生态环境学报 ›› 2023, Vol. 32 ›› Issue (11): 1988-1995.DOI: 10.16258/j.cnki.1674-5906.2023.11.009
黄世聪1(), 陈丽珂1, 张政杰1, 陈科华2, 陈澄宇1, 曾巧云1,*(
)
收稿日期:
2023-03-18
出版日期:
2023-11-18
发布日期:
2024-01-17
通讯作者:
* 曾巧云。E-mail: qiaoyunzeng@scau.edu.cn作者简介:
黄世聪(2001年生),男,硕士研究生,主要从事土壤抗生素污染环境行为与调控研究。E-mail: huangsc@stu.scau.edu.cn
基金资助:
HUANG Shicong1(), CHEN Like1, ZHANG Zhengjie1, CHEN Kehua2, CHEN Chengyu1, ZENG Qiaoyun1,*(
)
Received:
2023-03-18
Online:
2023-11-18
Published:
2024-01-17
摘要:
研究抗生素污染对蔬菜毒性阈值及其敏感性分布,对于科学评价土壤抗生素污染的生态风险具有重要意义。采用室内培养方法,选取四环素(TC)作为代表抗生素,调查其对珠三角地区多种蔬菜品种种子萌发的影响。以影响程度最大的指标为测试终点,采用Log-logistic分布模型,对TC的毒性剂量-效应关系进行拟合,并计算其IC50和IC10。以IC50为评价参数,采用物种敏感性分布法(Species sensitivity distributions,SSD),构建TC污染对不同蔬菜品种的SSD曲线,并获得TC毒性阈值(HC5)和无效应浓度(PNEC)。结果表明,TC污染对实验所选品种蔬菜种子萌发指标的影响程度为:根长>芽长>发芽率,当TC质量浓度为10 mg∙L−1时,9种品种蔬菜种子相对根长、相对芽长和发芽率分别为16.9%-72.5%,42.3%-129.4%,83%-100%。TC污染对种子萌发的影响程度不仅与测试指标相关,还与蔬菜品种密切相关。当TC质量浓度为10 mg∙L−1时,玉米(Zea mays L.)、青瓜(Cucumis sativus L.)和白瓜(Cucurbita pepo L.)种子的相对根长分别为72.5%、35.9%和16.9%,差异显著。毒性剂量-效应曲线表明,TC对不同品种蔬菜毒性阈值差异较大,IC50最大值为83.60 mg∙L−1(玉米),最小值为2.98 mg∙L−1(青瓜)。SSD曲线表明,不同品种蔬菜对TC毒性敏感性频次分布顺序为:玉米>菜心 (Brassica parachinensis L.)>芥兰 (Brassica alboglabra L.)>豆角 (Vigna unguiculata L.)>白菜 (Brassica pekinensis L.)>线椒 (Capsicum annuum L.)>花叶芥菜 (Brassica juncea L.)>白瓜>青瓜,即玉米种子对TC污染的耐受性最强,青瓜种子对TC最为敏感,可以作为珠三角地区TC污染生态风险评估的蔬菜品种。该实验获得TC对珠三角地区多种蔬菜品种的HC5为9.64 μg∙L−1,PNEC为1.93 μg∙L−1。
中图分类号:
黄世聪, 陈丽珂, 张政杰, 陈科华, 陈澄宇, 曾巧云. 四环素对不同品种蔬菜毒性阈值及其敏感性分布[J]. 生态环境学报, 2023, 32(11): 1988-1995.
HUANG Shicong, CHEN Like, ZHANG Zhengjie, CHEN Kehua, CHEN Chengyu, ZENG Qiaoyun. Toxicity Thresholds of Tetracycline to Varieties of Vegetables and Its Species Sensitivity Distributions[J]. Ecology and Environment, 2023, 32(11): 1988-1995.
蔬菜品种 | IC50/(mg∙L−1) | IC10/(mg∙L−1) |
---|---|---|
白菜Brassica pekinensis L. | 13.28 (5.22‒28.08* 1)) | 0.53 (‒ 2)) |
白瓜Cucurbita pepo L. | 7.94 (1.47‒28.08) | 4.50 (0.99‒9.51) |
菜心Brassica parachinensis L. | 52.07 (12.53‒165.66) | 1.48 (‒) |
豆角Vigna unguiculata L. | 19.53 (7.21‒48.83) | 0.08 (‒) |
花叶芥菜Brassica juncea L. | 8.04 (0.49‒51.13) | 0.48 (‒) |
芥兰Brassica alboglabra L. | 25.49 (4.05‒90.98) | 5.63 (0.60‒18.12) |
青瓜Cucumis sativus L. | 2.98 (1.54‒5.72) | 0.07 (0.0039-0.24) |
线椒Capsicum annuum L. | 9.74 (4.76‒14.39) | 3.23 (1.28‒6.42) |
玉米Zea mays L. | 83.60 (58.72‒114.57) | 0.03 (0.0010‒0.24) |
表1 基于蔬菜根长的TC毒性阈值与95%的置信区间
Table 1 Toxicity thresholds of TC based on vegetable root elongation and 95% confidence intervals
蔬菜品种 | IC50/(mg∙L−1) | IC10/(mg∙L−1) |
---|---|---|
白菜Brassica pekinensis L. | 13.28 (5.22‒28.08* 1)) | 0.53 (‒ 2)) |
白瓜Cucurbita pepo L. | 7.94 (1.47‒28.08) | 4.50 (0.99‒9.51) |
菜心Brassica parachinensis L. | 52.07 (12.53‒165.66) | 1.48 (‒) |
豆角Vigna unguiculata L. | 19.53 (7.21‒48.83) | 0.08 (‒) |
花叶芥菜Brassica juncea L. | 8.04 (0.49‒51.13) | 0.48 (‒) |
芥兰Brassica alboglabra L. | 25.49 (4.05‒90.98) | 5.63 (0.60‒18.12) |
青瓜Cucumis sativus L. | 2.98 (1.54‒5.72) | 0.07 (0.0039-0.24) |
线椒Capsicum annuum L. | 9.74 (4.76‒14.39) | 3.23 (1.28‒6.42) |
玉米Zea mays L. | 83.60 (58.72‒114.57) | 0.03 (0.0010‒0.24) |
[1] |
AN J, ZHOU Q X, SUN F H, et al., 2009. Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 169(1-3): 751-757.
DOI URL |
[2] |
ARAÚJO A S F, MONTEIRO R T R, 2005. Plant bioassays to assess toxicity of textile sludge compost[J]. Scientia Agricola, 62(3): 286-290.
DOI URL |
[3] |
GREDELJ A, BARAUSSE A, GRECHI L, et al., 2018. Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling[J]. Environment International, 119: 66-78.
DOI PMID |
[4] |
GU J Y, CHEN C Y, HUANG X Y, et al., 2021. Occurrence and risk assessment of tetracycline antibiotics in soils and vegetables from vegetable fields in Pearl River Delta, South China[J]. Science of the Total Environment, 776: 145959.
DOI URL |
[5] |
GUO Y J, QIU T L, GAO M, et al., 2021. Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: Focusing on the effect of the vegetable species[J]. Journal of Hazardous Materials, 415: 125595.
DOI URL |
[6] |
HAN T, WANG B S, WU Z N, et al., 2021. Providing a view for toxicity mechanism of tetracycline by analysis of the connections between metabolites and biologic endpoints of wheat[J]. Ecotoxicology and Environmental Safety, 212: 111998.
DOI URL |
[7] |
HILLIS D G, FLETCHER J, SOLOMON K R, et al., 2011. Effects of ten antibiotics on seed germination and root elongation in three plant species[J]. Archives of Environmental Contamination and Toxicology, 60(2): 220-232.
DOI PMID |
[8] |
KAMO M, HAYASHI T I, IWASAKI Y, 2022. Revisiting assessment factors for species sensitivity distributions as a function of sample size and variation in species sensitivity[J]. Ecotoxicology and Environmental Safety, 246: 114170.
DOI URL |
[9] |
KHAN K Y, ALI B, ZHANG S, et al., 2021. Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. Chinensis[J]. Science of the Total Environment, 778: 146333.
DOI URL |
[10] |
LI H L, SUN Z Q, QIU Y H, et al., 2018. Integrating bioavailability and soil aging in the derivation of DDT criteria for agricultural soils using crop species sensitivity distributions[J]. Ecotoxicology and Environmental Safety, 165: 527-532.
DOI PMID |
[11] |
LI M, YANG L, YEN H, et al., 2023. Occurrence, spatial distribution and ecological risks of antibiotics in soil in urban agglomeration[J]. Journal of Environmental Sciences, 125: 678-690.
DOI PMID |
[12] |
LIU F, YING G G, TAO R, et al., 2009. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities[J]. Environmental Pollution, 157(5): 1636-1642.
DOI PMID |
[13] |
LUO Y, LIANG J, ZENG G M, et al., 2019a. Evaluation of tetracycline phytotoxicity by seed germination stage and radicle elongation stage tests: A comparison of two typical methods for analysis[J]. Environmental Pollution, 251: 257-263.
DOI URL |
[14] |
LUO Y, LIANG J, ZENG G M, et al., 2019b. Responses of seeds of typical Brassica crops to tetracycline stress: sensitivity difference and source analysis[J]. Ecotoxicology and Environmental Safety, 184: 109597.
DOI URL |
[15] |
PAN M, CHU L M, 2016. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops[J]. Ecotoxicology and Environmental Safety, 126: 228-237.
DOI PMID |
[16] |
SUN Y M, GUO Y J, SHI M M, et al., 2021. Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes[J]. Chemosphere, 263: 128099.
DOI URL |
[17] |
WAN Y N, JIANG B, WEI D P, et al., 2020. Ecological criteria for zinc in Chinese soil as affected by soil properties[J]. Ecotoxicology and Environmental Safety, 194: 110418.
DOI URL |
[18] |
WANG F H, SUN R B, HU H W, et al., 2022. The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables[J]. Science of the Total Environment, 828: 154463.
DOI URL |
[19] |
WU J, WANG J Y, LI Z T, et al., 2023. Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis[J]. Critical Reviews in Environmental Science and Technology, 53(7): 847-864.
DOI URL |
[20] |
ZHOU X, WANG J, LU C, et al., 2020. Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment[J]. Chemosphere, 255: 127006.
DOI URL |
[21] | 保琼莉, 唐一然, 保万魁, 等, 2020. 镉对不同品种苜蓿种子萌发及幼苗生长的影响[J]. 生态学杂志, 39(5): 1695-1705. |
BAO Q L, TANG Y R, BAO W K, et al., 2020. Effects of cadmium on seed germination and seedling growth of different alfalfa varieties[J]. Chinese Journal of Ecology, 39(5): 1695-1705. | |
[22] | 鲍艳宇, 周启星, 谢秀杰, 2008. 四环素类抗生素对小麦种子芽与根伸长的影响[J]. 中国环境科学, 28(6): 566-570. |
BAO Y Y, ZHOU Q X, XIE X J, 2008. Influence of tetracycline kind antibiotics on the control of wheat germination and root elongation[J]. China Environmental Science, 28(6): 566-570. | |
[23] | 陈敏杰, 钱懿宏, 于青燕, 等, 2019. 典型四环素类抗生素对土壤微生物及植物生长的影响[J]. 生态毒理学报, 14(6): 276-283. |
CHEN M J, QIAN Y H, YU Q Y, et al., 2019. Effects of typical tetracycline antibiotics on soil microorganisms and plant growth[J]. Asian Journal of Ecotoxicology, 14(6): 276-283 | |
[24] | 丁丹, 黄晓依, 顾静仪, 等, 2023. 畜禽粪肥还田四环素类抗生素 (TCs) 在土壤-蔬菜系统的分布特征及风险评估[J]. 环境科学, 44(8): 4440-4447. |
DING D, HUANG X Y, GU J Y, et al., 2022. Distribution characteristics and risk assessment of tetracycline antibiotics (TCs) in soil-vegetable system with soil fertilized with animal manure[J]. Environmental Science, 44(8): 4440-4447. | |
[25] |
葛成军, 俞花美, 焦鹏, 2012. 两种四环素类兽药抗生素对白菜种子发芽与根伸长抑制的毒性效应[J]. 生态环境学报, 21(6): 1143-1148.
DOI |
GE C J, YU H M, JIAO P, et al., 2012. Toxicological effects of two tetracycline antibiotics on the inhibition of seed germination and root elongation of Chinese cabbages[J]. Ecology and Environmental Sciences, 21(6): 1143-1148. | |
[26] | 金彩霞, 刘军军, 陈秋颖, 等, 2009. 兽药污染土壤对小麦和白菜根伸长抑制的毒性效应[J]. 农业环境科学学报, 28(7): 1358-1362. |
JIN C X, LIU J J, CHEN Q Y, et al., 2009. Toxicological effects of veterinary drugs in soil on the inhibition of root elongation of wheat and Chinese cabbages[J]. Journal of Agro-Environment Science, 28(7): 1358-1362. | |
[27] | 李柯, 施宠, 王文全, 等, 2020. 重金属Pb胁迫下内生真菌侵染对德兰臭草种子萌发及生长的影响[J]. 农业资源与环境学报, 37(2): 280-286. |
LI K, SHI C, WANG W Q, et al., 2020. Seed germination and growth effects of endophyte infection on Melica transsilvanica under Pb stress[J]. Journal of Agricultural Resources and Environment, 37(2): 280-286. | |
[28] | 王磊, 王金花, 王军, 等, 2017. 四种抗生素对小麦玉米高粱三种作物种子芽与根伸长的影响[J]. 农业环境科学学报, 36(2): 216-222. |
WANG L, WANG J H, WANG J, et al., 2017. Effects of four antibiotics on seed germination and root elongation of wheat, maize and sorghum[J]. Journal of Agro-Environment Science, 36(2): 216-222. | |
[29] | 武剑, DEBELA SISAY-ABEBE, 华倩雯, 等, 2020. 外源抗生素对栽培作物与野生植物的氧化胁迫及其富集转运的差异性[J]. 南京师大学报(自然科学版), 43(2): 84-92. |
WU J, DEBELA SISAY-ABEBE, HUA Q W, et al., 2020. Study on differences of oxidative stress, enrichment and transport of exogenous antibiotics in cultivated crops and wild plants[J]. Journal of Nanjing Normal University (Natural Science Edition), 43(2): 84-92. | |
[30] | 姚洪伟, 商照聪, 舒耀皋, 2019. 土霉素对10种经济作物的生态毒理效应[J]. 江苏农业科学, 47(21): 313-317. |
YAO H W, SHANG Z C, SHU Y G, 2019. Ecotoxicological effects of oxytetracycline on 10 cash crops[J]. Jiangsu Agricultural Sciences, 47(21): 313-317. | |
[31] |
曾巧云, 丁丹, 檀笑, 2018. 中国农业土壤中四环素类抗生素污染现状及来源研究进展[J]. 生态环境学报, 27(9): 1774-1782.
DOI |
ZENG Q Y, DING D, TAN X, 2018. Pollution status and sources of tetracycline antibiotics in agricultural soil in China: A review[J]. Ecology and Environmental Sciences, 27(9): 1774-1782. | |
[32] | 张天莹, 余彬彬, 林文轩, 等, 2021. 磺胺二甲基嘧啶与环丙沙星对小麦种子萌发和幼苗生长的影响[J]. 农业资源与环境学报, 38(2): 176-184. |
ZHANG T Y, YU B B, LIN W X, et al., 2021. Effects of sulfadimidine and ciprofloxacin stress on seed germination and seedling growth of wheat[J]. Journal of Agricultural Resources and Environment, 38(2): 176-184. | |
[33] | 张乙涵, 伍钧, 陈莉, 等, 2014. 基于植物根伸长终点测试四环素对植物的毒性阈值及其敏感性分布 (SSD)[J]. 农业环境科学学报, 33(2): 243-249. |
ZHANG Y H, WU J, CHEN L, et al., 2014. Toxicity thresholds of tetracycline to plants as determined by root elongation and its species sensitivity distributions[J]. Journal of Agro-Environment Science, 33(2): 243-2493. | |
[34] | 赵肖琼, 张恒慧, 赵润柱, 等, 2022. 聚乙烯与磺胺二甲嘧啶复合胁迫对大豆种子萌发及幼苗生长生理特征的影响[J/OL]. 环境科学: 1-15[2022-12-12]. https://kns.cnki.net/kcms/detail//11.1895.X.20221209.1341.016.html. |
ZHAO X Q, ZHANG H H, ZHAO R Z, et al., 2022. Effects of combined stress of polyethylene and sulfamethazine on seed germination, seedling growth, and physiology characteristics of soybean[J/OL]. Environmental Science: 1-15. https://kns.cnki.net/kcms/detail//11.1895.X.20221209.1341.016.html. | |
[35] | 周睫雅, 任爱玲, 刘宏博, 等, 2020. 头孢菌素C对蔬菜种子萌发的毒理效应[J]. 农业环境科学学报, 39(10): 2429-2436. |
ZHOU J Y, REN A L, LIU H B, et al., 2020. Ecotoxicity of cephalosporin C on vegetable seed germination[J]. Journal of Agro-Environment Science, 39(10): 2429-2436. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 李惠梅, 李荣杰, 晏旭昇, 武非非, 高泽兵, 谭永忠. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 2023, 32(7): 1185-1195. |
[3] | 韩迁, 张玉娇, 赖承钺, 杨璐瑶, 孟旭. 成都市河流中四环素、喹诺酮类抗生素污染特征及生态风险评价[J]. 生态环境学报, 2023, 32(11): 1922-1932. |
[4] | 刘安, 吴昊, 何贝贝. 陆地环境中纳米塑料毒性效应的研究进展[J]. 生态环境学报, 2023, 32(11): 2030-2040. |
[5] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[6] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[7] | 吉冰静, 刘艺, 吴杨, 高淑涛, 曾祥英, 于志强. 长江口及邻近东海沉积物中多环芳烃和含氧多环芳烃的分布特征、来源及生态风险[J]. 生态环境学报, 2022, 31(7): 1400-1408. |
[8] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[9] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[10] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[11] | 文典, 赵沛华, 陈楚国, 李富荣, 杜瑞英, 黄永东, 李蕾, 王富华. 珠三角典型区域蔬菜产地土壤Cd安全阈值研究[J]. 生态环境学报, 2022, 31(3): 603-609. |
[12] | 张云, 舒抒, 罗鑫, 钟琴, 邹华. 水环境中糖皮质激素的环境行为及生态风险研究进展[J]. 生态环境学报, 2022, 31(2): 400-408. |
[13] | 任珺, 潘佳璇, 陶玲, 仝云龙, 王若安, 孙新妮. 氢氧化钠改性坡缕石对Cd污染土壤的钝化修复效果[J]. 生态环境学报, 2022, 31(12): 2422-2430. |
[14] | 谢洁芬, 章家恩, 危晖, 刘自强, 陈璇. 土壤中微塑料复合污染研究进展与展望[J]. 生态环境学报, 2022, 31(12): 2431-2440. |
[15] | 谢邵文, 郭晓淞, 杨芬, 黄强, 陈曼佳, 魏兴琥, 刘承帅. 广州市城市公园土壤重金属累积特征、形态分布及其生态风险[J]. 生态环境学报, 2022, 31(11): 2206-2215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||