 | JN704402−JN704415 | https://www.ncbi.nlm.nih.gov/nuccore/JN704402 | |
下渚湖和西溪湿地, 中国 | KC905853−KC905883 | https://www.ncbi.nlm.nih.gov/nuccore/KC905853 | |
南岭国家自然保护区, 中国 | KU894736−KU894777 | https://www.ncbi.nlm.nih.gov/nuccore/KU894736 | |
水稻田和玉米田, 中国 | KX153202−KX153210 | https://www.ncbi.nlm.nih.gov/nuccore/KX153202 |
表2 pmoA基因下载序列信息
Table 2 The information of downloaded pmoA gene sequences
环境分类 | 取样点 | 基因序列号 | 基因下载链接 |
---|---|---|---|
淡水 | 琵琶湖, 日本 | AB661605−AB661625 | https://www.ncbi.nlm.nih.gov/nuccore/AB661605 |
三峡水库, 中国 | KT355466−KT355470 | https://www.ncbi.nlm.nih.gov/nuccore/KT355466 | |
三峡水库, 中国 | KP743748, KP743761−KP743802 | https://www.ncbi.nlm.nih.gov/nuccore/KP743748 | |
京北运河, 中国 | KX423094, KX423110, KX423121, KX423128, KX423138 KX423345, KX423347, KX423354, KX423357, KX423363, KX423366, KX423370-KX423372 | https://www.ncbi.nlm.nih.gov/nuccore/KX423094 | |
贝加尔湖, 俄罗斯 | MN603447−MN603470 | https://www.ncbi.nlm.nih.gov/nuccore/MN603447 | |
东江, 中国 | KX000960−KX001202, KX001578−KX001760 | https://www.ncbi.nlm.nih.gov/nuccore/KX000960 | |
密云水库, 中国 | KX083099—KX083138 | https://www.ncbi.nlm.nih.gov/nuccore/KX083099 | |
密云水库, 中国 | KX423253−KX423258, KX423261−KX423262, KX423267−KX423268, KX423271−KX423274, KX423277−KX423278, KX423283−KX423284, KX423287−KX423294, KX423299−KX423314, KX423322−KX423339 | https://www.ncbi.nlm.nih.gov/nuccore/KX423253 | |
东江, 中国 | KU301341−KU301381, KU301383, KU301385, KU301387, KU301390, KU301393, KU301395−KU301397, KU301399, KU301401, KU301403−KU301406, KU301408−KU301619, KU301621, KU301624, KU301628, KU301632, KU301636−KU301637, KU301640, KU301643, KU301646, KU301651−KU301654 | https://www.ncbi.nlm.nih.gov/nuccore/KU301341 | |
东江, 中国 | KT944916−KT944955, KT944959, KT944962− KT944963, KT944968, KT944970, KT944972, KT944974, KT944976, KT944983−KT944984, KT944990−KT944991, KT944994, KT944996 | https://www.ncbi.nlm.nih.gov/nuccore/KT944916 | |
东江, 中国 | KU052404, KU052413, KU052416−KU052427 | https://www.ncbi.nlm.nih.gov/nuccore/KU052404 | |
咸水 | 青海-西藏盐湖, 中国 | JQ429431−JQ429432 | https://www.ncbi.nlm.nih.gov/nuccore/JQ429431 |
椒江口, 中国 | KC512302−KC512381 | https://www.ncbi.nlm.nih.gov/nuccore/KC512302 | |
小干岛, 中国 | KM979290−KM979340 | https://www.ncbi.nlm.nih.gov/nuccore/KM979290 | |
长江河口, 中国 | KX268870−KX269065 | https://www.ncbi.nlm.nih.gov/nuccore/KX268870 | |
富集 | 稻田土壤, 日本 | AB767281−AB767293 | https://www.ncbi.nlm.nih.gov/nuccore/AB767281 |
稻田土壤, 中国 | KC935362−KC935371 | https://www.ncbi.nlm.nih.gov/nuccore/KC935362 | |
小干岛, 中国 | KM979290−KM979341 | https://www.ncbi.nlm.nih.gov/nuccore/KM979290 | |
济南市污水处理厂, 中国 | KY078446−KY078449 | https://www.ncbi.nlm.nih.gov/nuccore/KY078446 | |
稻田土壤, 中国 | MG397071−MG397099 | https://www.ncbi.nlm.nih.gov/nuccore/MG397071 | |
稻田土壤, 日本 | LC168160−LC168162 | https://www.ncbi.nlm.nih.gov/nuccore/LC168160 | |
湿地 | 布伦斯萨默海德泥炭地, 荷兰 | JX262153−JX262155 | https://www.ncbi.nlm.nih.gov/nuccore/JX262153 |
下渚湖和西溪湿地, 中国 | KC905884−KC905908 | https://www.ncbi.nlm.nih.gov/nuccore/KC905884 | |
米埔湿地, 中国 | KJ718849−KJ718873 | https://www.ncbi.nlm.nih.gov/nuccore/KJ718849 | |
下渚湖湿地, 中国 | KF358758−KF358771 | https://www.ncbi.nlm.nih.gov/nuccore/KF358758 | |
洱海湿地, 中国 | MF419820−MF420340 | https://www.ncbi.nlm.nih.gov/nuccore/MF419820 | |
长江下游稻田土壤, 中国 | KF546848−KF547007 | https://www.ncbi.nlm.nih.gov/nuccore/KF546848 | |
长期施肥的水田, 中国 | JN704402−JN704415 | https://www.ncbi.nlm.nih.gov/nuccore/JN704402 | |
下渚湖和西溪湿地, 中国 | KC905853−KC905883 | https://www.ncbi.nlm.nih.gov/nuccore/KC905853 | |
南岭国家自然保护区, 中国 | KU894736−KU894777 | https://www.ncbi.nlm.nih.gov/nuccore/KU894736 | |
水稻田和玉米田, 中国 | KX153202−KX153210 | https://www.ncbi.nlm.nih.gov/nuccore/KX153202 |
环境分类 | 序列数 | OTUs数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
淡水 | 1165 | 59 | 134.6 | 2.11 | 0.74 |
咸水 | 441 | 48 | 123.6 | 2.42 | 0.83 |
湿地 | 552 | 71 | 212.4 | 2.94 | 0.88 |
富集 | 50 | 9 | 101 | 1.93 | 0.67 |
表3 n-damo细菌16S rRNA基因多样性指数
Table 3 Diversity indices of n-damo bacterial 16S rRNA gene
环境分类 | 序列数 | OTUs数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
淡水 | 1165 | 59 | 134.6 | 2.11 | 0.74 |
咸水 | 441 | 48 | 123.6 | 2.42 | 0.83 |
湿地 | 552 | 71 | 212.4 | 2.94 | 0.88 |
富集 | 50 | 9 | 101 | 1.93 | 0.67 |
环境分类 | 序列数 | OTUs数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
淡水 | 950 | 205 | 396 | 4.55 | 0.98 |
咸水 | 319 | 45 | 51 | 3.24 | 0.94 |
湿地 | 857 | 129 | 242.9 | 3.42 | 0.91 |
富集 | 111 | 17 | 24 | 2.03 | 0.78 |
表4 n-damo细菌pmoA基因多样性指数
Table 4 Diversity indices of n-damo bacterial pmoAgene
环境分类 | 序列数 | OTUs数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
淡水 | 950 | 205 | 396 | 4.55 | 0.98 |
咸水 | 319 | 45 | 51 | 3.24 | 0.94 |
湿地 | 857 | 129 | 242.9 | 3.42 | 0.91 |
富集 | 111 | 17 | 24 | 2.03 | 0.78 |
[1] |
BHATTACHARJEE A S, MOTLAGH A M, JETTEN M S M, et al., 2016. Methane dependent denitrification- from ecosystem to laboratory-scale enrichment for engineering applications[J]. Water Research, 99: 244-252.
DOI PMID |
[2] | CHAO A, 1984. Non-parametric estimation of the classes in a population[J]. Scandinavian Journal of Statistics, 11(4): 265-270. |
[3] |
CHEN J, JIANG X W, GU J D, 2015b. Existence of novel phylotypes of nitrite-dependent anaerobic methane-oxidizing bacteria in surface and subsurface sediments of the South China Sea[J]. Geomicrobiology Journal, 32(1): 1-9.
DOI URL |
[4] |
CHEN J, ZHOU Z C, GU J D, 2014. Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes[J]. Applied Microbiology and Biotechnology, 98(12): 5685-5696.
DOI PMID |
[5] |
CHEN J, ZHOU Z C, GU J D, 2015a. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes[J]. Applied Microbiology and Biotechnology, 99(3): 1463-1473.
DOI URL |
[6] | CHEN J, ZHOU Z C, GU J D, 2022. Seasonal variations of n-damo bacterial community in the subtropical Mai Po mangrove wetland of Hong Kong[J]. International Biodeterioration & Biodegradation, 175: 105503. |
[7] |
DEUTZMANN J S, SCHINK B, 2011. Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake[J]. Applied and Environmental Microbiology, 77(13): 4429-4436.
DOI PMID |
[8] |
DEUTZMANN J S, STIEF P, BRANDES J, et al., 2014. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(51): 18273-18278.
DOI PMID |
[9] |
DING J, FU L, DING Z W, et al., 2016b. Environmental evaluation of coexistence of denitrifying anaerobic methane oxidizing archaea and bacteria in a paddyfield[J]. Applied Microbiology and Biotechnology, 100(1): 439-446.
DOI URL |
[10] |
DING J, FU L, DING Z W, et al., 2016a. Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis[J]. Applied Microbiology and Biotechnology, 100(14): 6481-6490.
DOI URL |
[11] |
EDGAR R C, 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity[J]. BMC Bioinformatics, 5(1): 113.
DOI |
[12] |
ETTWIG K F, SHIMA S, VAN DE PAS-SCHOONEN K T, et al., 2008. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea[J]. Environmental Microbiology, 10(11): 3164-3173.
DOI PMID |
[13] |
ETTWIG K F, VAN ALEN T, VAN DE PAS-SCHOONEN K T, et al., 2009. Enrichment and Molecular Detection of Denitrifying Methanotrophic Bacteria of the NC10 Phylum[J]. Applied and Environmental Microbiology, 75(11): 3656-3662.
DOI PMID |
[14] |
FAN L C, SCHNEIDER D, DIPPOLD M A, et al., 2021. Active metabolic pathways of anaerobic methane oxidation in paddy soils[J]. Soil Biology & Biochemistry, 156: 108215.
DOI URL |
[15] |
GAIL M H, WAN Y, SHI J, 2021. Power of microbiome beta-diversity analyses based on standard reference samples[J]. Am J Epidemiol, 190(3): 439-447.
DOI PMID |
[16] |
GANZERT L, LIPSKI A, HUBBERTEN H-W, et al., 2011. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica[J]. FEMS Microbiology Ecology, 76(3): 476-491.
DOI PMID |
[17] | HAROON M F, HU S H, SHI Y, et al., 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature, 501(7468): 567-570. |
[18] |
HE Z F, CAI C, SHEN L D, et al., 2015. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria[J]. Applied Microbiology and Biotechnology, 99(2): 939-946.
DOI PMID |
[19] |
HE Z F, WANG J Q, HU J J, et al., 2019. Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers[J]. Environmental Pollution, 244: 228-237.
DOI PMID |
[20] |
HO A, MO Y L, LEE H J, et al., 2018. Effect of salt stress on aerobic methane oxidation and associated methanotrophs; A microcosm study of a natural community from a non-saline environment[J]. Soil Biology & Biochemistry, 125: 210-214.
DOI URL |
[21] |
HOLM P E, NIELSEN P H, ALBRECHTSEN H J, et al., 1992. Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer[J]. Applied and Environmental Microbiology, 58(9): 3020-3026.
DOI PMID |
[22] | HU B L, SHEN L D, LIAN X, et al., 2014. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(12): 4495-4500. |
[23] | IHARA Y, TAKESHITA T, KAGEYAMA S, et al., 2019. Identification of initial colonizing bacteria in dental plaques from young adults using full-length 16S rRNA gene sequencing[J]. mSystems, 4(5): e00360-19. |
[24] |
JOHNSON J S, SPAKOWICZ D J, HONG B-Y, et al., 2019. Evaluation of 16S rRNA gene sequencing for species and strain level microbiome analysis[J]. Nature Communications, 10(1): 5029.
DOI |
[25] |
KNITTEL K, BOETIUS A, 2009. Anaerobic oxidation of methane: Progress with an unknown process[J]. Annual Review of Microbiology, 63(1): 311-334.
DOI URL |
[26] |
KOJIMA H, TSUTSUMI M, ISHIKAWA K, et al., 2012. Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa[J]. Systematic and Applied Microbiology, 35(4): 233-238.
DOI PMID |
[27] |
LOZUPONE C, KNIGHT R, 2005. UniFrac: A new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 71(12): 8228-35.
DOI PMID |
[28] |
LUESKEN F A, VAN ALEN T A, VAN DER BIEZEN E, et al., 2011. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge[J]. Applied Microbiology and Biotechnology, 92(4): 845-854.
DOI PMID |
[29] |
MENG H, WANG Y F, CHAN H W, et al., 2016. Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils[J]. Applied Microbiology and Biotechnology, 100(17): 7727-7739.
DOI PMID |
[30] |
NIU Y H, ZHENG Y L, HOU L J, et al., 2022. Microbial dynamics and activity of denitrifying anaerobic methane oxidizers in China's estuarine and coastal wetlands[J]. Science of the Total Environment, 806(Part 1): 150425.
DOI URL |
[31] |
NORDI K A, THAMDRUP B, 2014. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment[J]. Geochimica Et Cosmochimica Acta, 132: 141-150.
DOI URL |
[32] |
RAGHOEBARSING A A, POL A, VAN DE PAS-SCHOONEN K T, et al., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 440(7086): 918-921.
DOI |
[33] |
RAJAN R S, SHANTRINAL A A, KUMAR K J, et al., 2021. Biochemical and phylogenetic networks-II: X-trees and phylogenetic trees[J]. Journal of Mathematical Chemistry, 59(3): 699-718.
DOI |
[34] |
SCHLOSS P D, WESTCOTT S L, RYABIN T, et al., 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 75(23): 7537-41.
DOI PMID |
[35] |
SHANNON C E, 1948. A mathematical theory of communication[J]. Bell System Technical Journal, 27(3): 379-423.
DOI URL |
[36] |
SHEN L D, HU B L, LIU S, et al., 2016a. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J]. Applied Microbiology and Biotechnology, 100(16): 7171-7180.
DOI URL |
[37] |
SHEN, L D, LIU S, HUANG Q, et al., 2014b. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field[J]. Applied and Environmental Microbiology, 80(24): 7611-7619.
DOI URL |
[38] |
SHEN L D, LIU S, ZHU Q, et al., 2014a. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River[J]. Microbial Ecology, 67(2): 341-349.
DOI URL |
[39] | SHEN L D, TIAN M H, CHENG H X, et al., 2020. Different responses of nitrite- and nitrate-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir[J]. Environmental Pollution, 263(Part A): 114623. |
[40] |
SHEN L D, WU H S, GAO Z Q, et al., 2016b. Comparison of community structures of Candidatus methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats[J]. Scientific reports, 6: 25647.
DOI |
[41] |
SHEN L D, WU H S, LIU X, et al., 2017. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments[J]. Water Research, 123: 162-172.
DOI URL |
[42] |
SIMPSON E H, 1949. Measurement of diversity[J]. Nature, 163(4148): 688-688.
DOI |
[43] |
SONTHIPHAND P, HALL M W, NEUFELD J D, 2014. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria[J]. Frontiers in Microbiology, 5: 399.
DOI PMID |
[44] |
VAKSMAA A, GUERRERO-CRUZ S, VAN ALEN T A, et al., 2017. Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedensnitroreducens’ archaea from an Italian paddy field soil[J]. Applied Microbiology and Biotechnology, 101(18): 7075-7084.
DOI URL |
[45] |
WANG H H, CHU H L, DOU Q, et al., 2018. Phosphorus and nitrogen drive the seasonal dynamics of bacterial communities in Pinus Forest rhizospheric soil of the Qinling Mountains[J]. Frontiers in Microbiology, 9: 1930.
DOI URL |
[46] |
WANG J Q, CAI C Y, LI Y F, et al., 2019. Denitrifying anaerobic methane oxidation: A previously overlooked methane sink in intertidal zone[J]. Environmental Science & Technology, 53(1): 203-212.
DOI URL |
[47] | ZHANG X W, LIU Y, GU J D, 2018. A global analysis on the distribution pattern of the bacteria coupling simultaneous methane oxidation to nitrite reduction[J]. International Biodeterioration & Biodegradation, 129: 123-132. |
[48] |
ZHOU G, ZHANG J, CHEN L, et al., 2016. Temperature and straw quality regulate the microbial phospholipid fatty acid composition associated with straw decomposition[J]. Pedosphere, 26(3): 386-398.
DOI URL |
[49] |
ZHOU L L, WANG Y, LONG X E, et al., 2014. High abundance and diversity of nitrite-dependent anaerobic methane oxidizing bacteria in a paddy field profile[J]. Fems Microbiology Letters, 360(1): 33-41.
DOI URL |
[50] |
ZHU B L, VAN DIJK G, FRITZ C, et al., 2012. Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria[J]. Applied and Environmental Microbiology, 78(24): 8657-8665.
DOI PMID |
[51] |
ZHU G B, WANG M Z, LI Y X, et al., 2018. Denitrifying anaerobic methane oxidizing in global upland soil: Sporadic and non-continuous distribution with low influence[J]. Soil Biology & Biochemistry, 119: 90-100.
DOI URL |
[52] |
ZHU G B, ZHOU L L, WANG Y, et al., 2015. Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems[J]. Environmental Microbiology Reports, 7(1): 128-138.
DOI PMID |
[1] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[2] | 蓝浚, 陈冠虹, 张俊涛, Hemmat-Jou Mohammad Hossein, 舒小华, 方利平, 李芳柏. 电子穿梭体介导土壤锑还原成矿的微生物机制[J]. 生态环境学报, 2024, 33(2): 272-281. |
[3] | 马媛, 田路露, 吕杰, 柳沛, 张旭, 李二阳, 张清航. 天山北坡雪岭云杉森林土壤微生物群落及影响因素研究[J]. 生态环境学报, 2024, 33(1): 1-11. |
[4] | 杨正桥, 邹奇, 韦行, 周凯, 陈志良. 金属尾矿微生物对尾矿环境的适应与调控机制研究进展[J]. 生态环境学报, 2024, 33(1): 156-166. |
[5] | 袁佳宝, 宋艳宇, 刘桢迪, 朱梦圆, 程小峰, 马秀艳, 陈宁, 李晓宇. 松嫩平原芦苇湿地土壤酶活性剖面分布特征及其微生物养分限制指示作用[J]. 生态环境学报, 2023, 32(12): 2141-2153. |
[6] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[7] | 李璇, 钱秀雯, 黄娟, 王鸣宇, 肖君. 纳米氧化镍暴露下人工湿地运行性能及微生物群落的响应[J]. 生态环境学报, 2023, 32(10): 1833-1841. |
[8] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
[9] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[10] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[11] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
[12] | 朱忆雯, 尹丹, 胡敏, 杜衍红, 洪泽彬, 程宽, 于焕云. 稻田土壤氮循环与砷形态转化耦合的研究进展[J]. 生态环境学报, 2023, 32(7): 1344-1354. |
[13] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[14] | 李桂英, 刘建莹, 安太成. 水体消毒过程中活的不可培养细菌的形成与复苏机制研究进展[J]. 生态环境学报, 2023, 32(7): 1333-1343. |
[15] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||