生态环境学报 ›› 2023, Vol. 32 ›› Issue (12): 2094-2102.DOI: 10.16258/j.cnki.1674-5906.2023.12.002
张鑫岚1,2(), 郑刘根1,2,*(
), 朱奕兴1,2, 李寒1,2, 丁丹3, 单士锋3
收稿日期:
2023-09-18
出版日期:
2023-12-18
发布日期:
2024-02-05
通讯作者:
*郑刘根。E-mail: lgzheng@ustc.edu.cn作者简介:
张鑫岚(1999年生),女,硕士研究生,研究方向为污染土壤生态修复。E-mail: 1138577487@qq.com
基金资助:
ZHANG Xinlan1,2(), ZHENG Liugen1,2,*(
), ZHU Yixing1,2, LI Han1,2, DING Dan3, SHAN Shifeng3
Received:
2023-09-18
Online:
2023-12-18
Published:
2024-02-05
摘要:
多环芳烃会影响蔬菜的生长发育,导致其产量和品质降低,最终通过食物链危害人体健康。通过温室盆栽土培试验,测定不同质量分数(0、50、100、200、400 mg∙kg−1)芘作用下小白菜(Brassica chinensis L.)、胡萝卜(Daucus carota L.)、番茄(Solanum lycopersicum L.)的生长指标(根长、株高、鲜质量)、叶绿素质量分数、品质指标(可溶性蛋白、可溶性糖、维生素C)和蔬菜各部位芘质量分数等,对芘处理下不同种类蔬菜的耐性和累积特性进行了比较研究,筛选出高耐芘性和低富集能力的蔬菜品种。结果表明,1)芘处理降低了3种蔬菜的生长参数,抑制了蔬菜的光合作用,3种蔬菜耐芘能力大小顺序为:番茄>小白菜>胡萝卜。2)蔬菜品质方面,小白菜和胡萝卜可溶性蛋白随土壤芘质量分数的升高而降低,番茄可溶性蛋白表现为先增加后减少;小白菜、胡萝卜和番茄可溶性糖质量分数均降低且400 mg∙kg−1芘处理下分别降低了21.6%、36.2%和19.1%;芘处理刺激了蔬菜维生素C的生成,其中番茄维生素C质量分数增幅最大,3种蔬菜中番茄品质受芘影响最小。3)不同种类蔬菜各部位芘质量分数存在显著差异,但均以根系积累为主,积累量随芘质量分数的升高而增加;3种蔬菜可食部位芘富集系数表现为胡萝卜 (0.162)>小白菜 (0.0463)>番茄 (1.32×10−3),并且3种蔬菜中番茄芘转运系数最小。综合研究表明,3种蔬菜中番茄耐土壤芘污染的能力高,品质最好,可食部位富集芘能力低,芘从根部向地上各器官转运的能力最弱,与小白菜和胡萝卜相比更适合在芘污染的农田土壤上种植。研究结果可为污染土壤蔬菜种植提供参考。
中图分类号:
张鑫岚, 郑刘根, 朱奕兴, 李寒, 丁丹, 单士锋. 不同种类蔬菜对芘的耐性和累积特性差异研究[J]. 生态环境学报, 2023, 32(12): 2094-2102.
ZHANG Xinlan, ZHENG Liugen, ZHU Yixing, LI Han, DING Dan, SHAN Shifeng. Study on the Difference in Tolerance and Accumulation Characteristics of Different Types of Vegetables to Pyrene[J]. Ecology and Environment, 2023, 32(12): 2094-2102.
蔬菜品种 | 芘处理质量分数/ (mg∙kg−1) | 根长/ cm | 株高/ cm | 鲜质量/ g |
---|---|---|---|---|
小白菜 Brassica chinensis L. | 0 | 9.07±0.51a | 21.27±1.08a | 9.72±0.78a |
50 | 8.30±0.42a | 20.47±0.96ab | 8.57±0.86a | |
100 | 7.50±0.36b | 18.93±0.82bc | 7.17±0.66b | |
200 | 6.83±0.40bc | 17.47±0.93c | 6.71±0.53bc | |
400 | 6.37±0.32c | 15.53±0.74d | 5.62±0.44c | |
胡萝卜 Daucus carota L. | 0 | 13.67±1.26a | 45.53±2.07a | 21.90±1.58a |
50 | 11.67±0.76b | 42.17±1.70b | 19.19±1.38b | |
100 | 10.10±0.66b | 40.70±1.51b | 12.43±0.89c | |
200 | 9.93±0.90bc | 35.47±1.62c | 9.77±0.75d | |
400 | 8.93±0.75c | 32.23±1.21c | 8.29±0.68d | |
番茄 Solanum lycopersicum L. | 0 | 14.40±1.05a | 38.90±1.81a | 42.12±2.42a |
50 | 13.13±0.71ab | 37.73±1.57a | 39.08±1.72a | |
100 | 12.03±0.75bc | 34.37±1.00b | 32.51±1.63b | |
200 | 11.27±0.64c | 32.73±1.08b | 28.39±1.33c | |
400 | 10.83±0.76c | 28.17±0.95c | 25.18±1.24c |
表1 芘对不同蔬菜生长的影响
Table 1 Effects of pyrene on the growth of different vegetables
蔬菜品种 | 芘处理质量分数/ (mg∙kg−1) | 根长/ cm | 株高/ cm | 鲜质量/ g |
---|---|---|---|---|
小白菜 Brassica chinensis L. | 0 | 9.07±0.51a | 21.27±1.08a | 9.72±0.78a |
50 | 8.30±0.42a | 20.47±0.96ab | 8.57±0.86a | |
100 | 7.50±0.36b | 18.93±0.82bc | 7.17±0.66b | |
200 | 6.83±0.40bc | 17.47±0.93c | 6.71±0.53bc | |
400 | 6.37±0.32c | 15.53±0.74d | 5.62±0.44c | |
胡萝卜 Daucus carota L. | 0 | 13.67±1.26a | 45.53±2.07a | 21.90±1.58a |
50 | 11.67±0.76b | 42.17±1.70b | 19.19±1.38b | |
100 | 10.10±0.66b | 40.70±1.51b | 12.43±0.89c | |
200 | 9.93±0.90bc | 35.47±1.62c | 9.77±0.75d | |
400 | 8.93±0.75c | 32.23±1.21c | 8.29±0.68d | |
番茄 Solanum lycopersicum L. | 0 | 14.40±1.05a | 38.90±1.81a | 42.12±2.42a |
50 | 13.13±0.71ab | 37.73±1.57a | 39.08±1.72a | |
100 | 12.03±0.75bc | 34.37±1.00b | 32.51±1.63b | |
200 | 11.27±0.64c | 32.73±1.08b | 28.39±1.33c | |
400 | 10.83±0.76c | 28.17±0.95c | 25.18±1.24c |
蔬菜品种 | 不同部位 | 芘处理质量分数/(mg∙kg−1) | ||||
---|---|---|---|---|---|---|
0 | 50 | 100 | 200 | 400 | ||
小白菜 Brassica chinensis L. | 根 | 0.0229±0.0021 | 0.2428±0.0199 | 0.5091±0.0338 | 0.7014±0.0473 | 0.9138±0.0669 |
茎 | 0.0067±0.0002 | 0.0899±0.0035 | 0.1991±0.0078 | 0.3496±0.0119 | 0.4532±0.0176 | |
叶 | 0.0066±0.0003 | 0.0517±0.0029 | 0.0988±0.0066 | 0.1659±0.0077 | 0.3032±0.0109 | |
胡萝卜 Daucus carota L. | 根 | 0.0488±0.0008 | 0.4382±0.0102 | 0.6323±0.0262 | 1.1740±0.0558 | 2.0908±0.0790 |
茎 | 0.0094±0.0007 | 0.0905±0.0026 | 0.0205±0.0043 | 0.3682±0.0049 | 0.7149±0.0105 | |
叶 | 0.0082±0.0005 | 0.0742±0.0018 | 0.1584±0.0062 | 0.3266±0.0076 | 0.5494±0.0089 | |
番茄 Solanum lycopersicum L. | 根 | 0.0318±0.0017 | 0.2450±0.0151 | 0.5337±0.0274 | 1.1073±0.0479 | 2.0686±0.0763 |
茎 | 0.0045±0.0004 | 0.0268±0.0014 | 0.0461±0.0044 | 0.0915±0.0054 | 0.1541±0.0083 | |
叶 | 0.0066±0.0004 | 0.0415±0.0023 | 0.0870±0.0042 | 0.1657±0.0079 | 0.2985±0.0166 | |
果 | 0.0023±0.0001 | 0.0031±0.0003 | 0.0111±0.0008 | 0.0233±0.0013 | 0.0410±0.0012 |
表2 芘处理下3种蔬菜各组织中芘质量分数
Table 2 Pyrene concentrations in different parts of three vegetables under pyrene treatments
蔬菜品种 | 不同部位 | 芘处理质量分数/(mg∙kg−1) | ||||
---|---|---|---|---|---|---|
0 | 50 | 100 | 200 | 400 | ||
小白菜 Brassica chinensis L. | 根 | 0.0229±0.0021 | 0.2428±0.0199 | 0.5091±0.0338 | 0.7014±0.0473 | 0.9138±0.0669 |
茎 | 0.0067±0.0002 | 0.0899±0.0035 | 0.1991±0.0078 | 0.3496±0.0119 | 0.4532±0.0176 | |
叶 | 0.0066±0.0003 | 0.0517±0.0029 | 0.0988±0.0066 | 0.1659±0.0077 | 0.3032±0.0109 | |
胡萝卜 Daucus carota L. | 根 | 0.0488±0.0008 | 0.4382±0.0102 | 0.6323±0.0262 | 1.1740±0.0558 | 2.0908±0.0790 |
茎 | 0.0094±0.0007 | 0.0905±0.0026 | 0.0205±0.0043 | 0.3682±0.0049 | 0.7149±0.0105 | |
叶 | 0.0082±0.0005 | 0.0742±0.0018 | 0.1584±0.0062 | 0.3266±0.0076 | 0.5494±0.0089 | |
番茄 Solanum lycopersicum L. | 根 | 0.0318±0.0017 | 0.2450±0.0151 | 0.5337±0.0274 | 1.1073±0.0479 | 2.0686±0.0763 |
茎 | 0.0045±0.0004 | 0.0268±0.0014 | 0.0461±0.0044 | 0.0915±0.0054 | 0.1541±0.0083 | |
叶 | 0.0066±0.0004 | 0.0415±0.0023 | 0.0870±0.0042 | 0.1657±0.0079 | 0.2985±0.0166 | |
果 | 0.0023±0.0001 | 0.0031±0.0003 | 0.0111±0.0008 | 0.0233±0.0013 | 0.0410±0.0012 |
芘处理 质量分数/ (mg∙kg−1) | 富集系数 (VBCF) | ||
---|---|---|---|
小白菜 Brassica chinensis L. | 胡萝卜 Daucus carota L. | 番茄 Solanum lycopersicum L. | |
0 | 0.1149±0.0056a | 0.4678±0.0173a | 0.0023±0.0002a |
50 | 0.0622±0.0039b | 0.1988±0.0164b | 0.0020±0.0001a |
100 | 0.0209±0.0011c | 0.0546±0.0016c | 0.0009±0.0001b |
200 | 0.0179±0.0010c | 0.0457±0.0009c | 0.0008±0.0001b |
400 | 0.0158±0.0008c | 0.0411±0.0008c | 0.0006±0.0001b |
表3 芘处理下3种蔬菜可食部位芘富集系数
Table 3 Bioconcentration factors of pyrene in the edible parts of three vegetables under pyrene treatments
芘处理 质量分数/ (mg∙kg−1) | 富集系数 (VBCF) | ||
---|---|---|---|
小白菜 Brassica chinensis L. | 胡萝卜 Daucus carota L. | 番茄 Solanum lycopersicum L. | |
0 | 0.1149±0.0056a | 0.4678±0.0173a | 0.0023±0.0002a |
50 | 0.0622±0.0039b | 0.1988±0.0164b | 0.0020±0.0001a |
100 | 0.0209±0.0011c | 0.0546±0.0016c | 0.0009±0.0001b |
200 | 0.0179±0.0010c | 0.0457±0.0009c | 0.0008±0.0001b |
400 | 0.0158±0.0008c | 0.0411±0.0008c | 0.0006±0.0001b |
蔬菜品种 | 不同部位 | 芘处理质量分数/(mg∙kg−1) | ||||
---|---|---|---|---|---|---|
0 | 50 | 100 | 200 | 400 | ||
小白菜 Brassica chinensis L. | 根-茎叶 | 0.5829±0.0245c | 0.5861±0.0341c | 0.5864±0.0353c | 0.7370±0.0477b | 0.9172±0.0689a |
胡萝卜 Daucus carota L. | 根-茎叶 | 0.3602±0.0077b | 0.3761±0.0163b | 0.5750±0.0212a | 0.5926±0.2072a | 0.6052±0.0218a |
番茄 Solanum lycopersicum L. | 根-茎叶 | 0.3479±0.0083a | 0.2795±0.0064b | 0.2646±0.0058c | 0.2340±0.0043d | 0.2190±0.0033e |
根-果 | 0.0070±0.0013b | 0.0103±0.0015b | 0.0209±0.0023a | 0.0210±0.0018a | 0.0218±0.0025a |
表4 芘处理下3种蔬菜各部位芘转运系数
Table 4 Pyrene translocation factors in different parts of three vegetables under pyrene treatments
蔬菜品种 | 不同部位 | 芘处理质量分数/(mg∙kg−1) | ||||
---|---|---|---|---|---|---|
0 | 50 | 100 | 200 | 400 | ||
小白菜 Brassica chinensis L. | 根-茎叶 | 0.5829±0.0245c | 0.5861±0.0341c | 0.5864±0.0353c | 0.7370±0.0477b | 0.9172±0.0689a |
胡萝卜 Daucus carota L. | 根-茎叶 | 0.3602±0.0077b | 0.3761±0.0163b | 0.5750±0.0212a | 0.5926±0.2072a | 0.6052±0.0218a |
番茄 Solanum lycopersicum L. | 根-茎叶 | 0.3479±0.0083a | 0.2795±0.0064b | 0.2646±0.0058c | 0.2340±0.0043d | 0.2190±0.0033e |
根-果 | 0.0070±0.0013b | 0.0103±0.0015b | 0.0209±0.0023a | 0.0210±0.0018a | 0.0218±0.0025a |
[1] |
AILIJIANG N, CUI X, MAMAT A, et al., 2022. Levels, source apportionment, and risk assessment of polycyclic aromatic hydrocarbons in vegetable bases of northwest China[J]. Environmental Geochemistry and Health, 45(5): 2549-2565.
DOI PMID |
[2] |
AHAMMED G J, YUAN H L, OGWENO J O, et al., 2012. Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato[J]. Chemosphere, 86(5): 546-555.
DOI PMID |
[3] |
Al-NASIR F, HIJAZIN T J, Al-ALAWI M M, et al., 2022. Accumulation, Source Identification and Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Jordanian Vegetables[J]. Toxics, 10(11): 643.
DOI URL |
[4] |
BAO H Y, WANG J F, ZHANG H, et al., 2020. Effects of biochar and organic substrates on biodegradation of polycyclic aromatic hydrocarbons and microbial community structure in PAHs-contaminated soils[J]. Journal of Hazardous Materials, 385: 121595.
DOI URL |
[5] |
CIHANGIR P, DURMUS H, TAS B, et al., 2023. Investigation of Polycyclic Aromatic Hydrocarbons (PAHs) Uptake by Cucurbita pepo under Exhaust Gas Loading[J]. Polycyclic Aromatic Compounds, 43(3): 2389-2403.
DOI URL |
[6] |
DENG S Q, KE T, WU Y F, et al., 2018. Heavy Metal Exposure Alters the Uptake Behavior of 16 Priority Polycyclic Aromatic Hydrocarbons (PAHs) by Pakchoi (Brassica chinensis L.)[J]. Environmental science and technology, 52(22): 13457-13468.
DOI URL |
[7] |
GUO J, CHAI C, GE W, et al., 2018. Accumulation and Health Risk Assessment of PAHs in Radish[J]. Polish Journal of Environmental Studies, 27(6): 2529-2539.
DOI URL |
[8] | HOUSHANI M, SALEHI-LISAR S Y, MOVAFEGHI A, et al., 2019. Growth and antioxidant system responses of maize (Zea mays L.) seedling to different concentration of pyrene in a controlled environment[J]. Acta Agriculturae Slovenica, 113(1): 29-39. |
[9] |
KALTEH S, RASTKARI N, SHAMSIPOUR M, et al., 2020. Health risk assessment of Polycyclic Aromatic Hydrocarbons (PAHs) via dietary intake of leafy vegetables[J]. International Journal of Environmental Analytical Chemistry, 102: 6858-6873.
DOI URL |
[10] |
LIAO X Y, WU Z Y, LI Y, et al., 2019. Effect of various chemical oxidation reagents on soil indigenous microbial diversity in remediation of soil contaminated by PAHs[J]. Chemosphere, 226: 483-491.
DOI PMID |
[11] |
LI Q S, LU Y L, SHI Y J, et al., 2013. Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings[J]. Journal of environmental sciences (China), 25(9): 1936-1946.
DOI URL |
[12] |
MUHAMMAD A, SIYI L, YOUSAF B, et al., 2020. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review[J]. Critical Reviews in Environmental Science and Technology, 51(7-12): 857-896.
DOI URL |
[13] |
MALLAH M A, LI C X, MALLAH M A, et al., 2022. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview[J]. Chemosphere, 296: 133948.
DOI URL |
[14] |
MA B, HE Y, CHEN H H, et al., 2010. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis[J]. Environmental pollution, 158(3): 855-861.
DOI PMID |
[15] | NI N, SONG Y, SHI R, et al., 2017. Biochar reduces the bioaccumulation of PAHs from soil to carrot (Daucus carota L.) in the rhizosphere: A mechanism study[J]. The Science of the total environment, 601-602: 1015-1023. |
[16] |
OGUNTIMEHIN I, EISSA F, SAKUGAWA H, 2010. Negative effects of fluoranthene on the ecophysiology of tomato plants (Lycopersicon esculentum Mill) Fluoranthene mists negatively affected tomato plants[J]. Chemosphere, 78(7): 877-884.
DOI URL |
[17] |
PATOWARY R, PATOWATY K, D EVI A, et al., 2017. Uptake of Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAHs) by Oryza sativa L. Grown in Soil Contaminated with Crude Oil[J]. Bulletin of environmental contamination and toxicology, 98(1): 120-126.
DOI URL |
[18] |
PANWAR R, MATHUR J, 2023. Comparative analysis of remediation efficiency and ultrastructural translocalization of polycyclic aromatic hydrocarbons in Medicago sativa, Helianthus annuus and Tagetes erecta[J]. International Journal of Phytoremediation, 25(13): 1743-1761.
DOI URL |
[19] |
PULLAGURALA V L R, RAWAT S, ADISA I O, et al., 2018. Plant uptake and translocation of contaminants of emerging concern in soil[J]. The Science of the total environment, 636: 1585-1596.
DOI PMID |
[20] | SHI R G, LI X H, YANG Y Y, et al., 2021. Contamination and human health risks of polycyclic aromatic hydrocarbons in surface soils from Tianjin coastal new region, China[J]. Environmental pollution, 268(Part B): 115938. |
[21] |
SUN N, LI M F, LIU G L, et al., 2021. Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels[J]. International Journal of Biological Macromolecules, 171: 225-233.
DOI PMID |
[22] |
SHEN Y, LI J, GU R, et al., 2017. Phenanthrene-triggered Chlorosis is caused by elevated Chlorophyll degradation and leaf moisture[J]. Environmental pollution, 220(Part B): 1311-1321.
DOI PMID |
[23] | SALEHI-LISAR S Y, DELJOO S, MORAL M T, 2015. The physiological effect of fluorene on Triticum aestivum, Medicago sativa, and Helianthus annus[J]. Cogent Food and Agriculture, 1(1): 1020189. |
[24] |
SU Y H, ZHU Y G, 2008. Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution[J]. Environmental pollution, 155(2): 359-365.
DOI URL |
[25] |
TIAN K, BAO H Y, LIU X P, et al., 2018. Accumulation and distribution of PAHs in winter wheat from areas influenced by coal combustion in China[J]. Environmental science and pollution research, 25(24): 23780-23790.
DOI |
[26] |
TANDEY R, CHOUHAN K B S, SEN K K, et al., 2020. Physiological and biochemical responses of Amaranthus cruentus to polycyclic aromatic hydrocarbon pollution caused by thermal power units[J]. Environmental science and pollution research international, 27(13): 14790-14806.
DOI |
[27] |
WANG H, YANG Y, WALKER T R, et al., 2022. Characterization, source apportionment, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban soils from 23 cities in China[J]. Environmental science and pollution research, 29(48): 73401-73413.
DOI |
[28] |
WANG J F, BAO H Y, CAI J, et al., 2022. Uptake and accumulation of naphthalene, phenanthrene, and benzo(b)fluoranthene in winter wheat affected by foliar exposure at different growth stages[J]. Environmental science and pollution research, 29(31): 47617-47628.
DOI |
[29] |
WIECZOREK J, SIENKIEWICZ S, PIETRZAK M, et al., 2015. Uptake and phytotoxicity of anthracene and benzo[k]fluoranthene applied to the leaves of celery plants (Apium graveolens var. secalinum L.)[J]. Ecotoxicology and environmental safety, 115: 19-25.
DOI URL |
[30] |
WANG L, LI C M, JIAO B N, et al., 2018. Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: Levels, dietary intakes, and health risk assessments[J]. The Science of the total environment, 616-617: 288-295.
DOI PMID |
[31] |
WEI B K, LIU C, BAO J S, et al., 2021. Uptake and distributions of polycyclic aromatic hydrocarbons in cultivated plants around an E-waste disposal site in Southern China[J]. Environmental science and pollution research international, 28(3): 2696-2706.
DOI |
[32] |
XIA X H, LIU Y N, ZHANG Z R, et al., 2023. Soil PAH Concentrations Decrease in China in response to the Adjustment of the Energy Structure During the Past Two Decades[J]. Engineering, 21(2): 115-123.
DOI URL |
[33] |
YANG X S, HU Z Y, LIU Y X, et al., 2022. Effect of pyrene-induced changes in root activity on growth of Chinese cabbage (Brassica campestris L.), and the health risks caused by pyrene in Chinese cabbage at different growth stages[J]. Chemical and Biological Technologies in Agriculture, 9(1): 1-15.
DOI |
[34] |
YANG M, LUO F J, ZHANG X Z, et al., 2022. Uptake, translocation, and metabolism of anthracene in tea plants[J]. The Science of the total environment, 821: 152905.
DOI URL |
[35] | ZHU Y, HUANG H J, ZHANG Y H, et al., 2021. Evaluation of PAHs in edible parts of vegetables and their human health risks in Jinzhong City, Shanxi Province, China: A multimedia modeling approach[J]. The Science of the total environment, 73: 145076. |
[36] |
ZHANG P, CHEN Y G, 2017. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review[J]. The Science of the total environment, 605-606: 1011-1020.
DOI PMID |
[37] |
ZHANG Q Y, LIU P, LI S L, et al., 2020. Progress in the analytical research methods of polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Liquid Chromatography and Related Technologies, 43(13-14): 425-444.
DOI URL |
[38] |
ZHANG S C, YAO H, LU Y T, et al., 2017. Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater[J]. Scientific reports, 7(1): 12165.
DOI PMID |
[39] | 蔡顺香, 2009. 芘胁迫对菠菜生长、叶片叶绿素和抗氧化酶活性的影响[J]. 福建农业学报, 24(2): 157-161. |
CAI S X, 2009. Effects of pyrene stress on spinach growth, leaf chlorophyll and antioxidant enzyme activity[J]. Fujian Journal of Agricultural Sciences, 24(2): 157-161. | |
[40] | 陈刚, 李胜, 2016. 植物生理学实验[M]. 北京: 高等教育出版社: 57-71. |
CHEN G, LI S, 2016. Plant Physiology Experiment[M]. Beijing: Higher Education Press: 57-71. | |
[41] | 杜志伟, 杨肖松, 刘月仙, 等, 2021. 有机污染物芘胁迫下白菜生理特性变化规律[J]. 生态学报, 41(3): 998-1005. |
DU Z W, YANG X S, LIU Y X, et al., 2021. Analysis of physiological characteristics of Chinese cabbages under pyrene stress[J]. Acta Ecological Sinica, 41(3): 998-1005. | |
[42] | 范悦, 曹双瑜, 艾力江∙努尔拉, 等, 2023. 乌鲁木齐市郊农田土壤及农作物中多环芳烃的污染特征及风险评价[J]. 环境科学, 44(7): 4039-4051. |
FAN Y, CAO S Y, NUERLA A, et al., 2023. Pollution Characteristics and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Farmland Soil and Crops in the Suburbs of Urumqi[J]. Environmental Science, 44(7): 4039-4051. | |
[43] | 刘浩然, 王俊霞, 沈晓芳, 等, 2020. PCBs和PAHs胁迫下大豆和黄瓜种子萌发及幼苗生长特征[J]. 生态毒理学报, 15(5): 361-371. |
LIU H R, WANG J X, SHEN X F, et al., 2020. Seed germination and seedling growth characteristics of soybean and cucumber under PCBs and PAHs stress[J]. Journal of Ecotoxicology, 15(5): 361-371. | |
[44] | 龙明华, 巫桂芬, 梁勇生, 等, 2017. PAHs胁迫对菜心品质及其解毒系统的影响[J]. 南方农业学报, 48(6): 1036-1041. |
LONG M H, WU G F, LIANG Y S, et al., 2017. Effects of PAHs stress on the quality of cabbage and its detoxification system[J]. Southern Journal of Agricultural Sciences, 48(6): 1036-1041. | |
[45] | 李玉龙, 刘永军, 2016. 萘、菲、芘在土壤中的降解及其对植物生长的影响[J]. 西北农林科技大学学报(自然科学版), 44(3): 96-102. |
LI Y L, L Y J, 2016. Degradation of naphthalene, phenanthrene and pyrene in soil and their effects on plant growth[J]. Journal of Northwest A&F University (Natural Science Edition), 44(3): 96-102. | |
[46] | 吴敏敏, 夏忠欢, 张倩倩, 等, 2017. 南京市蔬菜中多环芳烃污染特征及健康风险分析[J]. 地球与环境, 45(4): 447-454. |
WU M M, XIA Z H, ZHANG Q Q, et al., 2017. Pollution characteristics and health risks of polycyclic aromatic hydrocarbons in vegetables in Nanjing[J]. Earth and Environment, 45(4): 447-454. | |
[47] |
王海翠, 胡林林, 李敏, 等, 2013. 多环芳烃 (PAHs) 对油菜生长的影响及其积累效应[J]. 植物生态学报, 37(12): 1123-1131.
DOI |
WANG H C, HU L L, LI M, et al., 2013. Effects of polycyclic aromatic hydrocarbons (PAHs) on rapeseed growth and their accumulation effects[J]. Chinese Journal of Plant Ecology, 37(12): 1123-1131.
DOI URL |
|
[48] | 王丽萍, 夏忠欢, 吴敏敏, 等, 2017. 徐州市售蔬菜中多环芳烃污染与健康危害[J]. 生态毒理学报, 12(3): 526-534. |
WANG L P, XIA Z H, WU M M, et al., 2017. Polycyclic aromatic hydrocarbon pollution and health hazards in Xuzhou commercially available vegetables[J]. Journal of Ecotoxicology, 12(3): 526-534. | |
[49] |
许文武, 侯梅芳, 潘栋宇, 等, 2015. 多环芳烃 (芘) 对斜生栅藻的毒性研究[J]. 生态环境学报, 24(8): 1361-1365.
DOI |
XU W W, HOU M F, PAN D Y, et al., 2015. Study on the toxicity of PAHs (pyrene) to Scenedesmus obliquus[J]. Ecology and Environmental Sciences, 24(8): 1361-1365. | |
[50] | 杨肖松, 刘月仙, 解小凡, 等, 2018. 基于物种敏感性分布法预测芘对白菜毒害的生态风险阈值[J]. 农业环境科学学报, 37(10): 2127-2134. |
YANG X S, LIU Y X, XIE X F, et al., 2018. Prediction of ecological risk threshold of pyrene to cabbage poisoning based on species sensitivity distribution method[J]. Journal of Agro-Environment Science, 37(10): 2127-2134. | |
[51] | 章家恩, 2007. 生态学常用实验研究方法与技术[M]. 北京: 化学工业出版社: 74-78. |
ZHANG J E, 2007. Common experimental research methods and techniques in ecology[M]. Beijing: Chemical Industry Press: 74-78. | |
[52] | 张会敏, 龙明华, 乔双雨, 等, 2019. 叶片涂施多环芳烃在黄瓜体内的积累效应及对其生理特性的影响[J]. 西北植物学报, 39(6): 1064-1074. |
ZHANG H M, LONG M H, QIAO S Y, et al., 2019. Accumulation effect of leaf coating of polycyclic aromatic hydrocarbons in cucumber and its effect on its physiological characteristics[J]. Northwest Botanical Journal, 39(6): 1064-1074. |
[1] | 杜彩艳, 杨鹏, 蜂述先, 毛妍婷, 陶琼, 此主拉姆, 彭慧娉, 和建美, 李卫林. 不同生态区维西糯山药品质与生态因子相关性研究[J]. 生态环境学报, 2023, 32(6): 1053-1061. |
[2] | 王敬, 孟珂, 陈璇, 章家恩, 向慧敏, 钟嘉文, 石兆基. 酸雨对生菜和上海青的产量、品质及生理特性的影响[J]. 生态环境学报, 2023, 32(6): 1098-1107. |
[3] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[4] | 黄世聪, 陈丽珂, 张政杰, 陈科华, 陈澄宇, 曾巧云. 四环素对不同品种蔬菜毒性阈值及其敏感性分布[J]. 生态环境学报, 2023, 32(11): 1988-1995. |
[5] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[6] | 孙梦鑫, 张岳, 辛宇, 钟鼎杰, 杨存建. 川西高原近20 a植被物候变化及其对气候变化的响应[J]. 生态环境学报, 2022, 31(7): 1326-1339. |
[7] | 李程程, 张子蕤, 宋晓萱, 孔娟娟, 韩阳, 阮亚男. 臭氧胁迫对大豆抗氧化代谢与生殖生长的影响[J]. 生态环境学报, 2022, 31(7): 1383-1392. |
[8] | 刘宁, 刘洋, 续京平, 宋慧平, 冯政君, 程芳琴. 丛枝菌根真菌对人工湿地植物生长及水质净化的影响研究[J]. 生态环境学报, 2022, 31(7): 1434-1441. |
[9] | 刘晓红, 刘柳青青, 栗敏, 刘强, 曹东东, 郑浩, 罗先香. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263-1271. |
[10] | 魏岚, 黄连喜, 李翔, 王泽煌, 陈伟盛, 黄庆, 黄玉芬, 刘忠珍. 生物炭基质可显著地促进香蕉幼苗生长[J]. 生态环境学报, 2022, 31(4): 732-739. |
[11] | 文典, 赵沛华, 陈楚国, 李富荣, 杜瑞英, 黄永东, 李蕾, 王富华. 珠三角典型区域蔬菜产地土壤Cd安全阈值研究[J]. 生态环境学报, 2022, 31(3): 603-609. |
[12] | 李少宁, 陶雪莹, 李慧敏, 赵娜, 徐晓天, 鲁绍伟. 侧柏和垂柳释放有益BVOCs组分生长季动态变化特征研究[J]. 生态环境学报, 2022, 31(2): 257-264. |
[13] | 陈赋秋雪, 唐思琪, 袁昊, 马子轩, 陈坦, 杨婷, 张冰, 刘颖. 聚苯乙烯微塑料对典型农作物种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(12): 2382-2392. |
[14] | 丁洪, 余居华, 郑祥洲, 张玉树, 钟云峰. 中国城市污泥应用对作物产量、品质和土壤质量的影响[J]. 生态环境学报, 2021, 30(9): 1933-1942. |
[15] | 王卫红, 高双全, 杜衍红, 李志丰, 窦飞, 曾晓舵. 镉污染菜地叶面阻隔剂对不同品种辣椒镉积累影响[J]. 生态环境学报, 2021, 30(8): 1751-1756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||