生态环境学报 ›› 2023, Vol. 32 ›› Issue (12): 2083-2093.DOI: 10.16258/j.cnki.1674-5906.2023.12.001
• “新污染物”研究专栏 •
下一篇
收稿日期:
2023-08-13
出版日期:
2023-12-18
发布日期:
2024-02-05
通讯作者:
*张修玉。E-mail: zhangxiuyu@126.com作者简介:
胡习邦(1981年生),男,高级工程师,博士,主要从事生态风险研究。E-mail: hooyan@126.com
基金资助:
HU Xibang(), GUAN Xiaotong, XIE Zixia, ZHANG Xiuyu*(
)
Received:
2023-08-13
Online:
2023-12-18
Published:
2024-02-05
摘要:
邻苯二甲酸二乙基已基酯(Diethylhexyl phthalate,DEHP)广泛存在于各种环境介质中,且非常容易累积在土壤环境中,通过多种途径进入生态系统循环,并沿着食物链传递影响人体健康。中国尚未出台DEHP基于农用地安全的生态阈值基准,因此,开展DEHP农用地土壤生态风险和生态安全等研究非常必要。通过从国内外数据库和相关文献中筛选出土壤酶反应活性、植物、无脊椎动物和脊椎动物等15种为代表性物种陆地生物最敏感测试终点毒性数据,应用物种敏感性分布(Species Sensitivity Distribution,SSD)方法构建了DEHP对陆生生物的SSD曲线;计算了DEHP对不同陆生生物的5%危害浓度(HC5),分析比较DEHP对不同生物类别的毒性敏感性差异及其特征,并利用风险商(RQ)评价了中国不同地区土壤环境DEHP对不同生物类别的生态风险。结果表明,中国不同地区农用地中DEHP的污染程度差异较大,其平均质量分数范围为0-18.3 mg∙kg−1,平均质量分数较高的地区从高到低依次为:青岛 (18.3 mg∙kg−1)>贵州 (14.3 mg∙kg−1)>广州 (8.87 mg∙kg−1)>大连 (2.84 mg∙kg−1)>杭州 (1.48 mg∙kg−1)>南京 (1.37 mg∙kg−1)>重庆 (1.04 mg∙kg−1)。基于发育、繁殖和行为等慢性毒性数据推导出的预测无效应浓度(PNEC)为1.24 mg∙kg−1;各地区的DEHP慢性毒性的风险商值范围为0-14.7,中国不同地区土壤存在一定的生态风险差异,青岛、贵州等地调查点农用地土壤生态风险商(RQ)较高,分别为14.7、11.5,表明生态风险较高,但大部分地区生态风险较低。该研究通过采用SSD方法推导DEHP农用地生态环境基准,可为农用地土壤生态风险评估与管控提供技术支持。
中图分类号:
胡习邦, 关晓彤, 谢紫霞, 张修玉. 农用地土壤中邻苯二甲酸二乙基已基酯的污染现状及生态风险评估[J]. 生态环境学报, 2023, 32(12): 2083-2093.
HU Xibang, GUAN Xiaotong, XIE Zixia, ZHANG Xiuyu. Pollution Status and Ecological Risk Assessment of Diethylhexyl Phthalate in Agricultural Soil[J]. Ecology and Environment, 2023, 32(12): 2083-2093.
数据类别 | 暴露终点 | 暴露时间 | 单位 | 浓度类型 | 介质 |
---|---|---|---|---|---|
慢性 | EC10/NOEC/NOEL (所有物种) | ≤7周 | mg∙kg−1 | 总浓度 或溶解态 | 土壤 |
表1 毒理数据筛选要求
Table 1 Criteria for selecting toxicity data
数据类别 | 暴露终点 | 暴露时间 | 单位 | 浓度类型 | 介质 |
---|---|---|---|---|---|
慢性 | EC10/NOEC/NOEL (所有物种) | ≤7周 | mg∙kg−1 | 总浓度 或溶解态 | 土壤 |
序号 | 中文名 | 学名 | 分类 | 效应浓度/(mg∙kg−1) | 毒理效应 | 数据来源 |
---|---|---|---|---|---|---|
1 | 土壤脱氢酶 | Dehydrogenation | 微生物酶 | 100 | 显著抑制土壤脱氢酶活性 | 秦华等, |
2 | 小白菜 | Brassica chinensis | 被子植物 | 0.432 | 影响叶片叶绿素的生物化学作用、植株的生长和形态 | Yuan et al., |
3 | 黄瓜 | Cucumis sativus | 被子植物 | 5.00 | 影响根、茎的生化反应 | Ma et al., |
4 | 黑麦草 | Lolium perenne | 被子植物 | 5.00 | 影响高度生长 | Ma et al., |
5 | 萝卜 | Raphanus sativus | 被子植物 | 5.00 | 影响根茎的丙二醛代谢, 叶绿素生化反应 | Ma et al., |
6 | 小麦 | Triticum aestivum | 被子植物 | 8.12 | 影响叶绿素A、光合作用、超氧化物歧化酶活性 | Gao et al., |
7 | 花生 | Peanut | 被子植物 | 12.50 | 生物累积作用 | Wang et al., |
8 | 洋葱 | Allium cepa | 被子植物 | 500 | 影响生长代谢 | Ma et al., |
9 | 燕麦 | Avena sativa | 被子植物 | 500 | 影响根茎的丙二醛代谢 | Ma et al., |
10 | 紫苜蓿 | Medicago sativa | 被子植物 | 500 | 影响发芽、生长 | Ma et al., |
11 | 水稻 | Oryza sativa | 被子植物 | 1.00×103 | 影响根茎生长、叶绿素A的浓度 | Kim et al., |
12 | 绿豆 | Vigna radiata | 被子植物 | 1.00×103 | 影响气孔孔径等生理机能 | Kim et al., |
13 | 跳虫 | Folsomia candida | 节肢动物 | 500 | 危害基因, 可能致死 | Kim et al., |
14 | 赤子爱胜蚓 | Eisenia fetida | 环节动物 | 0.709 | 影响溶酶体细胞膜的完整性 | Ma et al., |
15 | 大鼠 | Laboratory Rat | 脊索动物 | 158 | 肝组织肝细胞水样变性, 细胞内水分增多, 胞体肿大, 胞浆比较清亮 | 胡帅尔等, |
表2 DEHP的慢性毒理数据表
Table 2 Chronic toxicological data for DEHP
序号 | 中文名 | 学名 | 分类 | 效应浓度/(mg∙kg−1) | 毒理效应 | 数据来源 |
---|---|---|---|---|---|---|
1 | 土壤脱氢酶 | Dehydrogenation | 微生物酶 | 100 | 显著抑制土壤脱氢酶活性 | 秦华等, |
2 | 小白菜 | Brassica chinensis | 被子植物 | 0.432 | 影响叶片叶绿素的生物化学作用、植株的生长和形态 | Yuan et al., |
3 | 黄瓜 | Cucumis sativus | 被子植物 | 5.00 | 影响根、茎的生化反应 | Ma et al., |
4 | 黑麦草 | Lolium perenne | 被子植物 | 5.00 | 影响高度生长 | Ma et al., |
5 | 萝卜 | Raphanus sativus | 被子植物 | 5.00 | 影响根茎的丙二醛代谢, 叶绿素生化反应 | Ma et al., |
6 | 小麦 | Triticum aestivum | 被子植物 | 8.12 | 影响叶绿素A、光合作用、超氧化物歧化酶活性 | Gao et al., |
7 | 花生 | Peanut | 被子植物 | 12.50 | 生物累积作用 | Wang et al., |
8 | 洋葱 | Allium cepa | 被子植物 | 500 | 影响生长代谢 | Ma et al., |
9 | 燕麦 | Avena sativa | 被子植物 | 500 | 影响根茎的丙二醛代谢 | Ma et al., |
10 | 紫苜蓿 | Medicago sativa | 被子植物 | 500 | 影响发芽、生长 | Ma et al., |
11 | 水稻 | Oryza sativa | 被子植物 | 1.00×103 | 影响根茎生长、叶绿素A的浓度 | Kim et al., |
12 | 绿豆 | Vigna radiata | 被子植物 | 1.00×103 | 影响气孔孔径等生理机能 | Kim et al., |
13 | 跳虫 | Folsomia candida | 节肢动物 | 500 | 危害基因, 可能致死 | Kim et al., |
14 | 赤子爱胜蚓 | Eisenia fetida | 环节动物 | 0.709 | 影响溶酶体细胞膜的完整性 | Ma et al., |
15 | 大鼠 | Laboratory Rat | 脊索动物 | 158 | 肝组织肝细胞水样变性, 细胞内水分增多, 胞体肿大, 胞浆比较清亮 | 胡帅尔等, |
序号 | 地点 | 采样时间 | 土壤状况 | 样品量 | 最小值 | 最大值 | 中位数 | 平均值 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
1 | 全国a | 2019年 | 覆膜农用地 | 59 | 9.40×10−2 | 0.388 | ‒ | 0.160 | 靳拓等, |
2 | 22个省 | 2018年 | 农田 | 69 | 1.70×10−2 | 1.03 | ‒ | 0.110 | 胡艾伦, |
3 | 全国b | ‒ 1) | 农用地 | ‒ | nd 2) | 6.22 | 0.560 | 0.820 | Niu et al., |
4 | 北京a | 2014年 | 菜地 | 10 | 1.10×10−2 | 1.22 | 0.310 | 0.370 | 陈佳祎等, |
5 | 北京b | ‒ | 菜地 | 12 | ‒ | ‒ | 0.170 | 0.450 | Chen et al., |
6 | 北京c | ‒ | 菜地 | 60 | nd | 1.22 | 0.340 | 0.380 | Li et al., |
7 | 天津a | ‒ | 农田 | 12 | 9.7×10−2 | 1.88 | ‒ | 0.820 | 任超等, |
8 | 天津b | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.580 | Zhou et al., |
9 | 天津c | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.410 | |
10 | 重庆 | ‒ | 大棚 | 春季 | ‒ | ‒ | ‒ | 1.04 | Li et al., |
11 | 河北a | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.360 | Zhou et al., |
12 | 河北b | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.340 | |
13 | 沈阳 | 2017年 | 大棚 | 16 | ‒ | ‒ | 9.00×10−2 | 0.410 | Chen et al., |
14 | 大连 | 2021年 | 菜地 | 22 | ‒ | ‒ | ‒ | 2.84 | Wang et al., |
15 | 黄淮海 | ‒ | 农用地 | 136 | nd | 2.13 | 0.370 | 0.410 | Zhou et al., |
16 | 黄淮 | ‒ | 农田土壤 | 207 | nd | 2.31 | 0.190 | 0.300 | 周斌, |
17 | 河南a | ‒ | 植烟土壤 | 203 | nd | 0.652 | 0.130 | 0.130 | 戴华鑫, |
18 | 河南b | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.320 | Zhou et al., |
19 | 河南c | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.350 | |
20 | 山东a | ‒ | 菜地 | 100 | 0.433 | 11.49 | 2.07 | 2.78 | Sun et al., |
21 | 山东b | ‒ | 菜地 | 15 | ‒ | ‒ | ‒ | 0.430 | Zhou et al., |
22 | 山东c | ‒ | 作物 | 30 | ‒ | ‒ | ‒ | 0.240 | |
23 | 山东半岛 | ‒ | 地膜农用地 | 108 | 0 | 2.94 | ‒ | 0.290 | Li et al., |
24 | 寿光a | ‒ | 菜地 | 32 | 7.80×10−2 | 1.004 | ‒ | 0.190 | Li et al., |
25 | 寿光b | ‒ | 菜地 | 31 | 7.60×10−2 | 0.972 | 0.110 | 0.180 | Zhou et al., |
26 | 寿光c | ‒ | 大棚 | 12 | ‒ | ‒ | 0.220 | 0.490 | |
27 | 青岛 | 2013年 | 花生、棉花种植土壤 | ‒ | 12.5 | 35.8 | - | 18.3 | 张海光等, |
28 | 阿克苏 | ‒ | 棉花土壤 | 94 | nd | 1.50 | 7.00×10−3 | 0.100 | 彭祎等, |
29 | 吐鲁番 | ‒ | 葡萄基地 | 18 | 0.382 | 0.798 | ‒ | 0.630 | 李海峰等, |
30 | 陕西a | ‒ | 菜地 | 23 | 2.10×10−2 | 0.600 | ‒ | 8.00×10−2 | 冯艳红等, |
31 | 陕西b | ‒ | 农用地 | ‒ | 0.460 | 2.30 | ‒ | - | Shi et al., |
32 | 西安 | ‒ | 农用地 | 62 | 4.10×10−2 | 1.72 | ‒ | 0.760 | Wang et al., |
33 | 咸阳 | ‒ | 大棚 | 6 | ‒ | ‒ | 0.100 | 0.380 | Chen et al., |
34 | 长三角a | 2018年 | 农田 | 228 | 4.00×10−3 | 1.51 | 0.120 | 0.180 | Wei et al., |
35 | 长三角b | ‒ | 农田 | 241 | nd | 9.10 | 0.350 | 0.550 | Sun et al., |
36 | 南京a | ‒ | 大棚 | 44 | 0.120 | 5.82 | 1.09 | 1.37 | Wang et al., |
37 | 南京b | 2017年 | 胡椒地大棚 | 7 | ‒ | ‒ | ‒ | 0.270 | Li et al., |
38 | 南京c | ‒ | 大棚 | 13 | ‒ | ‒ | 0.180 | 0.390 | Chen et al., |
39 | 常熟 | ‒ | 大棚 | 5 | ‒ | ‒ | 0.050 | 0.360 | |
40 | 海门 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.160 | 0.340 | |
41 | 杭州 | ‒ | 农用地 | 10 | 0.810 | 2.20 | ‒ | 1.48 | 陈永山等, |
42 | 广东 | 2000‒2005年 | 菜地 | 444 | nd | 6.48 | ‒ | 0.150 | 杨国义等, |
43 | 广州深圳 | 2002年 | 菜地 | 27 | 2.82 | 25.1 | ‒ | 10.9 | 蔡全英等, |
44 | 汕头 | 2015年 | 菜地 | 63 | 1.00×10−3 | 4.20 | ‒ | 0.160 | 吴山等, |
45 | 高州 | ‒ | 农田 | 15 | 6.90×10−2 | 0.242 | 0.130 | 0.140 | 李霞等, |
46 | 福州 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.160 | 0.450 | Chen et al., |
47 | 昆明 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.100 | 0.310 | |
48 | 海南 | ‒ | 大棚 | ‒ | ‒ | ‒ | ‒ | 0.170 | 郇志博等, |
49 | 贵州东部 | 2020年 | 烟叶种植 | 40 | 0.110 | 5.59 | 4.50 | 14.3 | 马军等, |
50 | 宁夏 | 2018年 | 不同土地利用 | 87 | 3.54×10−2 | 7.80 | 0.420 | 1.02 | 张小红等, |
表3 不同地区农用地土壤中DEHP质量分数比较
Table 3 Concentration of DEHP in agriculture soil mg?kg?1
序号 | 地点 | 采样时间 | 土壤状况 | 样品量 | 最小值 | 最大值 | 中位数 | 平均值 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
1 | 全国a | 2019年 | 覆膜农用地 | 59 | 9.40×10−2 | 0.388 | ‒ | 0.160 | 靳拓等, |
2 | 22个省 | 2018年 | 农田 | 69 | 1.70×10−2 | 1.03 | ‒ | 0.110 | 胡艾伦, |
3 | 全国b | ‒ 1) | 农用地 | ‒ | nd 2) | 6.22 | 0.560 | 0.820 | Niu et al., |
4 | 北京a | 2014年 | 菜地 | 10 | 1.10×10−2 | 1.22 | 0.310 | 0.370 | 陈佳祎等, |
5 | 北京b | ‒ | 菜地 | 12 | ‒ | ‒ | 0.170 | 0.450 | Chen et al., |
6 | 北京c | ‒ | 菜地 | 60 | nd | 1.22 | 0.340 | 0.380 | Li et al., |
7 | 天津a | ‒ | 农田 | 12 | 9.7×10−2 | 1.88 | ‒ | 0.820 | 任超等, |
8 | 天津b | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.580 | Zhou et al., |
9 | 天津c | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.410 | |
10 | 重庆 | ‒ | 大棚 | 春季 | ‒ | ‒ | ‒ | 1.04 | Li et al., |
11 | 河北a | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.360 | Zhou et al., |
12 | 河北b | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.340 | |
13 | 沈阳 | 2017年 | 大棚 | 16 | ‒ | ‒ | 9.00×10−2 | 0.410 | Chen et al., |
14 | 大连 | 2021年 | 菜地 | 22 | ‒ | ‒ | ‒ | 2.84 | Wang et al., |
15 | 黄淮海 | ‒ | 农用地 | 136 | nd | 2.13 | 0.370 | 0.410 | Zhou et al., |
16 | 黄淮 | ‒ | 农田土壤 | 207 | nd | 2.31 | 0.190 | 0.300 | 周斌, |
17 | 河南a | ‒ | 植烟土壤 | 203 | nd | 0.652 | 0.130 | 0.130 | 戴华鑫, |
18 | 河南b | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.320 | Zhou et al., |
19 | 河南c | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.350 | |
20 | 山东a | ‒ | 菜地 | 100 | 0.433 | 11.49 | 2.07 | 2.78 | Sun et al., |
21 | 山东b | ‒ | 菜地 | 15 | ‒ | ‒ | ‒ | 0.430 | Zhou et al., |
22 | 山东c | ‒ | 作物 | 30 | ‒ | ‒ | ‒ | 0.240 | |
23 | 山东半岛 | ‒ | 地膜农用地 | 108 | 0 | 2.94 | ‒ | 0.290 | Li et al., |
24 | 寿光a | ‒ | 菜地 | 32 | 7.80×10−2 | 1.004 | ‒ | 0.190 | Li et al., |
25 | 寿光b | ‒ | 菜地 | 31 | 7.60×10−2 | 0.972 | 0.110 | 0.180 | Zhou et al., |
26 | 寿光c | ‒ | 大棚 | 12 | ‒ | ‒ | 0.220 | 0.490 | |
27 | 青岛 | 2013年 | 花生、棉花种植土壤 | ‒ | 12.5 | 35.8 | - | 18.3 | 张海光等, |
28 | 阿克苏 | ‒ | 棉花土壤 | 94 | nd | 1.50 | 7.00×10−3 | 0.100 | 彭祎等, |
29 | 吐鲁番 | ‒ | 葡萄基地 | 18 | 0.382 | 0.798 | ‒ | 0.630 | 李海峰等, |
30 | 陕西a | ‒ | 菜地 | 23 | 2.10×10−2 | 0.600 | ‒ | 8.00×10−2 | 冯艳红等, |
31 | 陕西b | ‒ | 农用地 | ‒ | 0.460 | 2.30 | ‒ | - | Shi et al., |
32 | 西安 | ‒ | 农用地 | 62 | 4.10×10−2 | 1.72 | ‒ | 0.760 | Wang et al., |
33 | 咸阳 | ‒ | 大棚 | 6 | ‒ | ‒ | 0.100 | 0.380 | Chen et al., |
34 | 长三角a | 2018年 | 农田 | 228 | 4.00×10−3 | 1.51 | 0.120 | 0.180 | Wei et al., |
35 | 长三角b | ‒ | 农田 | 241 | nd | 9.10 | 0.350 | 0.550 | Sun et al., |
36 | 南京a | ‒ | 大棚 | 44 | 0.120 | 5.82 | 1.09 | 1.37 | Wang et al., |
37 | 南京b | 2017年 | 胡椒地大棚 | 7 | ‒ | ‒ | ‒ | 0.270 | Li et al., |
38 | 南京c | ‒ | 大棚 | 13 | ‒ | ‒ | 0.180 | 0.390 | Chen et al., |
39 | 常熟 | ‒ | 大棚 | 5 | ‒ | ‒ | 0.050 | 0.360 | |
40 | 海门 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.160 | 0.340 | |
41 | 杭州 | ‒ | 农用地 | 10 | 0.810 | 2.20 | ‒ | 1.48 | 陈永山等, |
42 | 广东 | 2000‒2005年 | 菜地 | 444 | nd | 6.48 | ‒ | 0.150 | 杨国义等, |
43 | 广州深圳 | 2002年 | 菜地 | 27 | 2.82 | 25.1 | ‒ | 10.9 | 蔡全英等, |
44 | 汕头 | 2015年 | 菜地 | 63 | 1.00×10−3 | 4.20 | ‒ | 0.160 | 吴山等, |
45 | 高州 | ‒ | 农田 | 15 | 6.90×10−2 | 0.242 | 0.130 | 0.140 | 李霞等, |
46 | 福州 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.160 | 0.450 | Chen et al., |
47 | 昆明 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.100 | 0.310 | |
48 | 海南 | ‒ | 大棚 | ‒ | ‒ | ‒ | ‒ | 0.170 | 郇志博等, |
49 | 贵州东部 | 2020年 | 烟叶种植 | 40 | 0.110 | 5.59 | 4.50 | 14.3 | 马军等, |
50 | 宁夏 | 2018年 | 不同土地利用 | 87 | 3.54×10−2 | 7.80 | 0.420 | 1.02 | 张小红等, |
样本数 | 均方根误差 (RMSE) | R2 | 拟合系数 (b) | 拟合系数 (c) | 拟合系数 (k) | 5%危害浓度 (HC5) | 预测无效应浓度 (PNEC) |
---|---|---|---|---|---|---|---|
15 | 0.089 | 0.866 | 4.94×104 | 0.391 | 0.919 | 1.24 mg∙kg−1 | 1.24 mg∙kg−1 |
表4 慢性毒性测试终点构建DEHP的SSD曲线相关参数
Table 4 The related parameters of SSD curve for DEHP by using chronic toxicity testing endpoints data
样本数 | 均方根误差 (RMSE) | R2 | 拟合系数 (b) | 拟合系数 (c) | 拟合系数 (k) | 5%危害浓度 (HC5) | 预测无效应浓度 (PNEC) |
---|---|---|---|---|---|---|---|
15 | 0.089 | 0.866 | 4.94×104 | 0.391 | 0.919 | 1.24 mg∙kg−1 | 1.24 mg∙kg−1 |
[1] |
AVILES A, BOULOGNE I, DURAND N, et al., 2019. Effects of DEHP on post-embryonic development, nuclear receptor expression, metabolite and ecdysteroid concentrations of the moth Spodoptera littoralis[J]. Chemosphere, 215: 725-738.
DOI PMID |
[2] |
AXELSSON J, RYLANDER L, RINGENLL-HYDBOM A, et al., 2015. Phthalate exposure and reproductive parameter in young men from the general Swedish population[J]. Environment International, 85: 54-60.
DOI URL |
[3] |
CHEN N, SHUAI W J, HAO X M, et al., 2017. Contamination of phthalate esters in vegetable agriculture and human cumulative risk assessment[J]. Pedosphere, 27(3): 439-451.
DOI URL |
[4] | European Commission, 2003. Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances. Part I[R]. Brussels: Joint Research Centre, European Commission. |
[5] |
FROMME H, KUCHLER T, OTTO T, MULLER T, 2002. Occurrence of phthalates and bisphenol A and F in the environment[J]. Water Research, 36(6): 1429-1438.
PMID |
[6] |
FU X W, DU Q Z, 2011. Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses[J]. Journal of Agricultural and Food Chemistry, 59(21): 11585-11588.
DOI PMID |
[7] |
GAO M Y, LIU Y, DONG Y M, 2019. Physiological responses of wheat planted in fluvo-aquic soils to di (2-ethylhexyl) and di-n-butyl phthalates[J]. Environmental Pollution, 244: 774-782.
DOI PMID |
[8] |
GOUDARZI M, HAGHI K M, MALAYERI A, et al., 2020. Protective effect of alphalipoic acid on di-(2-ethylhexyl) phthalate induced testicular toxicity in mice[J]. Environmental Science and Pollution Research International, 27(12): 13670-13678.
DOI |
[9] | Health and Ecological Criteria Division, 2016. Health effects support document for perfluorooctane sulfonate[R]. Washington: EPA. |
[10] |
HOSE G C, VAN DEN BRINK P J, 2014. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm and field data[J]. Archives of Environmental Contamination and Toxicology, 47(4): 511-520.
DOI URL |
[11] |
JIN X W, WANG Y Y, WANG Z J, et al., 2014. Ecological risk of nonylphenol in China surface waters based on reproductive fitness[J]. Environmental Science & Technology, 48(2): 1256-1262.
DOI URL |
[12] |
KIM D R, CUII J, MOON J I, et al., 2019. Soil Ecotoxicity study of DEHP with respect to multiple soil species[J]. Chemosphere, 216: 387-395.
DOI PMID |
[13] |
LI C, CHEN J Y, WANG J H, et al., 2016. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment[J]. Science of The Total Environment, 568: 1037-1043.
DOI URL |
[14] |
LI K K, MA D, WU J, et al., 2016. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China[J]. Chemosphere, 164: 314-321.
DOI PMID |
[15] |
LI X X, LI M A, JIANG N, et al., 2023. Evaluation of soil ecological health after exposure to environmentally relevant doses of Di (2-ethylhexyl) phthalate: Insights from toxicological studies of earthworms at different ecological niches[J]. Environmental Pollution, 322: 121204.
DOI URL |
[16] |
LI X X, LIU W J, ZHANG C, et al., 2020. Fate of phthalic acid esters (PAEs) in typical greenhouse soils of different cultivation ages[J]. Bulletin of Environmental Contamination and Toxicology, 104(2): 301-306.
DOI PMID |
[17] |
LI X X, WANG Q, WANG C, et al., 2022. Ecotoxicological response of zebrafish liver (Danio rerio) induced by Di-(2-ethylhexyl) phthalate[J]. Ecological Indicators, 143: 109388.
DOI URL |
[18] |
LI Y, YAN H Q, LI X Q, et al., 2020. Presence, distribution and risk assessment of phthalic acid esters (PAEs) in suburban plastic film pepper-growing greenhouses with different service life[J]. Ecotoxicology and Environmental Safety, 196: 110551.
DOI URL |
[19] |
LI Y T, WANG J, YANG S, et al., 2021. Occurrence, health risks and soil-air exchange of phthalate acid esters: A case study in plastic film greenhouses of Chongqing, China[J]. Chemosphere, 268(3): 128821.
DOI URL |
[20] |
MA T T, FAN W Y, PAN X, et al., 2021. Estimating the risks from phthalate esters and metal(loid)s in cultivatededible fungi from Jingmen, Central China[J]. Food Chemistry, 348: 129065.
DOI URL |
[21] | MA T T, TENG Y, CHRISTIE P, et al., 2015. Phytotoxicity in seven higher plant species exposed to di-n-butyl phthalate or bis (2-ethylhexyl) phthalate[J]. Frontiers of Environmental Science & Engineering, 9(2): 259-268. |
[22] | MA T W, ZHOU L, CHEN L, et al., 2017. Toxicity effects of di-(2-ethylhexyl) phthalate to eisenia fetida at enzyme, cellular and genetic levels[J]. PLoS One, 12(3): 1-12. |
[23] | New York State Department of Environmental Conservation of USA, 1994. TAGM 4046 Determination of soil cleanup objectives and cleanup levels [S]. New York. |
[24] |
NIU L L, XU Y, XU C, et al., 2014. Status of phthalate esters contamination in agricultural soils across China and associated health risks[J]. Environmental Pollution, 195: 16-23.
DOI PMID |
[25] |
SHI M, SUN Y Y, WANG Z H, et al., 2019. Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains[J]. Environmental Pollution, 250: 1-7.
DOI PMID |
[26] |
SINGH S, LI S S, 2012. Bisphenol A and phthalates exhibit similar toxicogenomics and health effects[J]. Gene, 494(1): 85-91.
DOI PMID |
[27] |
SUN S, WANG M C, YANG X, et al., 2023. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil of the Yellow River Delta, China[J]. Environmental Science and Pollution Research, 30: 53370-53380.
DOI |
[28] |
SUN J T, PAN L L, ZHAN Y, et al., 2016. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China[J]. Science of the Total Environment, 544: 670-676.
DOI URL |
[29] | U.S. EPA, 2003. Guidance for Developing Ecological Soil Screening Levels[R]. Washington D C: U.S. Environmental Protection Agency. |
[30] |
WANG H, LIANG H, GAO D W, 2017. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China[J]. Environmental Science and Pollution Research, 24(24): 19723-19732.
DOI URL |
[31] |
WANG J, CHEN G C, CHRISTIE P, et al., 2015. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses[J]. Science of the Total Environment, 523: 129-137.
DOI URL |
[32] | WANG K N, SONG M C, et al., 2017. Phthalate esters migration from two kinds of plastic films and the enrichment in peanut plant[J]. Fresenius Environmental Bulletin, 26(7): 4409-4415. |
[33] |
WANG L J, LIU M M, TAO W D, et al., 2018. Pollution characteristics and health risk assessment of phthalate esters in urban soil in the typical semi-arid city of Xi’an, Northwest China[J]. Chemosphere, 191: 467-476.
DOI URL |
[34] |
WANG Y, ZHANG Z H, BAO M J, et al., 2021. Characteristics and risk assessment of organophosphate esters and phthalates in soils and vegetation from Dalian, Northeast China[J]. Environmental Pollution, 284: 117532.
DOI URL |
[35] |
WEI L Y, LI Z H, SUN J T, et al., 2020. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China[J]. Science of the Total Environment, 726: 137978.
DOI URL |
[36] |
WEZEL P, VLAARDINGEN P, POSTHUMUS R, et al., 2000. Environmental risk limits for two phthalates with special emphasis on endocrine disruptive properties[J]. Ecotoxicology and Environmental Safety, 46(3): 305-321.
DOI URL |
[37] |
WHEELER J R, GRIST E P M, LEUNG K M Y, et al., 2002. Species sensitivity distributions: data and model choice[J]. Marine Pollution Bulletin, 45(1-12): 192-202.
PMID |
[38] |
YANG H Y, LI M S, ZHANG C, et al., 2023. Ecotoxicological and biochemical effects of di(2-ethylhexyl) phthalate on wheat (Jimai 22, Triticum aestivum L.)[J]. Journal of Hazardous Materials, 447: 130816.
DOI URL |
[39] |
YAO X F, ZHANG J W, WANG C, et al., 2022. Toxicity of dibutyl phthalate to pakchoi (Brassica campestris L.): Evaluation through different levels of biological organization[J]. Science of the Total Environment, 849: 157943.
DOI URL |
[40] |
YUAN L, CHENG J J, WANG Y, et al., 2020. Uptake and Toxicity of Di-(2-Ethylhexyl) Phthalate in Brassica chinensis L[J]. Chemosphere, 252: 126640.
DOI URL |
[41] |
ZHANG Q Q, MA Z R, CHAI Y Y, et al., 2021. Agricultural plastic pollution in China: Generation of plastic debris and emission of paes from agricultural films[J]. Environmental Science & Technology, 55(18): 12459-12470.
DOI URL |
[42] |
ZHOU B, ZHAO L X, SUN Y, et al., 2021. Contamination and human health risks of phthalate esters in vegetable and crop soils from the Huang-Huai-Hai region of China[J]. Science of the Total Environment, 778: 146281.
DOI URL |
[43] |
ZHU F X, ZHU C Y, ZHOU D M, et al., 2019. Fate of di(2-ethylhexyl) phthalate and its impact on soil bacterial community under aerobic and anaerobic conditions[J]. Chemosphere, 216: 84-93.
DOI URL |
[44] | 蔡全英, 莫测辉, 李云辉, 等, 2005. 广州、深圳地区蔬菜生产基地土壤中邻苯二甲酸酯 (PAEs) 研究[J]. 生态学报, 25(2): 283-288. |
CAI Q Y, MO C H, LI Y H, et al., 2005. The study of PAEs in soils from typical vegetable fields in areas of Guangzhou and Shenzhen, South China[J]. Acta Ecologica Sinica, 25(2): 283-288. | |
[45] | 陈佳祎, 李成, 栾云霞, 等, 2016. 北京设施蔬菜基地土壤中邻苯二甲酸酯的污染水平及污染特征研究[J]. 食品安全质量检测学报, 7(2): 472-477. |
CHEN J Y, LI C, LUAN Y X, et al., 2016. Pollution characteristics and pollution level of phthalic acid ester in soils of facility vegetable bases of Beijing[J]. Journal of Food Safety and Quality, 7(2): 472-477. | |
[46] | 陈璇, 章家恩, 危晖, 2021. 环境微塑料的迁移转化及生态毒理学研究进展[J]. 生态毒理学报, 16(6): 70-86. |
CHEN X, ZHANG J E, WEI H, 2021. Research progress and prospect on transportation, transformation and ecotoxicology of microplastics in environment[J]. Asian Journal of Ecotoxicology, 16(6): 70-86. | |
[47] | 陈永山, 骆永明, 章海波, 等, 2011. 设施菜地土壤酞酸酯污染的初步研究[J]. 土壤学报, 48(3): 516-523. |
CHEN Y S, LUO Y M, ZHANG H B, et al., 2011. Preliminary study on PAEs pollution of greenhouse soils[J]. Acta Pedologica Sinica, 48(3): 516-523. | |
[48] | 戴华鑫, 张艳玲, 李亮, 等, 2021. 河南植烟土壤6种邻苯二甲酸酯污染特征分析[J]. 中国烟草学报, 27(3): 56-64. |
DAI H X, ZHANG Y L, LI L,et a1., 2021. Analysis of pollution characteristics of six phthalate esters (PAEs) in tobacco field soil in Henan Province[J]. Acta Tabacaria Sinica, 27(3): 56-64. | |
[49] | 邓继宝, 项大洲, 林伯正, 等, 2023. 基于文献数据的PAHs生态安全土壤环境基准研究[J/OL]. 土壤学报, [2023-12-04]. https://kns.cnki.net/kcms/detail/32.1119.P.20230331.1607.002.html. |
DENG J B, XIANG D Z, LIN B Z, et al., 2023. Soil environmental criteria of polycyclic aromatic hydrocarbons for ecological security based on literature data[J/OL]. Acta Pedologica Sinica, [2023-08-04]. https://kns.cnki.net/kcms/detail/32.1119.P.20230331.1607.002.html. | |
[50] | 冯艳红, 应蓉蓉, 王国庆, 等, 2022. 中国中西部地区土壤和农产品中邻苯二甲酸酯污染特征及评价[J]. 环境化学, 41(5): 1591-1603. |
FENG Y H, YING R R, WANG G Q, et al., 2022. Pollution characteristics and risk of phthalic acid esters in soils and agro-products in the Midwest areas of China[J]. Environmental Chemistry, 41(5): 1591-1603. | |
[51] | 葛峰, 徐坷坷, 刘爱萍, 等, 2021. 国外土壤环境基准研究进展及对中国的启示[J]. 土壤学报, 58(2): 331-343. |
GE F, XU K K, LIU A P, et al., 2021. Progress of the research on soil environmental criteria in other countries and its enlightenment to China[J]. Acta Pedologica Sinica, 58(2): 331-343. | |
[52] | 国家统计局农村社会经济调查司, 2022. 中国农村统计年鉴[M]. 北京: 中国统计出版社有限公司:46. |
Department of Rural Socio-Economic Investigation, National Bureau of Statistics, 2022. China Rural Statistical Yearbook[M]. Beijing: China Statistical Publishing House Co., Ltd: 46. | |
[53] | 胡艾伦, 2021. 土壤中邻苯二甲酸酯与微塑料的分析与污染特征[D]. 杭州: 浙江大学: 54-58. |
HU A L, 2021. Analysis and pollution characteristics of phthalates and microplastics in soils[D]. Hangzhou: Zhejiang University: 54-58. | |
[54] | 胡帅尔, 张紫虹, 王凤岩, 等, 2015. 邻苯二甲酸二 (2-乙基) 己酯对大鼠的亚慢性毒性研究[J]. 环境与健康杂志, 32(7): 632-635. |
HU S E, ZHANG Z H, WANG F Y, et al., 2015. Subchronic toxicity of di (2-ethylhexyl) phthalate in rats[J]. Journal of Environment and Health, 32(7): 632-635. | |
[55] | 郇志博, 王晓燕, 田海, 等, 2021. 海南省11个市县设施农业土壤邻苯二甲酸酯类塑化剂污染状况及健康风险[J]. 热带作物学报, 42(3): 806-815. |
HUAN Z B, WANG X Y, TIAN H, et al., 2021. Contamination status and health risk of phthalate esters in facility agricultural soil of 11 cities of Hainan, China[J]. Chinese Journal of Tropical Crops, 42(3): 806-815. | |
[56] | 靳拓, 许丹丹, 薛颖昊, 等, 2022. 我国59个长期覆膜样地的表层土壤中邻苯二甲酸酯污染状况分析[J]. 生态毒理学报, 17(6): 462-471. |
JIN T, XU D D, XUE Y H, et al., 2022. Analysis of phthalate esters pollution in 59 topsoils of long-term film mulching plots in China[J]. Asian Journal of Ecotoxicology, 17(6): 462-47 | |
[57] | 李霞, 邹建运, 吴文成, 等, 2015. 高州农田土壤中邻苯二甲酸酯污染特征与形态分析[J]. 土壤通报, 46(4): 991-996. |
LI X, ZOU J Y, WU W C, et al., 2015. Evaluation of PAEs pollution of farmland soil in Gaozhou[J]. Chinese Journal of Soil Science, 46(4): 991-996. | |
[58] | 李洋, 张乃明, 魏复盛, 等, 2020. 滇东镉高背景区菜地土壤健康风险评价与基准[J]. 中国环境科学, 40(10): 4522-4530. |
LI Y, ZHANG N M, WEI F S, et al., 2020. A benchmark study on soil health risks of vegetable fields in a high-cadmium background area in eastern Yunnan[J]. China Environmental Science, 40(10): 4522-4530. | |
[59] |
李海峰, 任红松, 刘志刚, 等, 2018. 设施葡萄基地土壤-葡萄体系邻苯二甲酸酯 (PAEs) 污染及分布特征[J]. 新疆农业科学, 55(5): 919-927.
DOI |
LI H F, REN H S, LIU Z G, et al., 2018. The pollution and distribution characteristics of phthalic acid esters in soil-grape system of facility grape bases[J]. Xinjiang Agricultural Sciences, 55(5): 919-927. | |
[60] | 李瑾, 周涛, 张扬, 等, 2020. 地膜对农田土壤及玉米籽粒邻苯二甲酸酯累积状况的影响[J]. 农业环境科学学报, 39(8): 1767-1773. |
LI J, ZHOU T, ZHANG Y, et al., 2020. Effects of plastic film mulching on phthalate esters accumulation in farmland soil and maize grain[J]. Journal of Agro-Environment Science, 39(8): 1767-1773. | |
[61] | 李勖之, 孙丽, 杜俊洋, 等, 2022. 农用地土壤重金属锌的生态安全阈值研究[J]. 环境科学学报, 42(7): 1-13. |
LI X Z, SUN L, DU J Y, et al., 2022. Soil ecological safety thresholds for zinc in agricultural land[J]. Acta Scientiae Circumstantiae, 42(7): 408-420. | |
[62] | 马军, 滕应, 曹雪莹, 等, 2022. 贵州省东部典型烟区土壤和烟叶中邻苯二甲酸酯的残留及源解析[J]. 环境污染与防治, 44(9): 1182-1188. |
MA J, TENG Y, CAO X Y, et al., 2022. PAEs residues and source analysis in soil and tobacco of typical tobacco-producing areas in eastern Guizhou Province[J]. Environmental Pollution & Control, 44(9): 1182-1188. | |
[63] | 彭祎, 赵玉杰, 王璐, 等, 2018. 南疆棉花转产区土壤和农产品中邻苯二甲酸酯 (PAEs) 污染分析和评价[J]. 农业环境科学学报, 37(12): 2678-2686. |
PENG Y, ZHAO Y J, WANG L, et al., 2018. Contamination and risk assessment of phthalates in soils and agricultural products after cotton cultivation in Southern Xinjiang, Northwest China[J]. Journal of Agro-Environment Science, 37(12): 2678-2686. | |
[64] | 秦华, 林先贵, 陈瑞蕊, 等, 2005. DEHP对土壤脱氢酶活性及微生物功能多样性的影响[J]. 土壤学报, 42(5): 829-834. |
QIN H, LIN X G, CHEN R R, et al., 2015. Effects of DEHP on dehydrogenase activity and microbial functional diversity in soil[J]. Acta Pedologica Sinica, 42(5): 829-834. | |
[65] | 任超, 赵祯, 柳金明, 等, 2018. 典型废物回收园区土壤中邻苯二甲酸酯分布与风险评价[J]. 环境化学, 37(8): 1691-1698. |
REN C, ZHAO Z, LIU J M, et al., 2018. Distribution and risk assessment of phthalic acid ester (PAEs) in soil from a multi-waste recycling area[J]. Environmental Chemistry, 37(8): 1691-1698. | |
[66] | 王小庆, 韦东普, 黄占斌, 等, 2013. 物种敏感性分布法在土壤中铜生态阈值建立中的应用研究[J]. 环境科学学报, 33(6): 1787-1794. |
WANG X Q, WEI D P, HUANG Z B, et al., 2013. Application of species sensitivity distribution in deriving of ecological thresholds for copper in soils[J]. Acta Scientiae Circumstantiae, 33(6): 1787-179. | |
[67] | 王昱文, 柴淼, 曾甯, 等, 2016. 典型废旧塑料处置地土壤中邻苯二甲酸酯污染特征及健康风险[J]. 环境化学, 35(2): 364-372. |
WANG Y W, CHAI M, ZENG N, et al., 2016. Contamination and health risk of phthalate esters in soils from a typical waste plastic recycling area[J]. Environmental Chemistry, 35(2): 364-372. | |
[68] | 吴山, 李彬, 梁金明, 等, 2015. 汕头市蔬菜产区土壤-蔬菜中邻苯二甲酸酯 (PAEs) 污染分布特征研究[J]. 农业环境科学学报, 34(10): 1889-1896. |
WU S, LI B, LIANG J M, et al., 2015. Distribution characteristics of phthalic acid esters in soils and vegetables in vegetable producing areas of Shantou City, China[J]. Journal of Agro-Environment Science, 34(10): 1889-1896. | |
[69] | 杨国义, 张天彬, 高淑涛, 等, 2007. 广东省典型区域农业土壤中邻苯二甲酸酯含量的分布特征[J]. 应用生态学报, 18(10): 2308-2312. |
YANG G Y, ZHANG T B, GAO S T, et al., 2007. Distribution of phthalic acid esters in agricultural soil in typical regions of Guandong Province[J]. Chinese Journal of Applied Ecology, 18(10): 2308-2312. | |
[70] | 张海光, 孙国帅, 孙磊, 等, 2013. 典型覆膜作物土壤中邻苯二甲酸酯污染的初步研究[J]. 中国环境监测, 29(4): 60-63. |
ZHANG H G, SUN G S, SUN L, et al., 2013. Preliminary study on phthalic acid esters pollution of typical plastic mulched crops soils[J]. Environmental Monitoring in China, 29(4): 60-63. | |
[71] | 张小红, 王亚娟, 陶红, 等, 2020. 宁夏土壤中PAEs污染特征及健康风险评价[J]. 中国环境科学, 40(9): 3930-3941. |
ZHANG X H, WANG Y J, TAO H, et al., 2020. Study on pollution characteristics and health risk assessment of phthalates in soil of Ningxia[J]. China Environmental Science, 40(9): 3930-3941. | |
[72] | 张云慧, 杜平, 何赢, 等, 2019. 基于农产品安全的土壤重金属有效态含量限值推定方法[J]. 环境科学, 40(9): 4262-4269. |
ZHANG Y H, DU P, HE Y, et al., 2019. Derivation of the thresholds of available concentrations of heavy metals in soil based on agricultural product safety[J]. Environmental Science, 40(9): 4262-4269. | |
[73] | 郑丽萍, 王国庆, 龙涛, 等, 2018. 不同国家基于生态风险的土壤筛选值研究及启示[J]. 生态毒理学报, 13(6): 39-49. |
ZHENG L P, WANG G Q, LONG T, et al., 2018. A study of risk-based ecological soil screening levels among different countries and its implication for China[J]. Asian Journal of Ecotoxicology, 13(6): 39-49. | |
[74] | 中华人民共和国生态环境部,2018. 土壤环境质量建设用地土壤污染风险管控标准 (试行): GB 36600—2018[S]. 北京: 中国环境出版社: 4. |
Ministry of Ecology and Environment of The People’s Republic of China,2018. Soil environmental quality Risk control standard for soil contamination of development land: GB 36600—2018[S]. Beijing: China Environmental Science Press: 4. | |
[75] | 中华人民共和国住房和城乡建设部, 2011. 城市用地分类与规划建设用地标准: GB50137—2011 [S]. 北京:中国建筑工业出版: 4-9. |
Ministry of Housing and Urban-Rural Development of The People’s Republic of China, 2011. Code for classification of urban land use and planning standards of development land: GB 50137—2011[S]. Beijing: China Architecture & Building Press: 4-9. | |
[76] |
朱立安, 张会化, 程炯, 等, 2022. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 31(6): 1253-1262.
DOI |
ZHU L A, ZHANG H H, CHENG J, et al., 2022. Potential ecological risk pattern analysis of heavy metals in soil of forestry land in The Pearl River Delta[J]. Ecology and Environmental Sciences, 31(6): 1253-1262. | |
[77] | 周斌, 2020. 黄淮海地区农田土壤领苯二甲酸酯污染特征与成因研究[D]. 北京: 中国农业科学院: 21-23. |
ZHOU B, 2020. Research on characteristics and mechanism of phthalate acid esters pollution in farmland of the Huang-Huai-Hai Region of China[D]. Beijing: Chinese Academy of Agricultural Sciences: 21-23. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 李惠梅, 李荣杰, 晏旭昇, 武非非, 高泽兵, 谭永忠. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 2023, 32(7): 1185-1195. |
[3] | 陈敏毅, 宋清梅, 叶权运, 游学睿, 吴颖欣. 华南典型金属制品遗留生产场地重金属空间分布特征[J]. 生态环境学报, 2023, 32(12): 2228-2235. |
[4] | 韩迁, 张玉娇, 赖承钺, 杨璐瑶, 孟旭. 成都市河流中四环素、喹诺酮类抗生素污染特征及生态风险评价[J]. 生态环境学报, 2023, 32(11): 1922-1932. |
[5] | 黄世聪, 陈丽珂, 张政杰, 陈科华, 陈澄宇, 曾巧云. 四环素对不同品种蔬菜毒性阈值及其敏感性分布[J]. 生态环境学报, 2023, 32(11): 1988-1995. |
[6] | 刘安, 吴昊, 何贝贝. 陆地环境中纳米塑料毒性效应的研究进展[J]. 生态环境学报, 2023, 32(11): 2030-2040. |
[7] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[8] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[9] | 吉冰静, 刘艺, 吴杨, 高淑涛, 曾祥英, 于志强. 长江口及邻近东海沉积物中多环芳烃和含氧多环芳烃的分布特征、来源及生态风险[J]. 生态环境学报, 2022, 31(7): 1400-1408. |
[10] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[11] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[12] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[13] | 张云, 舒抒, 罗鑫, 钟琴, 邹华. 水环境中糖皮质激素的环境行为及生态风险研究进展[J]. 生态环境学报, 2022, 31(2): 400-408. |
[14] | 任珺, 潘佳璇, 陶玲, 仝云龙, 王若安, 孙新妮. 氢氧化钠改性坡缕石对Cd污染土壤的钝化修复效果[J]. 生态环境学报, 2022, 31(12): 2422-2430. |
[15] | 谢洁芬, 章家恩, 危晖, 刘自强, 陈璇. 土壤中微塑料复合污染研究进展与展望[J]. 生态环境学报, 2022, 31(12): 2431-2440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||