生态环境学报 ›› 2022, Vol. 31 ›› Issue (9): 1794-1801.DOI: 10.16258/j.cnki.1674-5906.2022.09.009
收稿日期:
2022-03-13
出版日期:
2022-09-18
发布日期:
2022-11-07
通讯作者:
*齐实(1964年生),男,教授,主要从事水土保持与流域治理研究。Email: qishi@bjfu.edu.cn作者简介:
张林(1996年生),男,硕士研究生,主要从事水土保持与流域治理研究。E-mail: 1822892459@qq.com
基金资助:
ZHANG Lin(), ZHOU Piao, QI Shi*(
), ZHANG Dai, WU Bingchen, CUI Ranran
Received:
2022-03-13
Online:
2022-09-18
Published:
2022-11-07
摘要:
探讨林分结构与林下草本物种多样性的关系,解析影响林下草本物种多样性的主导林分结构因子并提出相应的优化策略,可为北京山区生物多样性保护和森林可持续发展经营提供理论依据。以北京山区侧柏人工林为研究对象,基于27个标准样地的实测数据,选取了林分密度、郁闭度、混交度、角尺度、大小比、林龄、平均树高、平均胸径等8个林分结构指标,利用多元逐步回归法筛选出影响林下草本物种多样性的主导林分结构因子,并用响应面分析法将主导林分结构进行优化。结果表明,(1)Pearson相关分析结果显示影响Simpson多样性指数的林分结构因子为郁闭度(P<0.01)、林分密度(P<0.01)和混交度(P<0.05);影响Pielou均匀性指数的林分结构因子为郁闭度(P<0.01)、林分密度(P<0.05)和混交度(P<0.01);影响Margalef丰富度指数的林分结构因子为林分密度(P<0.05),而林龄、平均胸径、平均树高、角尺度和大小比与各多样性指数均无显著相关关系(P>0.05)。(2)多元逐步回归分析结果显示郁闭度是影响林下Simpson多样性指数的主导林分结构因子,郁闭度和混交度是影响林下Pielou均匀性指数的主导林分结构因子,林分密度是影响Margalef丰富度指数的主导林分结构因子,而对多样性整体水平起决定作用的主导林分结构因子为郁闭度和混交度。(3)响应面分析结果显示林分结构的最优配置调整为:林分郁闭度=0.58,混交度=0.60,与优化前的侧柏林下草本物种多样性综合指数的平均水平(0.57)相比,预期值将提高约41.19%。综上所述,维持合理的林分结构是提升林下草本植物多样性整体水平的有效途径。
中图分类号:
张林, 周飘, 齐实, 张岱, 伍冰晨, 崔冉冉. 侧柏人工林林分空间结构对林下草本多样性的差异性影响及其关联度[J]. 生态环境学报, 2022, 31(9): 1794-1801.
ZHANG Lin, ZHOU Piao, QI Shi, ZHANG Dai, WU Bingchen, CUI Ranran. Difference Influence of Spatial Structure of Platycladus orientalis Plantations on Diversity of Understory Herbaceous and Its Correlation Degree[J]. Ecology and Environment, 2022, 31(9): 1794-1801.
样地编号 Plot code | 海拔 Altitude/ m | 坡度 Slope/ (°) | 坡向 Aspect | 林龄 Age/ a | 平均树高 Average Height/ m | 平均胸径 Average Diameter/ cm | 土层厚度 Soil thickness/ cm |
---|---|---|---|---|---|---|---|
1 | 334 | 18 | 阳坡 | 45 | 6.5 | 7.5 | 43 |
2 | 321 | 21 | 阳坡 | 65 | 7.9 | 9.7 | 39 |
3 | 339 | 23 | 阳坡 | 31 | 5.2 | 4.8 | 40 |
4 | 323 | 17 | 阳坡 | 63 | 7.8 | 9.4 | 45 |
5 | 309 | 19 | 阳坡 | 47 | 7.2 | 7.8 | 41 |
6 | 317 | 25 | 阳坡 | 41 | 6.2 | 6.8 | 45 |
7 | 298 | 24 | 阳坡 | 55 | 7.3 | 7.9 | 41 |
8 | 301 | 21 | 阳坡 | 41 | 6.2 | 6.8 | 39 |
9 | 315 | 19 | 阳坡 | 63 | 7.9 | 9.4 | 38 |
10 | 301 | 18 | 阳坡 | 49 | 6.9 | 7.8 | 46 |
11 | 315 | 19 | 阳坡 | 71 | 8.2 | 10.3 | 39 |
12 | 323 | 25 | 阳坡 | 63 | 7.9 | 9.4 | 41 |
13 | 309 | 26 | 阳坡 | 65 | 7.9 | 9.8 | 42 |
14 | 333 | 21 | 阳坡 | 42 | 6.4 | 6.9 | 38 |
15 | 358 | 23 | 阳坡 | 37 | 5.8 | 5.9 | 39 |
16 | 293 | 18 | 阳坡 | 45 | 6.5 | 7.5 | 40 |
17 | 321 | 25 | 阳坡 | 55 | 7.4 | 7.9 | 41 |
18 | 314 | 24 | 阳坡 | 65 | 7.9 | 9.8 | 43 |
19 | 342 | 16 | 阳坡 | 61 | 7.6 | 9.2 | 39 |
20 | 284 | 19 | 阳坡 | 81 | 8.2 | 11.6 | 38 |
21 | 323 | 21 | 阳坡 | 48 | 7.3 | 7.7 | 42 |
22 | 314 | 20 | 阳坡 | 53 | 7.4 | 7.8 | 46 |
23 | 308 | 24 | 阳坡 | 45 | 6.5 | 7.5 | 43 |
24 | 319 | 23 | 阳坡 | 36 | 5.8 | 5.8 | 44 |
25 | 324 | 20 | 阳坡 | 68 | 7.9 | 10.4 | 45 |
26 | 291 | 18 | 阳坡 | 59 | 7.5 | 8.5 | 42 |
27 | 309 | 25 | 阳坡 | 41 | 6.2 | 6.8 | 39 |
表1 样地基本特征
Table1 Basic characteristics of the sample plot
样地编号 Plot code | 海拔 Altitude/ m | 坡度 Slope/ (°) | 坡向 Aspect | 林龄 Age/ a | 平均树高 Average Height/ m | 平均胸径 Average Diameter/ cm | 土层厚度 Soil thickness/ cm |
---|---|---|---|---|---|---|---|
1 | 334 | 18 | 阳坡 | 45 | 6.5 | 7.5 | 43 |
2 | 321 | 21 | 阳坡 | 65 | 7.9 | 9.7 | 39 |
3 | 339 | 23 | 阳坡 | 31 | 5.2 | 4.8 | 40 |
4 | 323 | 17 | 阳坡 | 63 | 7.8 | 9.4 | 45 |
5 | 309 | 19 | 阳坡 | 47 | 7.2 | 7.8 | 41 |
6 | 317 | 25 | 阳坡 | 41 | 6.2 | 6.8 | 45 |
7 | 298 | 24 | 阳坡 | 55 | 7.3 | 7.9 | 41 |
8 | 301 | 21 | 阳坡 | 41 | 6.2 | 6.8 | 39 |
9 | 315 | 19 | 阳坡 | 63 | 7.9 | 9.4 | 38 |
10 | 301 | 18 | 阳坡 | 49 | 6.9 | 7.8 | 46 |
11 | 315 | 19 | 阳坡 | 71 | 8.2 | 10.3 | 39 |
12 | 323 | 25 | 阳坡 | 63 | 7.9 | 9.4 | 41 |
13 | 309 | 26 | 阳坡 | 65 | 7.9 | 9.8 | 42 |
14 | 333 | 21 | 阳坡 | 42 | 6.4 | 6.9 | 38 |
15 | 358 | 23 | 阳坡 | 37 | 5.8 | 5.9 | 39 |
16 | 293 | 18 | 阳坡 | 45 | 6.5 | 7.5 | 40 |
17 | 321 | 25 | 阳坡 | 55 | 7.4 | 7.9 | 41 |
18 | 314 | 24 | 阳坡 | 65 | 7.9 | 9.8 | 43 |
19 | 342 | 16 | 阳坡 | 61 | 7.6 | 9.2 | 39 |
20 | 284 | 19 | 阳坡 | 81 | 8.2 | 11.6 | 38 |
21 | 323 | 21 | 阳坡 | 48 | 7.3 | 7.7 | 42 |
22 | 314 | 20 | 阳坡 | 53 | 7.4 | 7.8 | 46 |
23 | 308 | 24 | 阳坡 | 45 | 6.5 | 7.5 | 43 |
24 | 319 | 23 | 阳坡 | 36 | 5.8 | 5.8 | 44 |
25 | 324 | 20 | 阳坡 | 68 | 7.9 | 10.4 | 45 |
26 | 291 | 18 | 阳坡 | 59 | 7.5 | 8.5 | 42 |
27 | 309 | 25 | 阳坡 | 41 | 6.2 | 6.8 | 39 |
项目 Itmes | 均值 Mean | 标准差 Standard deviation | 变异系数 Coefficients of variation/% |
---|---|---|---|
林分密度 Stand density/(plant∙hm-2) | 1182.51 | 358.88 | 30.35 |
郁闭度 Canopy closure | 0.71 | 0.12 | 16.72 |
平均树高 Average tree height/m | 7.07 | 0.85 | 12.09 |
平均胸径 Average diameter/cm | 8.12 | 1.56 | 19.29 |
角尺度 Angular scale | 0.46 | 0.12 | 27.07 |
混交度 Mingling degree | 0.29 | 0.16 | 55.78 |
大小比 Neighbourhood comparison | 0.49 | 0.05 | 9.17 |
Simpson多样性指数 Simpson diversity index | 0.59 | 0.12 | 21.07 |
Pielou均匀度指数 Pielou evenness index | 0.78 | 0.15 | 19.05 |
Margalef丰富度指数 Margalef richness index | 1.25 | 0.54 | 43.63 |
多样性综合指数 Diversity composite index | 0.57 | 0.22 | 39.79 |
表2 林分结构及多样性指数
Table 2 Stand structure and diversity index
项目 Itmes | 均值 Mean | 标准差 Standard deviation | 变异系数 Coefficients of variation/% |
---|---|---|---|
林分密度 Stand density/(plant∙hm-2) | 1182.51 | 358.88 | 30.35 |
郁闭度 Canopy closure | 0.71 | 0.12 | 16.72 |
平均树高 Average tree height/m | 7.07 | 0.85 | 12.09 |
平均胸径 Average diameter/cm | 8.12 | 1.56 | 19.29 |
角尺度 Angular scale | 0.46 | 0.12 | 27.07 |
混交度 Mingling degree | 0.29 | 0.16 | 55.78 |
大小比 Neighbourhood comparison | 0.49 | 0.05 | 9.17 |
Simpson多样性指数 Simpson diversity index | 0.59 | 0.12 | 21.07 |
Pielou均匀度指数 Pielou evenness index | 0.78 | 0.15 | 19.05 |
Margalef丰富度指数 Margalef richness index | 1.25 | 0.54 | 43.63 |
多样性综合指数 Diversity composite index | 0.57 | 0.22 | 39.79 |
林分结构 Stand structure | Simpson多样性指数 Simpson diversity index | Pielou均匀度指数 Pielou evenness index | Margalef丰富度指数 Margalef richness index |
---|---|---|---|
林分密度 Stand density/(plant∙hm-2) | -0.547** | -0.446* | -0.375* |
郁闭度 Canopy density | -0.633** | -0.544** | -0.301 |
平均树高 Average tree height/m | -0.225 | -0.129 | -0.237 |
平均胸径A verage Diameter/cm | -0.178 | -0.054 | -0.158 |
林龄 Forest age/a | -0.183 | -0.066 | -0.162 |
大小比 Neighbourhood comparison | -0.280 | -0.147 | -0.296 |
角尺度 Angular scale | -0.162 | -0.208 | -0.133 |
混交度 Mingling degree | 0.400* | 0.480** | -0.336 |
表3 林分结构因子与多样性指数的相关性分析
Table 3 Correlation analysis between stand structure factors and diversity index
林分结构 Stand structure | Simpson多样性指数 Simpson diversity index | Pielou均匀度指数 Pielou evenness index | Margalef丰富度指数 Margalef richness index |
---|---|---|---|
林分密度 Stand density/(plant∙hm-2) | -0.547** | -0.446* | -0.375* |
郁闭度 Canopy density | -0.633** | -0.544** | -0.301 |
平均树高 Average tree height/m | -0.225 | -0.129 | -0.237 |
平均胸径A verage Diameter/cm | -0.178 | -0.054 | -0.158 |
林龄 Forest age/a | -0.183 | -0.066 | -0.162 |
大小比 Neighbourhood comparison | -0.280 | -0.147 | -0.296 |
角尺度 Angular scale | -0.162 | -0.208 | -0.133 |
混交度 Mingling degree | 0.400* | 0.480** | -0.336 |
物种多样性 Species diversity | 回归方程 Regression equation | R2 |
---|---|---|
Simpson多样性指数 Simpson diversity index | α= -0.633ζ | 0.401 |
Pielou均匀度指数 Pielou evenness index | β= -0.440ζ+0.349η | 0.406 |
Margalef丰富度指数 Margalef richness index | γ= -0.375Γ | 0.141 |
多样性综合指数 Diversity composite index | δ= -0.446ζ+0.347η | 0.411 |
表4 林分结构因子与林下草本物种多样性的逐步回归方程
Table 4 Stepwise regression equation between stand structure factors and understory herbaceous species diversity
物种多样性 Species diversity | 回归方程 Regression equation | R2 |
---|---|---|
Simpson多样性指数 Simpson diversity index | α= -0.633ζ | 0.401 |
Pielou均匀度指数 Pielou evenness index | β= -0.440ζ+0.349η | 0.406 |
Margalef丰富度指数 Margalef richness index | γ= -0.375Γ | 0.141 |
多样性综合指数 Diversity composite index | δ= -0.446ζ+0.347η | 0.411 |
影响因子 Impact factors | 响应曲面回归方程 Response surface regression equation | R2 |
---|---|---|
混交度及郁闭度 Mingling degree and canopy density | δ= -0.964+0.679η+4.66ζ-3.97ζ 2 | 0.76 |
表5 多样性综合指数与郁闭度、混交度的非线性回归方程
Table 5 Nonlinear regression equation of comprehensive diversity index, canopy density and mingling degree
影响因子 Impact factors | 响应曲面回归方程 Response surface regression equation | R2 |
---|---|---|
混交度及郁闭度 Mingling degree and canopy density | δ= -0.964+0.679η+4.66ζ-3.97ζ 2 | 0.76 |
[1] |
AHMAD B, WANG Y H, HAO J, et al., 2018. Optimizing stand structure for trade-offs between overstory timber production and understory plant diversity: A case-study of a larch plantation in northwest China[J]. Land Degradation & Development, 29(9): 2998-3008.
DOI URL |
[2] |
CAPELLESSO E S, SCROVONSKI K L, ZANIN E M, et al., 2016. Effects of forest structure on litter production, soil chemical composition and litter-soil interactions[J]. Acta Botanica Brasilica, 30(3): 329-335.
DOI URL |
[3] |
CHASTAIN R A, CURRIE W S, TOWNSEND P A, 2006. Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests[J]. Forest Ecology and Management, 231(1): 63-77.
DOI URL |
[4] |
CHÁVEZ V, MACDONALD S E, 2012. Partitioning vascular understory diversity in mixedwood boreal forests: The importance of mixed canopies for diversity conservation[J]. Forest Ecology and Management, 271(1): 19-26.
DOI URL |
[5] |
CHEN Y M, CAO Y, 2014. Response of tree regeneration and understory plant species diversity to stand density in mature Pinus tabulaeformis plantations in the hilly area of the Loess Plateau, China[J]. Ecological Engineering, 73(5): 238-245.
DOI URL |
[6] |
COOK J E, 2015. Structural effects on understory attributes in second-growth forests of northern Wisconsin, USA[J]. Forest Ecology and Management, 347(5): 188-199.
DOI URL |
[7] |
CROUS-DURAN J, GRAVES A R, PAULO J A, et al., 2019. Modelling tree density effects on provisioning ecosystem services in Europe[J]. Agroforestry Systems, 93(5): 1985-2007.
DOI URL |
[8] |
HE Y J, QIN L, LI Z Y, et al., 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China[J]. Forest Ecology and Management, 295(1): 193-198.
DOI URL |
[9] |
KUITERS A T, 2013. Diversity-stability relationships in plant communities of contrasting habitats[J]. Journal of Vegetation Science, 24(3): 453-462.
DOI URL |
[10] | LIN S, LI Y, LI Y H, et al., 2021. Influence of tree size, local forest structure, topography, and soil resource availability on plantation growth in Qinghai Province, China[J]. Ecological Indicators, 120(6): 106-117. |
[11] |
MACHADO M A, JR E B D A, 2019. Spatial structure, diversity, and edaphic factors of an area of amazonian coast vegetation in Brazill[J]. The Journal of the Torrey Botanical Society, 146(1): 58-68.
DOI URL |
[12] |
SABATINI F, JIMENEZ-ALFARO B, BURRASCANO S, et al., 2014. Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain[J]. Community Ecology, 15(2): 147-157.
DOI URL |
[13] |
WAGNER S, FISCHER H, HUTH F, 2011. Canopy effects on vegetation caused by harvesting and regeneration treatments[J]. European Journal of Forest Research, 130(1): 17-40.
DOI URL |
[14] | WANG M Y, YANG J, GAO H L, et al., 2020. Interspecific plant competition increases soil labile organic carbon and nitrogen contents[J]. Forest Ecology and Management, 462(4): 117-129. |
[15] |
ZHANG Y, DUAN B, XIAN J, et al., 2011. Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China[J]. Forest Ecology and Management, 262(3): 361-369.
DOI URL |
[16] | 曹小玉, 李际平, 委霞, 2019. 亚热带典型林分空间结构与林下草本物种多样性的差异特征分析及其关联度[J]. 草业科学, 36(10): 2466-2475. |
CAO X Y, LI J P, WEI X, 2019. Analysis of the difference and correlation between the spatial structure and understory herbaceous species diversity of typical subtropical forests[J]. Pratacultural Science, 36(10): 2466-2475. | |
[17] | 曹小玉, 李际平, 赵文菲, 等, 2020. 基于结构方程模型分析林分空间结构对草本物种多样性的影响[J]. 生态学报, 40(24): 9164-9173. |
CAO X Y, LI J P, ZHAO W F, et al., 2020. Effects of stand spatial structure on herbaceous species diversity in forests based on structural equation modeling[J]. Acta Ecologica Sinica, 40(24): 9164-9173. | |
[18] | 陈丝露, 赵敏, 李贤伟, 等, 2018. 柏木低效林不同改造模式优势草本植物多样性及其生态位[J]. 生态学报, 38(1): 143-155. |
CHEN S L, ZHAO M, LI X W, et al., 2018. Study on plant diversity andniche characteristics of dominant herbaceous populations under different reconstruction patterns in low efficiency stands of Cupressus funebris[J]. Acta Ecologica Sinica, 38(1): 143-155. | |
[19] | 崔宁洁, 陈小红, 刘洋, 等, 2014. 不同林龄马尾松人工林林下灌木和草本多样性[J]. 生态学报, 34(15): 4313-4323. |
CUI N J, CHEN X H, LIU Y, et al., 2014. Shrub and herb diversity at different ages of Pinus massoniana plantation[J]. Acta Ecologica Sinica, 34(15): 4313-4323. | |
[20] | 邓清月, 张晓龙, 牛俊杰, 等, 2019. 晋西北饮马池山植物群落物种多样性沿海拔梯度的变化[J]. 生态环境学报, 28(5): 865-872. |
DENG Q Y, ZHANG X L, NIU J J, et al., 2019. Species diversity of plant communities along an altitude gradient in Yinmachi Mountain, northwestern Shanxi China[J]. Ecology and Environmental Sciences, 28(5): 865-872. | |
[21] | 董威, 刘泰瑞, 覃志杰, 等, 2019. 不同林分密度油松天然林土壤理化性质及微生物量碳氮特征研究[J]. 生态环境学报, 28(1): 65-72. |
DONG W, LIU T R, TAN Z J, et al., 2019. Research on the characteristics of soil physicochemical properties and microbial biomass carbon and nitrogen in natural Pinus tabulaeformis forests with different stand densities[J]. Ecology and Environmental Sciences, 28(1): 65-72. | |
[22] | 郭彩云, 张雷, 高孝威, 等, 2021. 内蒙古大青山4种典型植被类型生态系统服务权衡与协同[J]. 生态环境学报, 30(10): 1999-2009. |
GUO C Y, ZHANG L, GAO X W, et al., 2021. Ecosystem service tradeoffs and synergies of four typical vegetation types in Daqing Mountain, Inner Mongolia[J]. Ecology and Environmental Sciences, 30(10): 1999-2009. | |
[23] | 胡文杰, 潘磊, 雷静品, 等, 2019. 三峡库区马尾松 (Pinus massoniana) 林林分结构特征对灌木层物种多样性的影响[J]. 生态环境学报, 28(7): 1332-1340. |
HU W J, PAN L, LEI J P, et al., 2019. Effects of forest stand structure characteristics on shrub species diversity in Pinus massoniana forest in Three Gorges Reservoir Area[J]. Ecology and Environmental Sciences, 28(7): 1332-1340. | |
[24] | 惠刚盈, 胡艳波, 2001. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 14(1): 23-27. |
HUI G Y, HU Y B, 2001. Measuring species spatial isolation in mixed forests[J]. Forest Research, 14(1): 23-27 | |
[25] | 姜倪皓, 张诗函, 2021. 楚雄市西郊云南松林下草本优势种种间联结及环境解释[J]. 生态环境学报, 30(11): 2109-2120. |
JIANG N H, ZHANG S H, 2021. Interspecific association and environmental interpretation of dominant herbaceous species in Pinus yunnanensis forest in the western suburbs of Chuxiong City[J]. Ecology and Environmental Sciences, 30(11): 2109-2120. | |
[26] | 刘秉儒, 2021. 生物多样性的海拔分布格局研究及进展[J]. 生态环境学报, 30(2): 438-444. |
LIU B R, 2021. Recent advances in altitudinal distribution patterns of biodiversity[J]. Ecology and Environmental Sciences, 30(2): 438-444. | |
[27] | 祁雪连, 葛晓敏, 钱壮壮, 等, 2021. 武夷山天然针阔混交林与毛竹人工林土壤性质差异[J]. 生态环境学报, 30(8): 1599-1606. |
QI X L, GE X M, QIAN Z Z, et al., 2021. Differences of soil properties between natural mixed coniferous and broad-leaved forest and Moso bamboo plantation in Wuyi Mountains[J]. Ecology and Environmental Sciences, 30(8): 1599-1606. | |
[28] | 孙宇, 李际平, 曹小玉, 等, 2020. 基于通径分析的杉木林空间结构与土壤养分关系研究[J]. 中南林业科技大学学报, 40(7): 41-47. |
SUN Y, LI J P, CAO X Y, et al., 2020. Research on the relationship between spatial structure and soil nutrients of Cunninghamia lanceolata forest based on path analysis method[J]. Journal of Central South University of Forestry & Technology, 40(7): 41-47 | |
[29] | 王玲, 2020. 林分密度对油松人工林群落结构和植物多样性的影响[J]. 生态环境学报, 29(12): 2328-2336. |
WANG L, 2020. Effects of different stand densities on community structure and species diversity of Pinus tabulaeformis plantation[J]. Ecology and Environmental Sciences, 29(12): 2328-2336. | |
[30] | 王媚臻, 毕浩杰, 金锁, 等, 2019. 林分密度对云顶山柏木人工林林下物种多样性和土壤理化性质的影响[J]. 生态学报, 39(3): 981-988. |
WANG M Z, BI H J, JIN S, et al., 2019. Effects of stand density on understory species diversity and soil physicochemical properties of a Cupressus funebris plantation in Yunding Mountain[J]. Acta Ecologica Sinica, 39(3): 981-988. | |
[31] | 王娜, 楚鑫磊, 勾蒙蒙, 等, 2021. 三峡库区森林生态系统服务权衡与协同分析[J]. 生态环境学报, 30(3): 475-484. |
WANG N, CHU X L, GOU M M, et al., 2021. Tradeoffs and synergies analysis on forest ecosystem services in the Three Gorges Reservoir Area[J]. Ecology and Environmental Sciences, 30(3): 475-484. | |
[32] | 闫玮明, 孙冰, 裴男才, 等, 2019. 粤北阔叶人工林和次生林植物多样性与土壤理化性质相关性研究[J]. 生态环境学报, 28(5): 898-907. |
YAN W M, SUN B, PEI N C, et al., 2019. Correlation analyses on plant diversity and soil physical-chemical properties between evergreen broad-leaved plantations and natural secondary forests in North Guangdong, China[J]. Ecology and Environmental Sciences, 28(5): 898-907. | |
[33] | 杨胜香, 曹建兵, 李凤梅, 等, 2021. 物种多样性对铅锌尾矿废弃地植被及土壤的生态效应[J]. 环境科学, 42(8): 3953-3962. |
YANG S X, CAO J B, LI F M, et al., 2021. Ecological effects of species diversity on plant growth and physico-chemical properties in a pb-zn mine Tailings[J]. Environmental sciences, 42(8): 3953-3962. | |
[34] | 张柳桦, 齐锦秋, 李婷婷, 等, 2019. 林分密度对新津文峰山马尾松人工林林下物种多样性和生物量的影响[J]. 生态学报, 39(15): 5709-5717. |
ZHANG L H, QI J Q, LI T T, et al., 2019. Effects of stand density on understory plant diversity and biomass in a Pinus massoniana plantation in Wenfeng Mountain, Xinjin County[J]. Acta Ecologica Sinica, 39(15): 5709-5717. | |
[35] | 张沛健, 徐建民, 卢万鸿, 等, 2021. 雷州半岛不同林龄尾细桉人工林植物多样性和土壤理化性质分析[J]. 中南林业科技大学学报, 41(9): 96-105. |
ZHANG P J, XU J M, LU W H, et al., 2021. Plant diversity and soil physicochemical properties under different aged Eucalyptus urophylla×Eucalyptus tereticornis plantations in Leizhou Peninsula[J]. Journal of Central South University of Forestry & Technology, 41(9): 96-105. | |
[36] | 张蕊, 赵学勇, 王少昆, 等, 2019. 极端干旱对荒漠草原群落物种多样性和地上生物量碳氮的影响[J]. 生态环境学报, 28(4): 715-722. |
ZHANG R, ZHAO XY, WANG S K, et al., 2019. Effect of extreme drought on the community species diversity and aboveground biomass carbon and nitrogen in the desert-steppe region in northern China[J]. Ecology and Environmental Sciences, 28(4): 715-722. | |
[37] | 张晓龙, 邓清月, 秦浩, 等, 2020. 不同海拔梯度灌丛草甸群落多样性的分布特征--以五台山亚高山-高山带南坡为例[J]. 生态环境学报, 29(4): 657-664. |
ZHANG X L, DENG Q Y, QIN H, et al., 2020. The distribution characteristics of shrub-meadow community diversity at different elevations: A case study of the southern slope of subalpine-alpine zone in Wutai Mountain[J]. Ecology and Environmental Sciences, 29(4): 657-664. | |
[38] | 张洋洋, 周清慧, 许骄阳, 等, 2021. 林龄对马尾松人工林林下植物与土壤种子库多样性的影响[J]. 生态环境学报, 30(11): 2121-2129. |
ZHANG Y Y, ZHOU Q H, XU J Y, et al., 2021. Effects of forest ages on the diversity of understory plants and soil seed bank of Pinus massoniana plantations[J]. Ecology and Environmental Sciences, 30(11): 2121-2129. | |
[39] | 张勇强, 李智超, 厚凌宇, 等, 2020. 林分密度对杉木人工林下物种多样性和土壤养分的影响[J]. 土壤学报, 57(1): 239-250. |
ZHANG Y Q, LI Z C, HOU L Y, et al., 2020. Effects of stand density on understory species diversity and soil nutrients in chinese fir plantation[J]. Acta Pedologica Sinica, 57(1): 239-250. |
[1] | 肖博, 王邵军, 解玲玲, 王郑钧, 郭志鹏, 张昆凤, 张路路, 樊宇翔, 郭晓飞, 罗双, 夏佳慧, 李瑞, 兰梦杰, 杨胜秋. 蚂蚁筑巢定居活动对热带森林土壤氮库及组分分配的影响[J]. 生态环境学报, 2023, 32(6): 1026-1036. |
[2] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[3] | 陈治中, 昝梅, 杨雪峰, 董煜. 新疆森林植被碳储量预测研究[J]. 生态环境学报, 2023, 32(2): 226-234. |
[4] | 何亚婷, 何友均, 王鹏, 谢和生. 不同经营模式对蒙古栎林土壤有机碳组分的长效性影响[J]. 生态环境学报, 2023, 32(1): 11-17. |
[5] | 宋瑞朋, 杨起帆, 郑智恒, 习丹. 3种林下植被类型对杉木人工林土壤有机碳及其组分特征的影响[J]. 生态环境学报, 2022, 31(12): 2283-2291. |
[6] | 杨世福, 马玲玲, 陈芸芝, 唐旭利. 鼎湖山季风常绿阔叶林演替系列土壤细菌群落的变化特征[J]. 生态环境学报, 2022, 31(12): 2275-2282. |
[7] | 肖军, 雷蕾, 曾立雄, 李肇晨, 马成功, 肖文发. 不同经营模式对华北油松人工林碳储量的影响[J]. 生态环境学报, 2022, 31(11): 2134-2142. |
[8] | 韩鑫, 袁春阳, 李济宏, 洪宗文, 刘宣, 杜婷, 李晗, 游成铭, 谭波, 朱鹏, 徐振锋. 树种和土层对土壤无机氮的影响[J]. 生态环境学报, 2022, 31(11): 2143-2151. |
[9] | 刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001. |
[10] | 李勋, 崔宁洁, 张艳, 覃宇, 张健. 马尾松与乡土阔叶树种凋落叶纤维素、总酚以及缩合单宁降解的混合效应[J]. 生态环境学报, 2022, 31(9): 1813-1822. |
[11] | 秦艳培, 徐少君, 田耀武. 黄河流域河南段植被和土壤及其碳密度空间分异研究[J]. 生态环境学报, 2022, 31(9): 1745-1753. |
[12] | 陈科屹, 王建军, 何友均, 张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9): 1725-1734. |
[13] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[14] | 符裕红, 张代杰, 项蛟, 周焱, 黄宗胜, 喻理飞. 喀斯特不同地下生境剖面植物根系拓扑结构特征[J]. 生态环境学报, 2022, 31(5): 865-874. |
[15] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||