生态环境学报 ›› 2022, Vol. 31 ›› Issue (6): 1101-1109.DOI: 10.16258/j.cnki.1674-5906.2022.06.004
朱锦福1(), 黄瑞灵1,2, 董志强1, 毛晓宁1, 周华坤3,*(
)
收稿日期:
2022-01-21
出版日期:
2022-06-18
发布日期:
2022-07-29
通讯作者:
*E-mail: hkzhou@nwipb.cas.cn作者简介:
朱锦福(1972年生),男,副教授,主要研究方向为草地生态学。E-mail: zjf@qhnu.edu.cn
基金资助:
ZHU Jinfu1(), HUANG Ruiling1,2, DONG Zhiqiang1, MAO Xiaoning1, ZHOU Huakun3,*(
)
Received:
2022-01-21
Online:
2022-06-18
Published:
2022-07-29
摘要:
基于高通量基因测序技术,分析氮添加对高寒湿地表层(0—15 cm)和深层(15—30 cm)土壤细菌多样性以及群落组成结构特征的影响,为青藏高原高寒湿地生态系统管理提供理论依据。设置4个氮梯度处理,施氮水平分别为0、2、5、10 g∙m-2,每个处理设置3次重复,于生长季末采集土样进行分析。结果表明,(1)氮添加降低了表层土壤细菌丰度,ACE和Chao1丰度指数均以N10处理最低,丰度指数分别为1451.39和1483.19;而深层土壤的ACE和Chao1丰度指数与表层土壤的变化不一致,N10处理丰度指数最高,分别为1458.71和1496.97。与N0对比,各处理的Simpson指数在表层土壤呈递增趋势,在深层土壤均有所下降,但差异不大。氮添加增加了表层土壤细菌多样性,但降低了深层土壤细菌多样性。(2)RDA分析表明,表层土壤中硝态氮、全氮、水分、氨态氮、有机碳对细菌在门水平上产生显著影响;氮添加降低了青海湖湿地表层土壤细菌的丰度,增加了表层土壤细菌Simpson多样性;表层土壤细菌群落组成受土壤理化因子影响更显著,且氨态氮对表层土壤细菌群落贡献最大,有机碳对深层土壤细菌群落组成影响最大。
中图分类号:
朱锦福, 黄瑞灵, 董志强, 毛晓宁, 周华坤. 青海湖高寒湿地土壤细菌群落对氮添加的响应[J]. 生态环境学报, 2022, 31(6): 1101-1109.
ZHU Jinfu, HUANG Ruiling, DONG Zhiqiang, MAO Xiaoning, ZHOU Huakun. Response of the Soil Bacterial Community to Nitrogen Addition in Alpine Wetland of Qinghai Lake[J]. Ecology and Environment, 2022, 31(6): 1101-1109.
土层 Soil | 处理 Treatment | pH | 含水率 MC/% | w(TC)/(g∙kg-1) | w(OC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(NH4+-N)/(mg∙kg-1) | w(NO3--N)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
表层 Surface soil | N0 | 7.30±0.10 | 518.23±22.11a | 12.36±2.85a | 8.48±0.51a | 7.94±1.28a | 2.83±0.55a | 1.67±0.67a |
N2 | 7.43±0.15 | 554.00±27.58a | 11.62±0.60a | 8.45±0.67a | 6.10±1.44a | 2.03±0.51b | 3.00±1.00b | |
N5 | 7.40±0.20 | 569.83±46.39a | 13.40±0.67b | 9.52±1.39b | 4.78±2.59ab | 2.80±1.51ab | 3.07±2.37b | |
N10 | 7.47±0.15 | 580.17±32.40a | 13.30±3.13b | 9.69±1.61b | 3.64±2.77b | 2.77±0.64a | 2.00±0.35ab | |
深层 Deep soil | N0 | 7.33±0.21 | 465.03±20.27b | 11.89±2.94c | 7.55±2.45c | 1.52±0.60c | 3.47±1.59c | 1.43±0.50c |
N2 | 7.37±0.06 | 493.07±66.74b | 9.73±0.28d | 6.34±0.62d | 5.22±3.49c | 1.53±0.93d | 2.40±1.47d | |
N5 | 7.57±0.06 | 534.47±26.70c | 12.12±0.97c | 6.69±1.30d | 10.39±1.04d | 4.00±0.72c | 1.17±0.40c | |
N10 | 7.40±0.17 | 523.03±52.54c | 10.68±2.62c | 6.22±2.62d | 7.31±3.01cd | 3.70±1.64c | 1.60±1.31c |
表1 不同氮添加处理对土壤理化性质的影响
Table 1 Effects of different nitrogen addition treatments on soil physical and chemical properties
土层 Soil | 处理 Treatment | pH | 含水率 MC/% | w(TC)/(g∙kg-1) | w(OC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(NH4+-N)/(mg∙kg-1) | w(NO3--N)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
表层 Surface soil | N0 | 7.30±0.10 | 518.23±22.11a | 12.36±2.85a | 8.48±0.51a | 7.94±1.28a | 2.83±0.55a | 1.67±0.67a |
N2 | 7.43±0.15 | 554.00±27.58a | 11.62±0.60a | 8.45±0.67a | 6.10±1.44a | 2.03±0.51b | 3.00±1.00b | |
N5 | 7.40±0.20 | 569.83±46.39a | 13.40±0.67b | 9.52±1.39b | 4.78±2.59ab | 2.80±1.51ab | 3.07±2.37b | |
N10 | 7.47±0.15 | 580.17±32.40a | 13.30±3.13b | 9.69±1.61b | 3.64±2.77b | 2.77±0.64a | 2.00±0.35ab | |
深层 Deep soil | N0 | 7.33±0.21 | 465.03±20.27b | 11.89±2.94c | 7.55±2.45c | 1.52±0.60c | 3.47±1.59c | 1.43±0.50c |
N2 | 7.37±0.06 | 493.07±66.74b | 9.73±0.28d | 6.34±0.62d | 5.22±3.49c | 1.53±0.93d | 2.40±1.47d | |
N5 | 7.57±0.06 | 534.47±26.70c | 12.12±0.97c | 6.69±1.30d | 10.39±1.04d | 4.00±0.72c | 1.17±0.40c | |
N10 | 7.40±0.17 | 523.03±52.54c | 10.68±2.62c | 6.22±2.62d | 7.31±3.01cd | 3.70±1.64c | 1.60±1.31c |
土层 Soil | 处理 Treatment | 有效读数 Effective Reads | OTU数 OTU number | 细菌数量 Bacteria number/(106 cfu∙g-1) | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon index |
---|---|---|---|---|---|---|---|---|
表层 Surface soil | N0 | 76926 | 1557 | 9.43 | 1475.02 | 1491.83 | 0.9938 | 8.63 |
N2 | 75666 | 1585 | 6.68 | 1511.91 | 1545.14 | 0.9943 | 8.74 | |
N5 | 75691 | 1561 | 108.81 | 1458.24 | 1489.66 | 0.9936 | 8.48 | |
N10 | 76087 | 1519 | 78.35 | 1451.39 | 1483.19 | 0.9949 | 8.81 | |
深层 Deep soil | N0 | 76835 | 1465 | 7.26 | 1370.09 | 1385.19 | 0.9932 | 8.38 |
N2 | 76945 | 1507 | 3.13 | 1412.17 | 1434.09 | 0.9898 | 8.21 | |
N5 | 77097 | 1572 | 104.65 | 1455.71 | 1475.91 | 0.9876 | 8.32 | |
N10 | 76618 | 1532 | 49.57 | 1458.71 | 1496.97 | 0.9918 | 8.31 |
表2 不同氮添加处理中土壤细菌丰度及多样性指数
Table 2 Soil bacterial abundance and diversity index under different nitrogen addition treatments
土层 Soil | 处理 Treatment | 有效读数 Effective Reads | OTU数 OTU number | 细菌数量 Bacteria number/(106 cfu∙g-1) | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon index |
---|---|---|---|---|---|---|---|---|
表层 Surface soil | N0 | 76926 | 1557 | 9.43 | 1475.02 | 1491.83 | 0.9938 | 8.63 |
N2 | 75666 | 1585 | 6.68 | 1511.91 | 1545.14 | 0.9943 | 8.74 | |
N5 | 75691 | 1561 | 108.81 | 1458.24 | 1489.66 | 0.9936 | 8.48 | |
N10 | 76087 | 1519 | 78.35 | 1451.39 | 1483.19 | 0.9949 | 8.81 | |
深层 Deep soil | N0 | 76835 | 1465 | 7.26 | 1370.09 | 1385.19 | 0.9932 | 8.38 |
N2 | 76945 | 1507 | 3.13 | 1412.17 | 1434.09 | 0.9898 | 8.21 | |
N5 | 77097 | 1572 | 104.65 | 1455.71 | 1475.91 | 0.9876 | 8.32 | |
N10 | 76618 | 1532 | 49.57 | 1458.71 | 1496.97 | 0.9918 | 8.31 |
指标 Index | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon index | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0-15 | 15-30 | 0-15 | 15-30 | 0-15 | 15-30 | 0-15 | 15-30 | ||||
pH | 0.051 | 0.566 | 0.271 | 0.517 | 0.344 | 0.645* | 0.317 | 0.585* | |||
含水率MC | -0.146 | 0.729** | -0.066 | 0.739** | -0.066 | 0.273 | 0.234 | -0.060 | |||
有机碳OC | -0.419 | 0.706** | -0.400 | 0.683* | 0.167 | 0.300 | 0.322 | 0.320 | |||
全碳TC | -0.659* | -0.003 | -0.552 | 0.033 | -0.045 | -0.618* | -0.278 | -0.151 | |||
氨态氮NH4+-N | -0.346 | 0.123 | -0.515 | 0.154 | -0.775** | 0.242 | -0.664* | 0.467 | |||
硝态氮NO3--N | 0.487 | -0.310 | 0.724** | -0.340 | 0.151 | -0.203 | 0.056 | -0.662* | |||
全氮TN | 0.208 | 0.631* | 0.070 | 0.637* | 0.015 | 0.407 | -0.211 | 0.348 |
表3 土壤细菌多样性与土壤理化性质Pearson相关性分析
Table 3 Pearson correlation analysis between soil bacterial diversity and soil physical and chemical properties
指标 Index | ACE指数 ACE index | Chao1指数 Chao1 index | 辛普森指数 Simpson index | 香浓指数 Shannon index | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0-15 | 15-30 | 0-15 | 15-30 | 0-15 | 15-30 | 0-15 | 15-30 | ||||
pH | 0.051 | 0.566 | 0.271 | 0.517 | 0.344 | 0.645* | 0.317 | 0.585* | |||
含水率MC | -0.146 | 0.729** | -0.066 | 0.739** | -0.066 | 0.273 | 0.234 | -0.060 | |||
有机碳OC | -0.419 | 0.706** | -0.400 | 0.683* | 0.167 | 0.300 | 0.322 | 0.320 | |||
全碳TC | -0.659* | -0.003 | -0.552 | 0.033 | -0.045 | -0.618* | -0.278 | -0.151 | |||
氨态氮NH4+-N | -0.346 | 0.123 | -0.515 | 0.154 | -0.775** | 0.242 | -0.664* | 0.467 | |||
硝态氮NO3--N | 0.487 | -0.310 | 0.724** | -0.340 | 0.151 | -0.203 | 0.056 | -0.662* | |||
全氮TN | 0.208 | 0.631* | 0.070 | 0.637* | 0.015 | 0.407 | -0.211 | 0.348 |
[1] | FAULWETTER J L, GAGNON V, SUNDBERG C, et al., 2009. Microbial processes influencing performance of treatment wetlands: A review[J]. Ecological Engineering, 35(6): 987-1004. |
[2] | FIERER N, BRADFORD M A, JACKSON R B, 2007. Toward an ecological classification of soil bacteria[J]. The Ecological Society of America, 88(6): 1354-1364. |
[3] | HOLLISTER E B, ENGLEDOW A S, HAMMETT A J M, et al., 2010. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments[J]. The ISME Journal, 4(6): 829-838. |
[4] | KARIMI B, TERRAT S, DEQUIEDT S, et al., 2018. Biogeography of Soil Bacteria and Archaea Across France[J]. Science Advances, 4(7): 1-14. |
[5] | KUYPERS M M, HANNAH M, BORAN K, 2018. The Microbial Nitrogen-cycling Network[J]. Nature Reviews, 16(5): 263-276. |
[6] | MA K, ZHANG Y, TANG S, et al., 2016. Spatial distribution of soil organic carbon in the Zoige Alpine Wetland, Northeastern Qinghai-Tibet Plateau[J]. Catena, 144: 102-108. |
[7] | YANG X C, HAN Z Z, RUAN X Y, et al., 2019. Composting swine carcasses with nitrogen transformation microbial strains: Succession of microbial community and nitrogen functional genes[J]. Science of The Total Environment, 688: 555-566. |
[8] | ZENG J, LIU X J, SONG L et al., 2016. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition[J]. Soil Biology and Biochemistry, 92: 41-49. |
[9] | ZHANG X, ZHAO X, ZHANG M, 2012. Functional diversity changes of microbial communities along a soil aquifer for reclaimed water recharge[J]. Fems Microbiology Ecology, 80(1): 9-18. |
[10] | 陈泓硕, 马大龙, 姜雪薇, 等, 2020. 季节性冻融对扎龙湿地土壤微生物群落结构和胞外酶活性的影响[J]. 环境科学学报, 40(4): 1443-1451. |
CHEN H S, MA D L, JIANG X W, et al., 2020. Effects of seasonal freeze-thaw on soil microbial community structures and extracellular enzyme activities in Zhalong wetland[J]. Acta Scientiae Circumstantiae, 40(4): 1443-1451. | |
[11] | 陈谦, 张新雄, 赵海, 等, 2010. 生物有机肥中几种功能微生物的研究及应用概况[J]. 应用与环境生物学报, 16(2): 294-300. |
CHEN Q, ZHANG X X, ZHAO H, et al., 2010. Advance in research and application of some functional microbes in bio-organic fertilizer[J]. Chinese Journal of Applied and Environmental Biology, 16(2): 294-300. | |
[12] | 陈伟, 季秀玲, 张琦, 等, 2019. 纳帕海高原湿地真菌群落多样性和组成的分布[J]. 微生物学通报, 46(3): 494-503. |
CHEN W, JI X L, ZHANG Q, et al., 2019. Diversity and composition of fungal community in Napahai plateau wetlands[J]. Microbiology China, 46(3): 494-503. | |
[13] | 葛怡情, 王学霞, 闫玉龙, 等, 2019. 增温和增氮及其交互作用对藏北高寒草甸植物群落结构与物种多样性的影响[J]. 生态环境学报, 28(11): 2185-2191. |
GE Y Q, WANG X X, YAN Y L, et al., 2019. Effects of warming and nitrogen addition on plant community structure and species diversity of alpine meadow in northern Tibet[J]. Ecology and Environmental Sciences, 28(11): 2185-2191. | |
[14] | 郭萍萍, 2015. 模拟氮沉降对土壤微生物多样性的影响[D]. 福州: 福建农林大学: 26. |
GUO P P, 2015. Effects of simulated nitrogen deposition on soil microbial diversity[D]. Fuzhou: Fujian Agriculture and Forestry University: 26. | |
[15] | 韩其飞, 李莹莹, 彭开兵, 等, 2021. 大气氮沉降对中亚草地生态系统净初级生产力的影响[J]. 生态学报, 41(21): 8545-8555. |
HAN Q F, LI Y Y, PENG K B, et al., 2021. Effects of atmospheric nitrogen deposition on net primary productivity of grassland ecosystem in Central Asia[J]. Acta Ecologica Sinica, 41(21): 8545-8555. | |
[16] | 李成一, 李希来, 杨元武, 等, 2020. 氮添加对不同坡度退化高寒草甸土壤细菌多样性的影响[J]. 草业学报, 29(12): 161-170. |
LI C Y, LI X L, YANG Y W, et al., 2020. Effect of nitrogen addition on soil bacterial diversity in alpine degraded grasslands of differing slope[J]. Acta Prataculturae Sinica, 29(12): 161-170. | |
[17] | 李甜甜, 胡泓, 王金爽, 等, 2016. 湿地土壤微生物群落结构与多样性分析方法研究进展[J]. 土壤通报, 47(3): 758-762. |
LI T T, HU H, WANG J S, et al., 2016. Progress in research methods of soil microbial structure and diversity in wetlands[J]. Chinese Journal of Soil Science, 47(3): 758-762. | |
[18] | 李梓萌, 刘鞠善, 吴金凤, 等, 2021. 氮沉降对草地植物生殖策略的影响[J]. 中国草地学报, 43(7): 106-114. |
LI Z M, LIU J S, WU J F, et al., 2021. Effects of nitrogen deposition on grassland plant reproduction strategies[J]. Chinese Journal of Grassland, 43(7): 106-114. | |
[19] | 林春英, 李希来, 张玉欣, 等, 2021. 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应[J]. 环境科学, 42(8): 3971-3984. |
LING C Y, LI X L, ZHANG Y X, 2021. Responses of different degradation stages of alpine wetland on soil microbial community in the Yellow River source zone[J]. Environmental Science, 42(8): 3971-3984. | |
[20] | 刘文玲, 马育军, 吴艺楠, 等, 2017. 青海湖流域高原鼠兔扰动对不同地表类型土壤水分特征的影响[J]. 中国水土保持科学, 15(2): 62-69. |
LIU W L, MA Y J, WU Y N, et al., 2017. Effects of plateau pika's disturbance on soil moisture characteristics of different land surface types in Qinghai Lake watershed[J]. Science of Soil and Water Conservation, 15(2): 62-69. | |
[21] | 刘银银, 李峰, 孙庆业, 等, 2013. 湿地生态系统土壤微生物研究进展[J]. 应用与环境生物学报, 19(3): 547-552. |
LIU Y Y, LI F, SUN Q Y, et al., 2013. Review on the study of soil microorganisms in wetland ecosystems[J]. Chinese Journal of Applied and Environmental Biology, 19(3): 547-552. | |
[22] | 刘永万, 白炜, 尹鹏松, 等, 2020. 外源氮素添加对长江源区高寒沼泽草甸土壤养分及植物群落生物量的影响[J]. 草地学报, 28(2): 483-491. |
LIU Y W, BAI W, YIN P S, et al., 2020. Effects of exogenous nitrogen addition on soil nutrients and plant community biomass in alpine swamp meadow in the headwaters region of the Yangtze River[J]. Acta Agrestia Sinica, 28(2): 483-491. | |
[23] |
聂秀青, 王冬, 周国英, 等, 2021. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 45(9): 996-1005.
DOI |
NIE X Q, WANG D, ZHOU G Y, et al., 2021. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region[J]. Chinese Journal of Plant Ecology, 45(9): 996-1005. | |
[24] | 裴希超, 许艳丽, 魏巍, 2009. 湿地生态系统土壤微生物研究进展[J]. 湿地科学, 7(2): 181-186. |
PEI X C, XU Y L, WEI W, 2009. A Review on Soil Microorganisms in Wetland Ecosystem[J]. Wetland Science, 7(2): 181-186. | |
[25] | 邵颖, 刘长海, 2017. 土壤微生物与植被、温度及水分关系的研究进展[J]. 延安大学学报 (自然科学版), 36(4): 43-48. |
SHAO Y, LIU C H, 2017. Research progress on the relationship between soil microorganism and vegetation, temperature and moisture[J]. Journal of Yanan University (Natural Science Edition), 36(4): 43-48. | |
[26] | 王记明, 孙苗苗, 陈克龙, 等, 2014. 模拟氮沉降对高寒湿地生境土壤微生物的影响[J]. 青海师范大学学报 (自然科学版), 30(4): 60-64, 69. |
WANG J M, SUN M M, CHEN K L, et al., 2014. Impact of simulated nitrogen deposition on alpine wetland habitats soil microorganism[J]. Journal of Qinghai Normal University (Natural Science Edition), 30(4): 60-64, 69. | |
[27] | 王庆贵, 张晓莹, 2021. 土壤微生物对大气氮沉降的响应研究进展[J]. 河南师范大学学报 (自然科学版), 49(6): 11-18, 69. |
WANG Q G, ZHANG X Y, 2021. Response of soil microorganisms to atmospheric nitrogen deposition: A review[J]. Journal of Henan Normal University (Natural Science Edition), 49(6): 11-18, 69. | |
[28] | 王天慈, 卢丽华, 刘国祥, 等, 2020. 青海湖湖滨湿地演变与驱动因素分析[J]. 中国水利水电科学研究院学报, 18(4): 274-283. |
WANG T C, LU L H, LIU G X, et al., 2020. Analysis of lakeside wetland evolution and driving factors around Qinghai Lake[J]. Journal of China Institute of Water Resources and Hydropower Research, 18(4): 274-283. | |
[29] | 吴松芹, 汪成忠, 李梦莎, 2017. 模拟氮沉降对滨海湿地土壤微生物功能多样性的影响[J]. 土壤, 49(6): 1153-1158. |
WU S Q, WANG C Z, LI M S, 2017. On soil functional diversity of native coastal wetland under simulated nitrogen deposition[J]. Soils, 49(6): 1153-1158. | |
[30] | 徐润宏, 谭梅, 朱锦福, 等, 2021. 高寒湿地土壤微生物多样性对氮沉降浓度差异的响应[J]. 生物学杂志, 38(6): 75-81. |
XU R H, TAN M, ZHU J F, et al., 2021. The response of soil microbial diversity to the difference of N deposition concentration in alpine wetland[J]. Journal of Biology, 38(6): 75-81. | |
[31] | 闫钟清, 齐玉春, 李素俭, 等, 2017. 降水和氮沉降增加对草地土壤微生物与酶活性的影响研究进展[J]. 微生物学通报, 44(6): 1481-1490. |
YAN Z Q, QI Y C, LI S J, et al., 2017. Soil microorganisms and enzyme activity of grassland ecosystem affected by changes in precipitation pattern and increase in nitrogen deposition: A review[J]. Microbiology China, 44(6): 1481-1490. | |
[32] | 杨山, 李小彬, 王汝振, 等, 2015. 氮水添加对中国北方草原土壤细菌多样性和群落结构的影响[J]. 应用生态学报, 26(3): 739-746. |
YANG S, LI X B, WANG R Z, et al., 2015. Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern China[J]. Chinese Journal of Applied Ecology, 26(3): 739-746. | |
[33] | 杨阳, 李海亮, 虞凡枫, 等, 2022. 氮沉降对土壤微生物影响研究热点与趋势分析--基于Citespace可视化分析[J]. 土壤通报, 53(1): 116-126. |
YANG Y, LI H L, YU F F, et al., 2022. Research hotspots and trends of the effects of nitrogen deposition on soil microorganisms: Based on Citespace visual analysis[J]. Chinese Journal of Soil Science, 53(1): 116-126. | |
[34] |
杨阳, 肖元明, 李长斌, 等, 2021. 长期氮添加和降水格局改变对高寒草原CH4通量的影响[J]. 应用与环境生物学报, DOI: 10.19675/j.cnki.1006-687x.2021.07052.
DOI |
YANG Y, XIAO Y M, LI C B, et al., 2021. Effects of long-term nitrogen addition and precipitation changes on CH4 flux in an alpine steppe[J]. Chinese Journal of Applied and Environmental Biology, DOI: 10.19675/j.cnki.1006-687x.2021.07052.
DOI URL |
|
[35] | 杨阳, 章妮, 蒋莉莉, 等, 2021. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报, 29(5): 1043-1052. |
YANG Y, ZHANG N, JIANG L L, et al., 2021. Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in bird island of Qinghai Lake on The tibetan Plateau[J]. Acta Agrestia Sinica, 29(5): 1043-1052. | |
[36] | 杨英, 耿玉清, 黄桂林, 等, 2016. 青海小泊湖区沼泽化草甸、草甸和沙地的土壤酶活性[J]. 湿地科学, 14(1): 20-26. |
YANG Y, GENG Y Q, HUANG G L, et al., 2016. Soil enzyme activities in marshy meadow, meadow and sands in small mooring lake, Qinghai[J]. Wetland Science, 14(1): 20-26. | |
[37] | 叶彦辉, 刘云龙, 韩艳英, 等, 2017. 氮沉降对西藏高山灌丛草甸土壤理化性质的短期影响[J]. 草地学报, 25(5): 973-981. |
YE Y H, LIU Y L, HAN Y Y, et al., 2017. Short-term effects of nitrogen deposition on soil physical and chemical properties of alpine shrub meadow in Tibet[J]. Acta Agrestia Sinica, 25(5): 973-981. | |
[38] | 张海芳, 刘红梅, 赵建宁, 等, 2018. 模拟氮沉降和降雨变化对贝加尔针茅草原土壤细菌群落结构的影响[J]. 生态学报, 38(1): 244-253. |
ZHANG H F, LIU H M, ZHAO J N, et al., 2018. Effects of simulated nitrogen deposition and precipitation change on soil bacterial community structure in a Stipa baicalensis steppe[J]. Acta Ecologica Sinica, 38(1): 244-253. | |
[39] | 张静, 董世魁, 赵珍珍, 等, 2019. 模拟氮沉降对青海湖流域高寒草原植物群落组成及稳定性的影响[J]. 草业科学, 36(11): 2733-2741. |
ZHANG J, DONG S K, ZHAO Z Z, et al., 2019. Effect of simulated nitrogen deposition on the community composition and stability of alpine grasslands in the Qinghai Lake Area[J]. Pratacultural Science, 36(11): 2733-2741. | |
[40] | 张明, 欧阳琰, 2017. 基于遥感数据的青海湖流域生物多样性评价研究[J]. 环境与可持续发展, 42(2): 148-150. |
ZHANG M, OUYANG Y, 2017. Indicator system and assessment of biodiversity in Qinghai-Lake area based on remote sensing[J]. Environment and Sustainable Development, 42(2): 148-150. | |
[41] | 张世虎, 张悦, 马晓玉, 等, 2022. 大气氮沉降影响草地植物物种多样性机制的研究[J]. 生态学报, 42(4): 1252-1261. |
ZHANG S H, ZHANG Y, MA X Y, et al., 2022. Mechanisms underlying loss of plant biodiversity by atmospheric nitrogen deposition in grasslands[J]. Acta Ecologica Sinica, 42(4): 1252-1261. | |
[42] |
张中华, 周华坤, 赵新全, 等, 2018. 青藏高原高寒草地生物多样性与生态系统功能的关系[J]. 生物多样性, 26(2): 111-129.
DOI |
ZHANG Z H, ZHOU H K, ZHAO X Q, 2018. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau[J]. Biodiversity Science, 26(2): 111-129. |
[1] | 李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069. |
[2] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[3] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[4] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[5] | 李阳, 侯志勇, 陈薇, 于晓英, 谢永宏, 黄鑫, 谭佩阳, 李继承, 黎尚林, 杨辉. 大围山高山湿地植物多样性与区系组成研究[J]. 生态环境学报, 2023, 32(4): 643-650. |
[6] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[7] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[8] | 尤海舟, 王超, 赵广智, 李冬梅. 华北平原欧美107杨单株夜间液流分配特征及其环境响应[J]. 生态环境学报, 2023, 32(2): 256-263. |
[9] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[10] | 张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35. |
[11] | 刘希林, 卓瑞娜. 崩岗崩积体坡面初始产流时间影响因素及其临界阈值[J]. 生态环境学报, 2023, 32(1): 36-46. |
[12] | 李萍, 白小明, 陈鑫, 李娟霞, 冉福, 陈辉, 杨小妮, 康瑞卿. 白三叶入侵对禾本科草坪土壤特性和植物群落的影响[J]. 生态环境学报, 2023, 32(1): 70-79. |
[13] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[14] | 张林, 周飘, 齐实, 张岱, 伍冰晨, 崔冉冉. 侧柏人工林林分空间结构对林下草本多样性的差异性影响及其关联度[J]. 生态环境学报, 2022, 31(9): 1794-1801. |
[15] | 王哲, 田胜尼, 张永梅, 张和禹, 周忠泽. 巢湖派河口滩涂植物群落特征研究[J]. 生态环境学报, 2022, 31(9): 1823-1831. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||