生态环境学报 ›› 2023, Vol. 32 ›› Issue (8): 1392-1404.DOI: 10.16258/j.cnki.1674-5906.2023.08.005
顾美英1,3(), 唐光木2,3, 张云舒2,3, 黄建2,3, 张志东1,3, 张丽娟1,3, 朱静1,3, 唐琦勇1,3, 楚敏1,3, 徐万里2,3,*(
)
收稿日期:
2023-03-06
出版日期:
2023-08-18
发布日期:
2023-11-08
通讯作者:
*俆万里。E-mail: 363954019@qq.com作者简介:
顾美英(1974年生),女,研究员,主要研究方向为微生物资源利用和农业微生物生态。E-mail: gmyxj2008@163.com
基金资助:
GU Meiying1,3(), TANG Guangmu2,3, ZHANG Yunshu2,3, HUANG Jian2,3, ZHANG Zhidong1,3, ZHANG Lijuan1,3, ZHU Jing1,3, TANG Qiyong1,3, CHU Min1,3, XU Wanli2,3,*(
)
Received:
2023-03-06
Online:
2023-08-18
Published:
2023-11-08
摘要:
有机肥和生物炭在改善中低产田土壤质量,提升土壤肥力方面具有重要意义。设置不施肥CK、单施化肥NPK、增施羊粪有机肥NPK+M、增施生物炭NPK+B和增施羊粪有机肥-生物炭NPK+M+B等5个处理,进行5年田间定位试验,采用高通量测序技术,探讨有机肥和生物炭对改善新疆盐碱沙化土壤微生物群落多样性和功能的施肥策略。结果表明,有机肥和生物炭改善了盐碱沙化土壤理化性质,降低pH,增加阳离子交换量和养分含量,其中NPK+M+B处理对土壤中有机质、速效磷和速效钾有显著提升作用,分别提高了87.80%、125.15%和59.52%。施肥增加了土壤电导率,但NPK+B和NPK+M+B处理可缓解其升高。微生物α多样性分析发现,施肥增加了盐碱沙化土壤细菌群落Shannon多样性指数及Chao和Ace丰度指数,以NPK+M+B处理效果最好,分别提高了6.31%、57.98%和57.25%。施用化肥增加了土壤真菌多样性,增施羊粪有机肥和生物炭则降低。NPK+M+B处理使细菌群落组成朝更有利于增加耐受盐碱、干旱、抗菌和寡营养能力的放线菌门方向发展,显著减少了潜在病原真菌群落丰度,降低了土传真菌性病害风险,改善了土壤微环境。冗余分析表明,AK、OM、TP、TK和TN、TK、CEC、AN是影响土壤细菌和真菌群落结构和功能类群的主要环境驱动因子。PICRUSt功能分析表明,施肥能提高与盐碱、干旱等抗逆相关的细菌代谢功能;FUNGuild功能预测表明,NPK+M+B处理显著降低了土壤病理营养型真菌比例。由此可以看出,有机肥和生物炭改变了盐碱沙化土壤理化性质,有助于优化土壤有益微生物组、抑制有害真菌数量,从而使土壤微生态系统朝稳定健康方向发展。
中图分类号:
顾美英, 唐光木, 张云舒, 黄建, 张志东, 张丽娟, 朱静, 唐琦勇, 楚敏, 徐万里. 有机肥与生物炭对新疆盐碱沙化土壤微生物群落特征的影响[J]. 生态环境学报, 2023, 32(8): 1392-1404.
GU Meiying, TANG Guangmu, ZHANG Yunshu, HUANG Jian, ZHANG Zhidong, ZHANG Lijuan, ZHU Jing, TANG Qiyong, CHU Min, XU Wanli. Effects of Organic Fertilizers and Biochar on Microorganism Community Characteristics in Saline-alkali Sandy Soil of Xinjiang[J]. Ecology and Environment, 2023, 32(8): 1392-1404.
处理 | pH | 阳离子交换量/ (cmol∙kg-1) | 电导率/ (μS∙cm-1) | w(全氮)/ (g∙kg-1) | w(全磷)/ (g∙kg-1) | w(全钾)/ (g∙kg-1) | w(有机质)/ (g∙kg-1) | w(速效氮)/ (mg∙kg-1) | w(速效磷)/ (mg∙kg-1) | w(速效钾)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
CK | 9.21± 0.04a | 2.750± 0.185c | 95.00± 0.10c | 0.160± 0.062b | 0.233± 0.051b | 15.399± 1.037bc | 0.246± 0.007c | 17.678± 2.668c | 3.339± 0.293d | 42.000± 2.000c |
NPK | 9.10± 0.07a | 2.848± 0.173b | 117.03± 12.82b | 0.133± 0.030c | 0.284± 0.093a | 14.980± 1.541c | 0.316± 0.030b | 17.456± 4.441c | 5.559± 0.246c | 48.333± 5.507b |
NPK+M | 9.01± 0.03a | 2.899± 0.120b | 145.97± 15.96a | 0.175± 0.012a | 0.270± 0.050a | 15.743± 0.029bc | 0.431± 0.060a | 22.125± 1.388a | 10.455± 3.571a | 65.000± 12.166a |
NPK+B | 9.11± 0.02a | 3.029± 0.174a | 113.20± 16.18bc | 0.138± 0.042c | 0.275± 0.055a | 16.782± 0.441b | 0.418± 0.059a | 16.344± 4.669c | 5.657± 0.761c | 49.000± 10.440b |
NPK+M+B | 9.16± 0.09a | 2.841± 0.239b | 109.20± 13.05bc | 0.149± 0.017b | 0.257± 0.073a | 18.320± 0.734a | 0.462± 0.090a | 19.235± 5.094b | 7.517± 1.329b | 67.000± 10.440a |
表1 增施有机肥和生物炭对盐碱沙化土壤理化性质的影响
Table 1 Impacts of organic fertilizer and biochar application on physical and chemical properties of saline-alkali sandy soil
处理 | pH | 阳离子交换量/ (cmol∙kg-1) | 电导率/ (μS∙cm-1) | w(全氮)/ (g∙kg-1) | w(全磷)/ (g∙kg-1) | w(全钾)/ (g∙kg-1) | w(有机质)/ (g∙kg-1) | w(速效氮)/ (mg∙kg-1) | w(速效磷)/ (mg∙kg-1) | w(速效钾)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
CK | 9.21± 0.04a | 2.750± 0.185c | 95.00± 0.10c | 0.160± 0.062b | 0.233± 0.051b | 15.399± 1.037bc | 0.246± 0.007c | 17.678± 2.668c | 3.339± 0.293d | 42.000± 2.000c |
NPK | 9.10± 0.07a | 2.848± 0.173b | 117.03± 12.82b | 0.133± 0.030c | 0.284± 0.093a | 14.980± 1.541c | 0.316± 0.030b | 17.456± 4.441c | 5.559± 0.246c | 48.333± 5.507b |
NPK+M | 9.01± 0.03a | 2.899± 0.120b | 145.97± 15.96a | 0.175± 0.012a | 0.270± 0.050a | 15.743± 0.029bc | 0.431± 0.060a | 22.125± 1.388a | 10.455± 3.571a | 65.000± 12.166a |
NPK+B | 9.11± 0.02a | 3.029± 0.174a | 113.20± 16.18bc | 0.138± 0.042c | 0.275± 0.055a | 16.782± 0.441b | 0.418± 0.059a | 16.344± 4.669c | 5.657± 0.761c | 49.000± 10.440b |
NPK+M+B | 9.16± 0.09a | 2.841± 0.239b | 109.20± 13.05bc | 0.149± 0.017b | 0.257± 0.073a | 18.320± 0.734a | 0.462± 0.090a | 19.235± 5.094b | 7.517± 1.329b | 67.000± 10.440a |
处理 | 有效序列数 | OTU数量 | Shannon指数 | Simpson指数 | Chao指数 | Ace指数 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
细菌 (×104) | 真菌 (×104) | 细菌 (×103) | 真菌 (×102) | 细菌 | 真菌 | 细菌 | 真菌 | 细菌 (×103) | 真菌 (×102) | 细菌(×103) | 真菌(×102) | ||||||
CK | 4.042d | 7.039c | 2.746b | 5.39a | 9.190b | 4.338b | 0.995a | 0.898a | 2.742c | 5.285a | 2.791c | 5.441a | |||||
NPK | 4.953c | 7.599b | 3.015b | 5.63a | 9.236b | 5.145a | 0.995a | 0.936a | 3.203 b | 5.598a | 3.216b | 5.790a | |||||
NPK+M | 5.603b | 7.708b | 3.804a | 4.74b | 9.792a | 4.283b | 0.996a | 0.887a | 4.142 a | 4.694b | 4.192a | 4.970b | |||||
NPK+B | 3.943d | 8.664a | 2.849b | 5.20ab | 9.223b | 4.305b | 0.994a | 0.881a | 2.767 c | 5.303a | 2.812b | 5.466a | |||||
NPK+M+B | 6.254a | 5.667d | 3.824a | 2.67c | 9.774ab | 1.296c | 0.996a | 0.272b | 4.332 a | 2.429c | 4.390a | 2.595c |
表2 增施有机肥和生物炭对盐碱沙化土壤细菌和真菌群落多样性的影响
Table 2 Impacts of organic fertilizer and biochar application on bacteria and fungi community diversities in saline-alkali sandy soil
处理 | 有效序列数 | OTU数量 | Shannon指数 | Simpson指数 | Chao指数 | Ace指数 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
细菌 (×104) | 真菌 (×104) | 细菌 (×103) | 真菌 (×102) | 细菌 | 真菌 | 细菌 | 真菌 | 细菌 (×103) | 真菌 (×102) | 细菌(×103) | 真菌(×102) | ||||||
CK | 4.042d | 7.039c | 2.746b | 5.39a | 9.190b | 4.338b | 0.995a | 0.898a | 2.742c | 5.285a | 2.791c | 5.441a | |||||
NPK | 4.953c | 7.599b | 3.015b | 5.63a | 9.236b | 5.145a | 0.995a | 0.936a | 3.203 b | 5.598a | 3.216b | 5.790a | |||||
NPK+M | 5.603b | 7.708b | 3.804a | 4.74b | 9.792a | 4.283b | 0.996a | 0.887a | 4.142 a | 4.694b | 4.192a | 4.970b | |||||
NPK+B | 3.943d | 8.664a | 2.849b | 5.20ab | 9.223b | 4.305b | 0.994a | 0.881a | 2.767 c | 5.303a | 2.812b | 5.466a | |||||
NPK+M+B | 6.254a | 5.667d | 3.824a | 2.67c | 9.774ab | 1.296c | 0.996a | 0.272b | 4.332 a | 2.429c | 4.390a | 2.595c |
图1 增施有机肥和生物炭对盐碱沙化土壤细菌(a)和真菌(b)门水平丰度的影响
Figure 1 Impacts of organic fertilizer and biochar application on relative abundance of bacterial (a) and fungi (b) at phylum level in saline-alkali sandy soil
图2 盐碱沙化土壤增施有机肥和生物炭细菌属水平群落组成热图 1. 鞘氨醇单胞菌属;2. 黄杆菌属;3. 节杆菌属;4. 砂单胞菌属;5. 类诺卡氏菌属;6. 假单胞菌属;7. 纤维弧菌属;8. 土生单胞菌;9. 嗜甲基菌属;10. 芽孢杆菌属;11. 马赛菌属;12. 微枝形杆菌;13. 斯科曼氏球菌属;14. 中华单胞菌;15. 类似芽球菌属;16. 浮霉状菌属;17. 黄色土源菌属;18. Flavitalea;19. 链霉菌属;20. 未鉴定的红螺菌科;21. 氢噬胞菌属;22. 剑菌属;23. 赭黄嗜盐囊菌属;24. 德沃斯氏菌属;25. 苍黄杆菌属;26. 分枝杆菌属;27. 土地杆菌属;28. 小梨形菌属;29. Pir4FF0004-lineage;30. 未鉴定的硝化螺旋菌科;31. 博斯氏菌属;32. 拟绿胶蓝细菌属;33. 不动杆菌属;34. 类固醇杆菌属;35. 大理石雕菌属
Figure 2 Clustering heatmap of bacterial community at genus level in saline-alkali sandy soil with organic fertilizer and biochar application
图3 盐碱沙化土壤增施有机肥和生物炭真菌属水平群落组成热图 1. 地衣小荷叶属;2. 赤霉属;3. 曲霉属;4. 根霉属;5. 被孢霉属;6. 弯孢霉属;7. 链格孢霉属;8. 金孢子霉属;9. 芽枝霉属;10. 枝顶孢霉属;11. 端梗霉属;12. 镰刀霉属;13. 毛霉属;14. 绿僵菌;15. 漆斑菌属;16. 普通橙色地衣;17. 毛壳菌属;18. 柯达酵母属;19. 锥盖伞属;20. 梭孢壳属;21. 淡紫拟青霉属;22. 青霉属;23. 多孔菌属;24. 小核衣属;25. 组织胞浆菌属;26. 假喇叭菌;27. 赛多孢菌;28. 棉革菌属;29. 帚枝霉;30. 嗜热丝孢霉;31. 沃德霉属;32. 蒜孢属;33. 篮状菌属;34.明梭孢属;35. 丝壳菌属
Figure 3 Clustering heatmap of fungi community at genus level in saline-alkali sandy soil with organic fertilizer and biochar application
图4 盐碱沙化土壤增施有机肥和生物炭细菌群落功能预测
Figure 4 Function prediction of bacterial community in saline-alkali sandy soil with organic fertilizer and biochar application
图5 盐碱沙化土壤增施有机肥和生物炭真菌群落功能预测
Figure 5 Function prediction of fungi community in saline-alkali sandy soil with organic fertilizer and biochar application
图6 细菌多样性指数、门组成与土壤理化性质的冗余分析
Figure 6 Redundancy analysis of diversity indices, phylum composition of bacteria with soil physical and chemical properties
[1] |
BARON N C, POLLO A D S, RIGOBELO E C, 2020. Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi[J]. Peer Journal, 8: e9005.
DOI URL |
[2] |
BONANOMI G, ZOTTI M, IDBELLA M, et al., 2021. Mixtures of organic amendments and biochar promote beneficial soil microbiota and affect Fusarium oxysporum f. sp. lactucae, Rhizoctonia solani and Sclerotinia minor disease suppression[J]. Plant Pathology, 71(4): 818-829.
DOI URL |
[3] |
CHEN L, REDMILE-GORDON M, LI J W, et al., 2019. Linking cropland ecosystem services to microbiome taxonomic composition and functional composition in a sandy loam soil with 28-year organic and inorganic fertilizer regimes[J]. Applied Soil Ecology, 139: 1-9.
DOI URL |
[4] |
CUEVA-YESQUÉN L G, GOULART M C, ATTILI D A D, et al., 2021. Multiple plant growth-promotion traits in endophytic bacteria retrieved in the vegetative stage from passionflower[J]. Frontiers in Plant Science, 11: 621740.
DOI URL |
[5] |
DUAN Y M, ZHANG L S, YANG J F, et al., 2022. Insight to bacteria community response of organic management in apple orchard-bagasse fertilizer combined with biochar[J]. Chemosphere, 286(Part2): 131693.
DOI URL |
[6] |
EBRAHIMI-ZARANDI M, RISEH R S, TARKKA M T, 2022. Actinobacteria as effective biocontrol agents against plant pathogens, an overview on their role in eliciting plant defense[J]. Microorganisms, 10(9): 1739.
DOI URL |
[7] |
GU Y Y, ZHANG H Y, LIANG X Y, et al., 2022. Effect of different biochar particle sizes together with bio-organic fertilizer on rhizosphere soil microecological environment on saline-alkali land[J]. Frontiers in Environmental Science, 10: 949190.
DOI URL |
[8] |
HAMMAM A A, MOHAMED E S, ELNAMAS A E, et al., 2022. Impacted application of water-hyacinth-derived biochar and organic manures on soil properties and barley growth[J]. Sustainability, 14(20): 13096.
DOI URL |
[9] |
HAN Z Q, XU P S, LI Z T, et al., 2022. Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation[J]. Global Change Biology Bioenergy, 14(4): 481-495.
DOI URL |
[10] |
KHAN A, KHAN A A, KHAN M J, et al., 2022. Combined effect of organic amendments and seed placement techniques on sorghum yield Under salt-Stressed conditions[J]. Journal of Soil Science and Plant Nutrition, 22(4): 4752-4767.
DOI |
[11] |
KHAN M A, KHAN S T, 2020. Microbial communities and their predictive functional profiles in the arid soil of Saudi Arabia[J]. Soil, 6(2): 513-521.
DOI URL |
[12] | KIRUI C K, NJERU E M, RUNO S, 2022. Diversity and phosphate solubilization efficiency of phosphate solubilizing bacteria isolated from semi-arid agroecosystems of Eastern Kenya[J]. Microbiology Insights, 15: 1-12. |
[13] |
KHAN M I, ALI N, JAN G, et al., 2022. Salt stress alleviation in Triticum aestivum through primary and secondary metabolites modulation by Aspergillus terreus BTK-1[J]. Frontiers in Plant Science, 13: 779623.
DOI URL |
[14] |
LI X K, LANG D Y, WANG J H, et al., 2023. Plant-beneficial Streptomyces dioscori SF1 potential biocontrol and plant growth promotion in saline soil within the arid and semi-arid areas[J]. Environmental Science and Pollution Research International, 30(27): 70194-70212.
DOI |
[15] |
MAO X X, YANG Y, GUAN P B, et al., 2022. Remediation of organic amendments on soil salinization: Focusing on the relationship between soil salts and microbial communities[J]. Ecotoxicology and Environmental Safety, 239: 113616.
DOI URL |
[16] |
MINHAL F, MA'AS A, HANUDIN E, et al., 2020. Improvement of the chemical properties and buffering capacity of coastal sandy soil as affected by clays and organic by-product application[J]. Soil and Water Research, 15(2): 93-100.
DOI URL |
[17] |
MUGONZA J, OTIM M H, EGONYU J P, 2020. The comparative virulence of an atoxigenic strain of Aspergillus flavus (Eurotiales: Trichocomaceae) and the commercial ICIPE 69 Metarhizium anisopliae (Hypocreales: Clavicipitaceae) to the bean leaf beetle Ootheca mutabilis (Coleoptera: Chrysomelidae)[J]. International Journal of Tropical Insect Science, 40(2): 403-411.
DOI |
[18] |
NAFIS A, RAKLAMI A, BECHTAOUI N, et al., 2019. Actinobacteria from extreme niches in Morocco and their plant growth-promoting potentials[J]. Diversity, 11(8): 139-139.
DOI URL |
[19] |
OZIMEK E, HANAKA A, 2020. Mortierella species as the plant growth-promoting fungi present in the agricultural soils[J]. Agriculture, 11(1): 1-18.
DOI URL |
[20] |
SAFDARIAN M, ASKARI H, NEMATZADEH G, et al., 2020. Halophile plant growth-promoting rhizobacteria induce salt tolerance traits in wheat seedlings ( Triticum aestivum L.)[J]. Pedosphere, 30(5): 684-693.
DOI URL |
[21] |
SILVA C C G D, MEDEIROS E V D, FRACETTO G G M, et al., 2021. Biochar and cow manure on chemical and microbial community in regosol with bean[J]. Journal of Soil Science and Plant Nutrition, 21(3): 1552-1564.
DOI |
[22] |
SOLAIMAN Z M, SHAFI M I, BEAMONT E, et al., 2020. Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil[J]. Agriculture, 10(10): 1-14.
DOI URL |
[23] |
TCHAKOUNTÉ G V T, BERGER B, PATZ S, et al., 2018. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil[J]. Microbiological Research, 214: 47-59.
DOI PMID |
[24] |
WANG S B, GAO P L, ZHANG Q W, et al., 2022a. Application of biochar and organic fertilizer to saline-alkali soil in the Yellow River Delta: Effects on soil water, salinity, nutrients, and maize yield[J]. Soil Use and Management, 38(4): 1679-1692.
DOI URL |
[25] |
WANG S B, GAO P L, ZHANG Q W, et al., 2022b. Biochar improves soil qualit2022y and wheat yield in saline-alkali soils beyond organic fertilizer in a 3-year field trial[J]. Environmental Science and Pollution Research, 30(7): 19097-19110.
DOI |
[26] |
WANG Y, PAN F, WANG Q, et al., 2022. The effect of different remediation treatments on soil fungal communities in rare earth tailings soil[J]. Forests, 13(12): 1987.
DOI URL |
[27] | HOU J X, ZHANG J R, LIU X Z, et al., 2023. Effect of biochar addition and reduced irrigation regimes on growth, physiology and water use efficiency of cotton plants under salt stress[J]. Industrial Crops & Products, 198: 116702. |
[28] |
WU Z X, LI H H, LIU Q L, et al., 2020. Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth[J]. Rhizosphere, 16: 100264.
DOI URL |
[29] |
YANG J J, LI W J, TENG D X, et al., 2022. Metagenomic insights into microbial community structure, function, and salt adaptation in saline soils of arid land, China[J]. Microorganisms, 10(11): 2183-2183.
DOI URL |
[30] |
YAO G S, CHEN X F, ZHENG H W, et al., 2021. Genomic and chemical investigation of bioactive secondary metabolites from a marine-derived fungus Penicillium steckii P2648[J]. Frontiers in Microbiology, 12: 600991.
DOI URL |
[31] |
YOSHIURA C A, VENTURINI A M, BRAGA L P P, et al., 2021. Responses of low-cost input combinations on the microbial structure of the maize rhizosphere for greenhouse gas mitigation and plant biomass production[J]. Frontiers in Plant Science. 12: 683658.
DOI URL |
[32] |
ZAHRA S T, TARIQ M, ABDULLAH M, et al., 2023. Dominance of Bacillus species in the wheat (Triticum aestivum L.) rhizosphere and their plant growth promoting potential under salt stress conditions[J]. Peer Journal, 11: e14621.
DOI URL |
[33] |
ZHAO P N, YU J, ZHANG X Y, et al., 2022. Trifolium repens and biochar addition affecting soil nutrients and bacteria community[J]. Environmental Science and Pollution Research International, 30(12): 33927-33941.
DOI PMID |
[34] |
陈丽美, 李小英, 岳学文, 等, 2019. 竹炭与有机肥混施对火龙果产量和品质影响及其改土作用[J]. 生态环境学报, 28(11): 2231-2238.
DOI |
CHEN L M, LI X Y, YUE X W, et al., 2019. Effect of mixed application of bamboo charcoal and organic fertilizer on yield and quality of red pitaya and soil amelioration[J]. Ecology and Environmental Sciences, 28(11): 2231-2238. | |
[35] | 陈松鹤, 向晓玲, 雷芳, 等, 2022. 秸秆覆盖配施氮肥条件下根际土真菌群落及其与小麦产量关系的研究[J]. 生态学报, 42(21): 8751-8761. |
CHEN S H, XIANG X L, LEI F, et al., 2022. Relationship between rhizosphere fungal community and wheat yield under straw mulching combined with nitrogen fertilizer[J]. Acta Ecologica Sinica, 42(21): 8751-8761. | |
[36] |
代金霞, 田平雅, 沈聪, 等, 2021. 耐盐植物根际促生菌筛选及促生效应研究[J]. 生态环境学报, 30(5): 968-975.
DOI |
DAI J X, TIAN P Y, SHEN C, et al., 2022. Screening of rhizosphere bacteria from salt tolerant plants and their growth promoting effects[J]. Ecology and Environmental Sciences, 30(5): 968-975. | |
[37] | 管鸿智, 黄荣珍, 王金平, 等, 2023. 红壤区退化林地表土真菌群落结构对土壤改良措施的响应[J]. 环境科学, 44(1): 494-501. |
GUAN H Z, HUANG R Z, WANG J P, et al., 2023. Response of topsoil fungal community structure to soil improvement measures in degraded forest of red soil region[J]. Environmental Science, 44(1): 494-501. | |
[38] | 顾美英, 徐万里, 马凯, 等, 2021. 不同定植年限核桃园土壤细菌群落多样性及碳代谢功能特征[J]. 生态学杂志, 40(7): 2045-2056. |
GU M Y, XU W L, MA K, et al., 2021. Soil bacterial community diversity and carbon source metabolism function in walnut orchard with different stand ages[J]. Chinese Journal of Ecology, 40(7): 2045-2056. | |
[39] | 顾美英, 张志东, 唐光木, 等, 2022. 黑果枸杞不同组织内生真菌群落组成及生态功能分析[J]. 菌物学报, 41(8): 1254-1267. |
GU M Y, ZHANG Z D, TANG G M, et al., 2022. Community composition and ecological function of endophytic fungi in different tissues of Lycium ruthenicum[J]. Mycosystema, 41(8): 1254-1267. | |
[40] | 黄俊杰, 陆雅海, 2022. 土壤拟杆菌与梭菌分解多糖类有机物质的研究进展与展望[J]. 微生物学通报, 49(3): 1147-1157. |
HUANG J J, LU Y H, 2022. Decomposition of soil polymeric organic matter by Bacteroidetes and Clostridia: Progress and perspectives[J]. Microbiology China, 49(3): 1147-1157. | |
[41] | 胡坤, 张红雪, 郭力铭, 等, 2021. 烟秆炭基肥对薏苡土壤有机碳组分及微生物群落结构和丰度的影响[J]. 中国生态农业学报(中英文), 29(9): 1592-1603. |
HU K, ZHANG H X, GUO L M, et al., 2021. Effects of tobacco stalk biochar-based fertilizer on the organic carbon fractions and microbial community structure of adlay soil[J]. Chinese Journal of Eco-Agriculture, 29(9): 1592-1603. | |
[42] | 李依韦, 毕佳欣, 袁琴, 等, 2020. 不同施肥处理玉米根际微生物种群结构及代谢多样性[J]. 中国微生态学杂志, 32(1): 21-24, 30. |
LI Y W, BI J X, YUAN Q, et al., 2020. The population structure and metabolic diversity of microorganisms in rhizosphere soil of corn treated with different fertilizers[J]. Chinese Journal of Microecology, 32(1): 21-24, 30. | |
[43] | 梁萌, 米晓军, 李晨华, 等, 2022. 新疆准噶尔盆地未开垦盐碱土盐分与盐生植被多样性分析[J]. 干旱区地理, 45(1): 185-196. |
LIANG M, MI X J, LI C H, et al., 2022. Salinity characteristics and halophytic vegetation diversity of uncultivated saline-alkali soil in Junggar Basin, Xinjiang[J]. Arid Land Geography, 45(1): 185-196. | |
[44] | 刘广明, 杨劲松, 何丽丹, 等, 2011. 基于模糊综合评判法的新疆典型干旱区土壤盐漠退化风险评价[J]. 农业工程学报, 27(3): 1-5. |
LIU G M, YANG J S, HE L D, et al., 2011. Fuzzy comprehensive evaluation based assessment of soil alkaline desertification in typical arid area of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 27(3): 1-5. | |
[45] | 鲁如坤. 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Analytical Methods for Soil and Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press. | |
[46] | 南丽丽, 谭杰辉, 郭全恩, 2020. 黄土高原半干旱区轮作休耕模式对土壤真菌的影响[J]. 生态学报, 40(23): 8582-8592. |
NAN L L, TAN J H, GUO Q E, 2020. Effects of fallow rotation modes on soil fungal communities in semi-arid area of the Loess Plateau,northwest China[J]. Acta Ecologica Sinica, 40(23): 8582-8592. | |
[47] |
申午艳, 冯政君, 秦文芳, 等, 2020. 盐碱胁迫下黑麦草生长及离子微区分布特征[J]. 草业学报, 29(2): 52-63.
DOI |
SHEN W Y, FENG Z J, QIN W F, et al., 2020. Effects of saline-alkali stress on the growth and ion micro-distribution of ryegrass plants[J]. Acta Prataculturae Sinica, 29(2): 52-63. | |
[48] | 石玉龙, 高佩玲, 刘杏认, 等, 2019. 生物炭和有机肥施用提高了华北平原滨海盐土微生物量[J]. 植物营养与肥料学报, 25(4): 555-567. |
SHI Y L, GAO P L, LIU X R, et al., 2019. Increased microbial biomass in coastal saline fields of North China Plain by application of biochar and organic manure[J]. Journal of Plant Nutrition and Fertilizers, 25(4): 555-567. | |
[49] | 孙强, 杨旭, 孟军, 等, 2022. 生物炭对棕壤团聚体空间分布及有机碳的影响[J]. 农业环境科学学报, 41(11): 2515-2524. |
SUN Q, YANG X, MENG J, et al., 2022. Effects of biochar on soil aggregate spatial distribution and soil organic carbon in brown earth soil[J]. Journal of Agro-Environment Science, 41(11): 2515-2524. | |
[50] | 王光飞, 马艳, 郭德杰, 等, 2015. 秸秆生物炭对辣椒疫病的防控效果及机理研究[J]. 土壤, 47(6): 1107-1114. |
WANG G F, MA Y, GUO D J, et al., 2015. Effect and mechanism of straw biochar on disease control of phytophthora blight of chilli pepper[J]. Soils, 47(6): 1107-1114. | |
[51] |
王光华, 刘俊杰, 于镇华, 等, 2016. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 32(2): 14-20.
DOI |
WANG G H, LIU J J, YU Z H, et al., 2016. Research progress of Acidobacteria ecology in soils[J]. Biotechnology Bulletin, 32(2): 14-20. | |
[52] | 王紫艳, 杨桂玲, 虞轶俊, 等, 2020. 有机肥施用对农产品质量安全及土壤环境的影响研究[J]. 农产品质量与安全 (4): 67-73. |
WANG Z Y, YANG G L, YU Y J, et al., 2020. Study on the effects of organic fertilizer application on the quality and safety of agricultural products and soil[J]. Quality and Safety of Agro-Products (4): 67-73. | |
[53] | 王艮梅, 陈捷, 范之馨, 等, 2022. 外源有机物料添加对滨海盐碱土细菌群落结构的影响[J]. 生态与农村环境学报, 38(1): 85-95. |
WANG G M, CHEN J, FAN Z X, et al., 2022. The shift of bacterial community structure in coastal saline-alkaline soil upon addition of different organic materials[J]. Journal of Ecology and Rural Environment, 38(1): 85-95. | |
[54] | 于菲, 赵硕, 赵影, 等, 2022. 长期施用有机肥对松嫩平原西部盐碱土肥力和玉米产量的影响[J]. 干旱地区农业研究, 40(2): 172-180. |
YU F, ZHAO S, ZHAO Y, et al., 2022. Effects of long-term application of cattle manure on soil fertility and corn yield of saline-sodic soil in western Songnen Plain[J]. Agricultural Research in the Arid Areas, 40(2): 172-180. | |
[55] | 袁银龙, 孙杰, 徐如玉, 等, 2020. 丛枝菌根真菌与有机肥配施对甜玉米根际土壤关键碳循环功能基因的影响[J]. 福建农业学报, 35(7): 753-763. |
YUAN Y L, SUN J, XU R Y, et al., 2020. Effects of arbuscular mycorrhizal fungi and organic fertilizer on key microbial carbon-cycle genes in rhizosphere soil at sweet corn field[J]. Fujian Journal of Agricultural Sciences, 35(7): 753-763. | |
[56] | 郑佳华, 赵萌莉, 王琪, 等, 2022. 放牧和刈割对大针茅草原土壤微生物群落结构及多样性的影响[J]. 生态学报, 42(12): 4998-5008. |
ZHENG J H, ZHAO M L, WANG Q, et al., 2022. Effects of management regime on soil microbial community structure and diversity of Stipa grandis grassland[J]. Acta Ecologica Sinica, 42(12): 4998-5008. | |
[57] | 张建兵, 杨劲松, 姚荣江, 等, 2013. 有机肥与覆盖方式对滩涂围垦农田水盐与作物产量的影响[J]. 农业工程学报, 29(15): 116-125. |
ZHANG J B, YANG J S, YAO R J, et al., 2013. Dynamics of soil water, salt and crop growth under farmyard manure and mulching in coastal tidal flat soil of northern Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 29(15): 116-125. | |
[58] | 张云舒, 唐光木, 蒲胜海, 等, 2020. 减氮配施炭基肥对棉田土壤养分、氮素利用率及产量的影响[J]. 西北农业学报, 29(9): 1372-1377. |
ZHANG Y S, TANG G M, PU S H, et al., 2020. Effect of biochar-based compound fertilizeron soil nutrients and cotton yield in irrigated sandy soil under nitrogen reduction condition[J]. Acta Agriculturae Boreali-occidentalis Sinica, 29(9): 1372-1377. | |
[59] |
赵雅姣, 刘晓静, 吴勇, 等, 2020. 西北半干旱区紫花苜蓿-小黑麦间作对根际土壤养分和细菌群落的影响[J]. 应用生态学报, 31(5): 1645-1652.
DOI |
ZHAO Y J, LIU X J, WU Y, et al., 2020. Effects of Medicago sativa-Triticale wittmack intercropping system on rhizosphere soil nutrients and bacterial community in semi-arid region of Northwest China[J]. Chinese Journal of Applied Ecology, 31(5): 1645-1652. |
[1] | 李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069. |
[2] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[3] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[4] | 向兴, 满百膺, 张俊忠, 罗洋, 毛小涛, 张超, 孙丙华, 王希. 黄山土壤细菌群落及氮循环功能群的垂向分布格局[J]. 生态环境学报, 2023, 32(1): 56-69. |
[5] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[6] | 刘宁, 刘洋, 续京平, 宋慧平, 冯政君, 程芳琴. 丛枝菌根真菌对人工湿地植物生长及水质净化的影响研究[J]. 生态环境学报, 2022, 31(7): 1434-1441. |
[7] | 朱锦福, 黄瑞灵, 董志强, 毛晓宁, 周华坤. 青海湖高寒湿地土壤细菌群落对氮添加的响应[J]. 生态环境学报, 2022, 31(6): 1101-1109. |
[8] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[9] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
[10] | 刘志君, 崔丽娟, 李伟, 李晶, 雷茵茹, 朱怡诺, 王汝苗, 窦志国. 互花米草入侵对盐城滨海湿地nirS型反硝化细菌多样性及群落结构的影响[J]. 生态环境学报, 2022, 31(4): 704-714. |
[11] | 刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722. |
[12] | 张苗苗, 陈书涛, 丁司丞, 王瑾, 章堃. 增温及秸秆施用对大豆-冬小麦轮作农田土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 2022, 31(4): 759-770. |
[13] | 杨贤房, 陈朝, 郑林, 万智巍, 陈永林, 王远东. 稀土矿区不同土地利用类型土壤细菌群落特征及网络分析[J]. 生态环境学报, 2022, 31(4): 793-801. |
[14] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[15] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||