[1] |
AMIRI M, TARKESH M, SHAFIEZADEH M, 2022. Modelling the biological invasion of Prosopis juliflora using geostatistical-based bioclimatic variables under climate change in arid zones of southwestern Iran[J]. Journal of Arid Land, 14(2): 203-224.
|
[2] |
BALDWIN M E, KAIN J S, 2006. Sensitivity of several performance measures to displacement error, bias, and event frequency[J]. Weather and Forecasting, 21(4): 636-648.
|
[3] |
ÁNGEL-VALLEJO M C, AGUIRRE-ACOSTA N, RODRÍGUEZ-Rey G T, et al., 2024. Distribution models in invasive plants with climatic niche expansion: A case study of Ulex europaeus L. in Colombian Andes[J]. Biological Invasions, 26(6): 1919-1930.
|
[4] |
SEUFFERT M E, MARTÍN P R, 2024. Global distribution of the invasive apple snail Pomacea canaliculata: Analyzing possible shifts in climatic niche between native and invaded ranges and future spread[J]. Aquatic Sciences, 86(1): 1-15.
|
[5] |
ELITH J, LEATHWICK J R, 2009. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution & Systematics, 40(1): 677-697.
|
[6] |
ZHAO G H, CUI X Y, SUN J J, et al., 2021. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized Biomod2 and MaxEnt models[J]. Ecological Indicators, 132(Suppl C): 108256.
|
[7] |
LI C R, LUO G F, YUE C R, et al., 2024. Distribution patterns and potential suitable habitat prediction of Ceracris kiangsu (Orthoptera: Arcypteridae) under climate change-a case study of China and Southeast Asia[J]. Scientific Reports, 14(1): 20580.
|
[8] |
LI M, ZHAO H X, XIAN X Q, et al., 2023. Geographical distribution pattern and ecological niche of Solenopsis invicta Buren in China under climate change[J]. Diversity, 15(5): 607.
|
[9] |
THUILLER W, LAFOURCADE B, ENGLER R, et al., 2009. BIOMOD: A platform for ensemble forecasting of species distributions[J]. Ecography, 32(3): 369-373.
|
[10] |
LANDGREBE T C W, DUIN R P W, 2008. Efficient multiclass ROC approximation by decomposition via confusion matrix perturbation analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(5): 810-822.
DOI
PMID
|
[11] |
WANG Y, YANG Y G, ZHANG M G, 2024. The influence of climate change on the potential distribution of Ageratum conyzoides in China[J]. Ecology and Evolution, 14(10): e11513.
|
[12] |
YANG J T, HUANG Y, SU M M, et al., 2024. Spatial distribution patterns of the key afforestation species Cupressus funebris: Insights from an ensemble model under climate change scenarios[J]. Forests, 15(8): 1280.
|
[13] |
ZHANG W G, CHEN X Y, LIU R L, et al., 2022. Realized niche shift associated with Galinsoga quadriradiata (Asteraceae) invasion in China[J]. Journal of Plant Ecology, 15(3): 538-548.
|
[14] |
ZHAO Z Y, XIAO N W, SHEN M, et al., 2022. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China[J]. Science of The Total Environment, 842: 156867.
|
[15] |
毕雅琼, 张明旭, 陈元, 等, 2022. 基于Biomod2组合模型的中国野生芍药Paeonia lactiflora适宜生境分布[J]. 中国中药杂志, 47(2): 376-384.
|
|
BI Y Q, ZHANG M X, CHEN Y, et al., 2022. Applying Biomod2 for modeling of species suitable habitats: A case study of Paeonia lactiflora in China[J]. Chinese Journal of Traditional Chinese Medicine, 47(2): 376-384.
|
[16] |
陈爱莉, 龚伟, 孔芬, 等, 2021. 气候变化对杨梅种植适宜区的影响[J]. 扬州大学学报(农业与生命科学版), 42(4): 96-102.
|
|
CHEN A L, GONG W, KONG F, et al., 2021. Predicting the influence of climate change on the suitable range for planting Myrica rubra[J]. Journal of Yangzhou University (Agriculture and Life Sciences), 42(4): 96-102.
|
[17] |
范月圆, 高煌杰, 陶少敏, 等, 2024. 基于Biomod2组合模型的福寿螺在中国的潜在分布预测[J]. 应用生态学报, 35(8): 2237-2246.
DOI
|
|
FAN Y Y, GAO H J, TAO S M, et al., 2024. Potential distribution prediction of Pomacea canaliculata in China based on the Biomod2[J]. Journal of Applied Ecology, 35(8): 2237-2246.
|
[18] |
高明龙, 铁牛, 张晨, 等, 2024. 基于Biomod2组合模型的我国山杨潜在分布区研究[J]. 南京林业大学学报(自然科学版), 48(2): 247-255.
DOI
|
|
GAO M L, TIE N, ZHANG C, et al., 2024. Study on the potential distribution area of the mountain poplar in China based on the Biomod2 combination model[J]. Journal of Nanjing Forestry University (Natural Science Edition), 48(2): 247-255.
|
[19] |
郭发城, 马贵龙, 高桂珍, 2024. 基于Biomod2组合模型对入侵害虫杏鬃球蚧的潜在适生区预测[J]. 林业科学研究, 37(4): 136-147.
|
|
GUO F C, MA G L, GAO G Z, 2024. Prediction of potential habitat areas for the invasive pest Sphaerolecanium prunastri based on Biomod2 combined model[J]. Research on Forestry Science, 37(4): 136-147.
|
[20] |
黄芳, 张文俊, 张建成, 等, 2021. 基于BIOCLIM模型的绿圆跳虫在中国的适生区分析[J]. 浙江农业学报, 33(11): 2098-2103.
DOI
|
|
HUANG F, ZHANG W J, ZHANG J C, et al., 2021. Potential distribution of Sminthurus viridis in China analyzed by BIOCLIM model[J]. Zhejiang Journal of Agriculture, 33(11): 2098-2103.
|
[21] |
刘婷, 曹家豪, 齐瑞, 等, 2022. 基于GIS和MaxEnt模型分析气候变化背景下紫果云杉的潜在分布区[J]. 西北植物学报, 42(3): 481-491.
|
|
LIU T, CAO J H, QI R, et al., 2022. Research of potential geographical distribution of Picea purpurea based on GIS and MaxEnt under different climate conditions[J]. Northwest Journal of Botany, 42(3): 481-491.
|
[22] |
覃阳平, 李华, 雷相东, 2024. 基于最大熵模型的云南思茅松潜在分布区[J]. 中南林业科技大学学报, 44(11): 98-108.
|
|
QIN Y P, LI H, LEI X D, 2024. Potential distribution of Pinus kesiya var. langbianensis in Yunnan province based on maximum entropy model[J]. Journal of Central South University of Forestry Science and Technology, 44(11): 98-108.
|
[23] |
王子文, 尹进, 王星, 等, 2023. 辽宁省入侵植物曼陀罗的生境适宜性评价——基于Biomod2组合模型[J]. 应用生态学报, 34(5): 1272-1280.
DOI
|
|
WANG Z W, YIN J, WANG X, et al., 2023. Habitat suitability evaluation of invasive plant species Datura stramonium in Liaoning Province: Based on Biomod2 combination model[J]. Journal of Applied Ecology, 34(5): 1272-1280.
|
[24] |
许桂芳, 王鸿升, 刘明久, 2011. 外来植物续断菊的化感作用研究[J]. 河南师范大学学报(自然科学版), 39(5): 141-144.
|
|
XU G F, WANG H S, LIU M J, 2011. Allelopathic activity of exotic plant Sonchus Asper [J]. Journal of Henan Normal University (Natural Science Edition), 39(5): 141-144.
|
[25] |
杨乐, 2024. 基于集合模型预测外来植物反枝苋的入侵趋势[J]. 生态环境学报, 33(6): 888-899.
DOI
|
|
YANG L, 2024. Prediction of invasive trend of alien plant Amaranthus retroflexus based on ensemble model[J]. Journal of Ecology and Environment, 33(6): 888-899.
|
[26] |
张婷, 胡诗遥, 杜伟, 等, 2024. 基于MaxEnt生态位模型预测当前气候条件下顶羽菊在中国的潜在适生区[J]. 植物保护, 50(4): 61-68.
|
|
ZHANG T, HU S Y, DU W, et al., 2024. Prediction of the potential suitable areas of Rhaponticum repens in China based on MaxEnt under current climate conditions[J]. Plant Protection, 50(4): 61-68.
|
[27] |
张玉洁, 余函纹, 郑昭焕, 等, 2024. 基于优化的Maxent模型预测桔梗在中国的潜在适生区[J]. 药学学报, 59(9): 2625-2633.
|
|
ZHANG Y J, YU H W, ZHENG Z H, et al., 2024. Predicting the potential suitable areas of Platycodon grandiflorum in China using the optimized MaxEnt model[J]. Journal of Pharmaceutical Sciences, 59(9): 2625-2633.
|
[28] |
张源, 秦誉嘉, 张岳, 等, 2022. 基于集成模型预测外来入侵植物北美刺龙葵的适生区[J]. 植物保护学报, 49(5): 1434-1439.
|
|
ZHANG Y, QIN Y J, ZHANG Y, et al., 2022. Ensemble models to predict the suitable areas of alien invasive horsenettle Solanum carolinense[J]. Journal of Plant Protection, 49(5): 1434-1439.
|