生态环境学报 ›› 2022, Vol. 31 ›› Issue (8): 1566-1572.DOI: 10.16258/j.cnki.1674-5906.2022.08.008
收稿日期:
2022-04-21
出版日期:
2022-08-18
发布日期:
2022-10-10
通讯作者:
* 谢立勇(1969年生),男,教授,博士,从事气候变化与低碳农业研究。E-mail: xly0910@163.com作者简介:
邓天乐(2001年生),男,硕士研究生,从事气候变化与农业气候研究。E-mail: 2953419357@qq.com
基金资助:
DENG Tianle(), XIE Liyong*(
), ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong
Received:
2022-04-21
Online:
2022-08-18
Published:
2022-10-10
摘要:
为明确CO2浓度升高条件下稗草(Echinochloa crusgalli)与水稻(Oryza sativa)生长空间的竞争关系,以“吉粳88”为研究对象,利用开放式CO2富集系统(Free-air CO2 enrichment,FACE),开展了水稻与稗草共生混种试验。试验设置2个处理,CO2摩尔分数分别为400 µmol∙mol-1(自然大气情景下)和550 µmol∙mol-1(高浓度CO2环境应用FACE系统进行调控)。每个CO2浓度处理中设2个稗草密度,分别为水稻清种和水稻与稗草混种,共计4个组合。以自然大气CO2浓度下水稻清种处理为对照(CK),自然大气CO2浓度下水稻与稗草混种处理为TB、高浓度CO2下水稻清种处理为TC、高浓度CO2下水稻与稗草混种为BC。在水稻各发育期分别测定形态生理指标和根系指标并进行分析。结果表明,稗草混种处理对水稻每穴穗数和结实率均有负向作用,但未达到显著水平。稗草对水稻拔节期的株高有负向作用,稗草混种处理对水稻分蘖期叶面积指数下降了23.2%,使水稻在抽穗期分蘖数减少了34.5%,均达到显著水平。稗草混种处理降低了水稻根系氧化力,在水稻分蘖期、拔节期、抽穗期分别降低了41.6%、10.9%、14.2%,且均达到显著水平。稗草混种处理对水稻根系总吸收面积有负向作用,且在抽穗期和成熟期达到显著水平,在分蘖期达到极显著水平,CO2浓度升高与稗草互作对水稻根系总吸收面积影响以负效应为主。研究结果明确了在CO2浓度升高的条件下,稗草对水稻分蘖期和拔节期生长空间表现出明显的抑制作用,也是稗草与水稻生长竞争的关键时期。
中图分类号:
邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572.
DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration[J]. Ecology and Environment, 2022, 31(8): 1566-1572.
处理 Treatments | 每穴穗数 Number of spikes per point | 每穗粒数 Grains per panicle | 结实率 Seed setting rate/% | 千粒质量 Thousand-grain weight/g | 理论产量 Theoretical yield/(kg∙m-2) |
---|---|---|---|---|---|
CK | 25.67±1.53b | 154.00±3.60a | 74.34±0.79ab | 21.43±0.57b | 0.795±0.05b |
TB | 22.00±2.00b | 158.67±4.04a | 70.03±0.19b | 22.10±0.03ab | 0.763±0.25b |
TC | 30.00±2.00a | 163.67±1.53a | 75.29±1.12a | 21.60±0.51b | 0.984±0.41a |
BC | 23.00±0.82b | 163.33±8.50a | 73.28±0.39ab | 22.58±0.04a | 0.776±0.80b |
表1 高浓度CO2与稗草对水稻产量构成因素的影响
Table 1 Effects of high concentration CO2 and barnyard grass on rice yield components
处理 Treatments | 每穴穗数 Number of spikes per point | 每穗粒数 Grains per panicle | 结实率 Seed setting rate/% | 千粒质量 Thousand-grain weight/g | 理论产量 Theoretical yield/(kg∙m-2) |
---|---|---|---|---|---|
CK | 25.67±1.53b | 154.00±3.60a | 74.34±0.79ab | 21.43±0.57b | 0.795±0.05b |
TB | 22.00±2.00b | 158.67±4.04a | 70.03±0.19b | 22.10±0.03ab | 0.763±0.25b |
TC | 30.00±2.00a | 163.67±1.53a | 75.29±1.12a | 21.60±0.51b | 0.984±0.41a |
BC | 23.00±0.82b | 163.33±8.50a | 73.28±0.39ab | 22.58±0.04a | 0.776±0.80b |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 47.5±2.67ab | 78.3±3.78b | 114.7±1.12b | 108.37±0.94a |
TB | 45.7±1.97b | 74.5±0.54c | 113.3±0.73b | 103.23±0.31b |
TC | 49.7±0.59a | 83.3±1.90a | 118.4±1.27a | 109.23±0.82a |
BC | 47.2±0.90ab | 80.9±1.19ab | 115.2±1.96b | 107.83±1.57a |
表2 高浓度CO2与稗草对水稻株高的影响
Table 2 Effects of high concentration CO2 and barnyard
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 47.5±2.67ab | 78.3±3.78b | 114.7±1.12b | 108.37±0.94a |
TB | 45.7±1.97b | 74.5±0.54c | 113.3±0.73b | 103.23±0.31b |
TC | 49.7±0.59a | 83.3±1.90a | 118.4±1.27a | 109.23±0.82a |
BC | 47.2±0.90ab | 80.9±1.19ab | 115.2±1.96b | 107.83±1.57a |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 3.67±0.47a | 6.00±0.82a | 9.67±0.25ab | 10.33±1.70b |
TB | 3.33±0.97a | 5.33±0.47a | 6.33±0.47c | 8.67±0.94b |
TC | 4.67±1.70a | 6.67±1.25a | 11.33±1.89a | 13.00±0.82a |
BC | 4.00±0.82a | 6.00±1.41a | 8.00±0.00bc | 8.67±0.47b |
表3 高浓度CO2与稗草对水稻分蘖数的影响
Table 3 Effects of high concentration CO2 and barnyard grass on tiller number of rice
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 3.67±0.47a | 6.00±0.82a | 9.67±0.25ab | 10.33±1.70b |
TB | 3.33±0.97a | 5.33±0.47a | 6.33±0.47c | 8.67±0.94b |
TC | 4.67±1.70a | 6.67±1.25a | 11.33±1.89a | 13.00±0.82a |
BC | 4.00±0.82a | 6.00±1.41a | 8.00±0.00bc | 8.67±0.47b |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage |
---|---|---|---|
CK | 0.099±0.003a | 0.165±0.005a | 0.659±0.013a |
TB | 0.076±0.002c | 0.136±0.005a | 0.543±0.053a |
TC | 0.091±0.008a | 0.135±0.004b | 0.671±0.099a |
BC | 0.091±0.004b | 0.136±0.005b | 0.598±0.053a |
表4 高浓度CO2与稗草对水稻叶面积指数的影响
Table 4 Effects of high concentration CO2 and barnyard grass on LAI of rice
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage |
---|---|---|---|
CK | 0.099±0.003a | 0.165±0.005a | 0.659±0.013a |
TB | 0.076±0.002c | 0.136±0.005a | 0.543±0.053a |
TC | 0.091±0.008a | 0.135±0.004b | 0.671±0.099a |
BC | 0.091±0.004b | 0.136±0.005b | 0.598±0.053a |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 66.77±2.68b | 102.35±0.97b | 121.38±3.05a | 50.53±1.87a |
TB | 38.98±2.97d | 91.16±2.13c | 104.15±1.08b | 43.00±2.69a |
TC | 98.33±4.32a | 115.90±1.93a | 119.51±2.73a | 52.25±3.08a |
BC | 52.78±3.77c | 100.16±4.79b | 110.81±11.72ab | 48.00±8.55a |
表5 高浓度CO2与稗草对水稻根系氧化力的影响
Table 5 Effects of high CO2 concentration and barnyard grass on root oxidative activity of rice μg∙h-1∙g-1
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 66.77±2.68b | 102.35±0.97b | 121.38±3.05a | 50.53±1.87a |
TB | 38.98±2.97d | 91.16±2.13c | 104.15±1.08b | 43.00±2.69a |
TC | 98.33±4.32a | 115.90±1.93a | 119.51±2.73a | 52.25±3.08a |
BC | 52.78±3.77c | 100.16±4.79b | 110.81±11.72ab | 48.00±8.55a |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 0.17±0.00a | 0.31±0.02b | 1.00±0.02a | 0.59±0.02a |
TB | 0.08±0.00c | 0.29±0.02b | 0.88±0.02b | 0.41±0.03b |
TC | 0.14±0.01b | 0.39±0.00a | 1.03±0.02a | 0.36±0.04bc |
BC | 0.12±0.01b | 0.38±0.01a | 1.01±0.03b | 0.34±0.03c |
表6 高浓度CO2与稗草对水稻根系活跃吸收面积的影响
Table 6 Effects of high concentration CO2 and barnyard grass on active absorption area of rice roots m2
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 0.17±0.00a | 0.31±0.02b | 1.00±0.02a | 0.59±0.02a |
TB | 0.08±0.00c | 0.29±0.02b | 0.88±0.02b | 0.41±0.03b |
TC | 0.14±0.01b | 0.39±0.00a | 1.03±0.02a | 0.36±0.04bc |
BC | 0.12±0.01b | 0.38±0.01a | 1.01±0.03b | 0.34±0.03c |
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 0.42±0.01a | 0.79±0.05bc | 3.28±0.06b | 1.63±0.07a |
TB | 0.23±0.01c | 0.67±0.07c | 2.62±0.06c | 1.47±0.05b |
TC | 0.31±0.01b | 1.07±0.07a | 3.51±0.05a | 0.92±0.02c |
BC | 0.30±0.02ab | 0.88±0.09b | 3.26±0.05b | 0.79±0.06d |
表7 高浓度CO2与稗草对水稻根系总吸收面积的影响
Table 7 Effects of high concentration CO2 and barnyard grass on total absorption area of rice roots m2
处理 Treatments | 分蘖期 Tillering stage | 拔节期 Jointing stage | 抽穗期 Heading stage | 成熟期 Maturity stage |
---|---|---|---|---|
CK | 0.42±0.01a | 0.79±0.05bc | 3.28±0.06b | 1.63±0.07a |
TB | 0.23±0.01c | 0.67±0.07c | 2.62±0.06c | 1.47±0.05b |
TC | 0.31±0.01b | 1.07±0.07a | 3.51±0.05a | 0.92±0.02c |
BC | 0.30±0.02ab | 0.88±0.09b | 3.26±0.05b | 0.79±0.06d |
[1] | ALBERTO A M P, ZISKA L H, CERVANCIA C R, 1996. The influence of increasing carbon dioxide and temperature on competitive interactions between a C3 crop, rice (Oryza sativa) and a C4 weed (Echinochloa glabrescens)[J]. Australian Journal of Plant Physiology, 6: 128-137. |
[2] |
ELIZABETH A A, 2008. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration[J]. Global Change Biology, 14(7): 1642-1650.
DOI URL |
[3] |
FERNANDO N, FLORENTINEA S K, NAIKER M, et al., 2019. Annual ryegrass (Lolium rigidum Gaud) competition altered wheat grain quality: A study under elevated atmospheric CO2 levels and drought conditions[J]. Food Chemistry, 276: 285-290.
DOI URL |
[4] | IPCC, 2014. Climate change 2014:Impacts, adaptation and vulnerability. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change[C]. Cambridge and New York: Cambridge University Press. |
[5] | IPCC, 2021. Climate change 2021:the science basic. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change[C]. Cambridge and New York: Cambridge University Press. |
[6] |
KATHIRESAN R and GUALBERT G, 2016. Impact of climate change on the invasive traits of weeds[J]. Weed Biology and Management, 16(2): 59-66.
DOI URL |
[7] |
KORRES N E, NORSWORTHY J K, TEHRANCHIAN P, et al., 2016. Cultivars to face climate change effects on crops and weeds: A review[J]. Agronomy for Sustainable Development, 36(1): 12-22.
DOI URL |
[8] |
MATZRAFI M. SEIWERT B, REEMTSMA T, et al., 2016. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification[J]. Planta, 244(6): 1217-1227.
PMID |
[9] |
MOYA T B, ZISKA L H, NAMUCO O S, et al., 1998. Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature[J]. Global Change Biology, 4(6): 645-656.
DOI URL |
[10] |
PARVIN S, 2019. Grain mineral quality of dryland legumes as affected by elevated CO2 and drought: A FACE study on lentil (Lens culinaris) and faba bean (Vicia faba)[J]. Crop and Pasture Science, 70(3): 244-253.
DOI URL |
[11] |
RAMESH K, MATLOOB A, ASLAM F, et al., 2017. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management[J]. Frontiers in Plant Science, 8: 95.
DOI PMID |
[12] |
REFATTI J P, AVILA L A, CAMARGO E R, et al., 2019. High [CO2] and Temperature increase resistance to cyhalofop-butyl in multiple- resistant echinochloa colona[J]. Frontiers in Plant Science, 10: 529.
DOI URL |
[13] |
REICH P B, HOBBIE S E, LEE T D, et al., 2018. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment[J]. Science, 360(6386): 317-320.
DOI URL |
[14] |
WANG X L, ZHANG Z Y, XU X M, et al., 2019. The density of barnyard grass affects photosynthesis and physiological characteristics of rice[J]. Photosynthetica, 57(2): 705-711.
DOI URL |
[15] |
WARYSZAK P, LENZ T I, LEISHMAN M R, et al., 2018. Herbicide effectiveness in controlling invasive plants under elevated CO2: Sufficient evidence to rethink weeds management[J]. Journal of Environmental Management, 226: 400-407.
DOI URL |
[16] |
YUN S I, KANG B M, LIM S S, et al., 2012. Further understanding CH4 emissions from a flooded rice field exposed to experimental warming with elevated CO2[J]. Agricultural and Forest Meteorology, 154-155: 75-83.
DOI URL |
[17] |
ZISKA L H, 2016. The role of climate change and increasing atmospheric carbon dioxide on weed management: Herbicide efficacy[J]. Agriculture, Ecosystems & Environment, 231: 304-309.
DOI URL |
[18] | 陈浩, 张秀英, 吴玉红, 等, 2018. 秸秆还田与氮肥管理对稻田杂草群落和水稻产量的影响[J]. 农业资源与环境学报, 35(6): 500-507. |
CHEN H, ZHANG X Y, WU Y H, et al., 2018. Effects of straw return and nitrogen fertilizer management on weed community and rice yield in paddy field[J]. Journal of Agricultural Resources and Environment, 35(6): 500-507. | |
[19] | 董立尧, 高原, 房加鹏, 等, 2018. 我国水稻田杂草抗药性研究进展[J]. 植物保护, 44(5): 69-76. |
DONG L Y, GAO Y, FANG J P, et al., 2018. Research progress on the herbicide-resistance of weeds in rice fields in China[J]. Plant Protection, 44(5): 69-76. | |
[20] | 范桂枝, 蔡庆生, 王春明, 等, 2007. 水稻株高性状对大气CO2浓度升高的响应[J]. 作物学报, 33(3): 433-440. |
FAN G Z, CAI Q S, WANG C M, et al., 2007. Response of plant height to free air CO2 enrichment in rice[J]. Acta Agronomica Sinica, 33(3): 433-440. | |
[21] | 冯芳, 范佩佩, 刘超, 等, 2019. 水稻叶绿素荧光特性对CO2浓度升高的代际响应研究[J]. 生态环境学报, 28(3): 463-471. |
FENG F, FAN P P, LIU C, et al., 2019. Intergenerational response of chlorophyll fluorescence characteristics of rice to elevated CO2 concentration[J]. Ecology and Environmental Sciences, 28(3): 463-471. | |
[22] |
黄丽芬, 全晓艳, 张蓉, 等, 2013. 光、氮及其互作对水稻主要生长性状指标的影响[J]. 核农学报, 27(12): 1927-1937.
DOI |
HUANG L F, QUAN X Y, ZHANG R, et al., 2013. Interactive effects of light intensity and nitrogen supply on indicators of main growth traits in rice[J]. Journal of Nuclear Agricultural Sciences, 27(12): 1927-1937. | |
[23] | 金殿玉, 谢立勇, 赵洪亮, 等, 2022. 大气CO2浓度升高条件下稻稗共生系统中稗草对水稻光合生理的影响[J]. 中国农业气象, 43(3): 204-214. |
JIN D Y, XIE L Y, ZHAO H L, et al., 2022. Impacts of barnyard grass on photosynthesis and physiology of rice under elevated atmospheric CO2 concentration[J]. Chinese Journal of Agrometeorology, 43(3): 204-214. | |
[24] | 李书燕, 王彦辉, 柏连阳, 等, 2020. 不同密度下抗性与敏感稗草对水稻氮素水平和光合作用的影响[J]. 植物生理学报, 56(12): 2677-2682. |
LI S Y, WANG Y H, BAI L Y, et al., 2020. Effects of different densities of resistant and sensitive barnyardgrass on nitrogen content and the photosynthesis in rice[J]. Plant Physiology Journal, 56(12): 2677-2682. | |
[25] |
廖平强, MASOOM A, 毛海燕, 等, 2020. 特异性适应稻作系统的稗草种群生活史特性[J]. 应用生态学报, 31(9): 3067-3074.
DOI |
LIAO P Q, MASOOM A, MAO H Y, et al., 2020. Life history traits of an Echinochloa crus-galli var. crus-galli population with extreme adaptations to rice planting systems[J]. Chinese Journal of Applied Ecology, 31(9): 3067-3074. | |
[26] | 刘超, 胡正华, 陈健, 等, 2018. 不同CO2浓度升高水平对水稻光合特性的影响[J]. 生态环境学报, 27(2): 246-254. |
LIU C, HU Z H, CHEN J, et al., 2018. Effects of elevated CO2 concentration levels on photosynthetic characteristics of rice[J]. Ecology and Environmental Sciences, 27(2): 246-254. | |
[27] | 刘红江, 杨连新, 黄建畔, 等, 2008. FACE对三系杂交籼稻灿优63产量形成的影响[J]. 农业环境科学学报, 27(6): 2285-2290. |
LIU H J, YANG L X, HUANG J P, et al., 2008. Effect of free air CO2 enrichment (FACE) on yield formation of three-line indica hybrid rice cultivar Shanyou 63[J]. Journal of Agro-Environment Science, 27(6): 2285-2290. | |
[28] | 刘桃菊, 唐建军, 张佩莲, 等, 1998. 水稻根系建成对高产形成的模拟模型与调控决策研究水稻根系形态建成参数与产量形成关系的初步研究[J]. 江西农业大学学报, 20(3): 11-15. |
LIU T J, TANG J J, ZHANG P L, et al., 1998. A Study on the relationship between the physiological character parameters of root and yield formation in rice and the regulation model[J]. Acta Agriculturae Universitatis Jiangxiensis, 20(3): 11-15. | |
[29] | 刘永霞, 岳延滨, 刘岩, 等, 2010. 水稻单株产量与根系主要几何属性的定量关系[J]. 江苏农业学报, 26(3): 456-461. |
LIU Y X, YUE Y B, LIU Y, et al., 2010. Quantitative relationships between main geometric properties of root system and individual plant yield in rice[J]. Jiangsu Journal of Agricultural Sciences, 26(3): 456-461. | |
[30] | 牛玺朝, 户少武, 杨阳, 等, 2021. 大气CO2浓度增高对不同水稻品种稻米品质的影响[J]. 中国生态农业学报, 29(3): 509-519. |
NIU X C, HU S W, YANG Y, et al., 2021. Effects of CO2 concentration enrichment on the grain quality of different rice varieties[J]. Chinese Journal of Eco-Agriculture, 29(3): 509-519. | |
[31] | 孙富芝, 朱建国, 曾青, 等, 2007. 大气CO2浓度升高条件下移栽水稻与不同出苗时间稗草竞争的响应差异[J]. 中国水稻科学, 21(2): 203-208. |
SUN F Z, ZHU J G, ZENG Q, et al., 2007. Difference of competition responses between rice and barnyardgrass with different seedling emergence time under elevated atmosphere CO2[J]. Chinese Journal of Rice Science, 21(2): 203-208. | |
[32] | 谢立勇, 李悦, 徐玉秀, 等, 2014. 气候变化对农业生产与粮食安全影响的新认知[J]. 气候变化研究进展, 10(4): 235-239. |
XIE L Y, LI Y, XU Y X, et al., 2014. Updated understanding on the impacts of climate change on food production and food security[J]. Advances in Climate Change Research, 10(4): 235-239. | |
[33] | 杨建昌, 王志琴, 朱庆森, 1996. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J]. 中国农业科学, 29(4): 58-66. |
YANG J C, WANG Z Q, ZHU Q S, 1996. Effects of nitrogen nutrition on rice yield under different soil water conditions and its physiological mechanism[J]. Scientia Agricutura Sinica, 29(4): 58-66. | |
[34] | 杨连新, 王云霞, 朱建国, 等, 2009. 十年水稻FACE研究的产量响应[J]. 生态学报, 29(3): 1486-1497. |
YANG L X, WANG Y X, ZHU J G, et al., 2009. What have we learned from 10 years of Free Air CO2 Enrichment (FACE) experiments on rice CO2 and grain yield[J]. Acta Ecologica Sinica, 29(3): 1486-1497. | |
[35] | 曾青, 朱建国, 刘刚, 等, 2002. 开放式空气CO2浓度增高条件下C3作物(水稻)与C4杂草(稗草)的竞争关系[J]. 应用生态学报, 13(10): 1231-1234. |
ZENG Q, ZHU J G, LIU G, et al., 2002. Effect of FACE on competition between a C3 crop (rice, Oryza sativa) and a C4 weed (barnyardgrass, Echinochloa crusgalli)[J]. Chinese Journal of Applied Ecology, 13(10): 1231-1234. | |
[36] | 张钰薇, 何宏斌, 程俊康, 等, 2019. 不同施肥管理对“多花黑麦草-水稻”轮作系统杂草防控效应的影响[J]. 生态环境学报, 28(9): 1793-1801. |
ZHANG Y W, HE H B, CHENG J K, et al., 2019. Effects of different fertilization managements on weed control in italian ryegrass-rice rotation system[J]. Ecology and Environmental Sciences, 28(9): 1793-1801. | |
[37] |
张自常, 谷涛, 杨霞, 等, 2017. 不同抗性稗草对水稻产量及其生理特性的影响[J]. 核农学报, 31(8): 1594-1603.
DOI |
ZHANG Z C, GU T, YANG X, et al., 2017. Effects of barnyardgrass with different resistance on grain yield of rice and their physiological characteristics[J]. Journal of Nuclear Agricultural Sciences, 31(8): 1594-1603. |
[1] | 黄英梅, 钟松雄, 朱忆雯, 王向琴, 李芳柏. 单质硫抑制水稻植株甲基汞累积的效应与机制[J]. 生态环境学报, 2023, 32(6): 1115-1122. |
[2] | 郝蕾, 翟涌光, 戚文超, 兰穹穹. 2001-2020年内蒙古植被碳源/碳汇时空动态及对气候因子的响应[J]. 生态环境学报, 2023, 32(5): 825-834. |
[3] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[4] | 杨凯, 杨靖睿, 曹培培, 吕春华, 孙文娟, 于凌飞, 邓希. CO2浓度升高下水稻株高、茎蘖与SPAD动态响应及其模拟[J]. 生态环境学报, 2023, 32(5): 933-942. |
[5] | 李晖, 李必龙, 葛黎黎, 韩琛惠, 杨倩, 张岳军. 2000-2021年汾河流域植被时空演变特征及地形效应[J]. 生态环境学报, 2023, 32(3): 439-449. |
[6] | 郎漫, 许力文, 朱恺文, 吴泓瑾, 张佳音, 李平. 碳氮施加对农田黑土氮素转化和温室气体排放的影响[J]. 生态环境学报, 2023, 32(2): 235-244. |
[7] | 贾志峰, 刘鹏程, 刘宇, 吴博博, 陈丹姿, 张向飞. 气候变化和人类活动对松辽流域植被覆盖的影响[J]. 生态环境学报, 2023, 32(1): 1-10. |
[8] | 徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157. |
[9] | 齐月, 张强, 胡淑娟, 蔡迪花, 赵福年, 陈斐, 张凯, 王鹤龄, 王润元. 黄土高原地区气候变化及其对冬小麦生产潜力的影响[J]. 生态环境学报, 2022, 31(8): 1521-1529. |
[10] | 卢燕宇, 孙维, 方砚秋, 唐为安, 邓汗青, 何冬燕. 基于种植结构的安徽省气候生产潜力估算及粮食安全气候承载力分析[J]. 生态环境学报, 2022, 31(7): 1293-1305. |
[11] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[12] | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079. |
[13] | 曹晓云, 祝存兄, 陈国茜, 孙树娇, 赵慧芳, 朱文彬, 周秉荣. 2000—2021年柴达木盆地地表绿度变化及地形分异研究[J]. 生态环境学报, 2022, 31(6): 1080-1090. |
[14] | 张涵, 唐常源, 禤映雪, 江涛, 黄品怡, 杨秋, 曹英杰. 珠江口红树林土壤甲烷和二氧化碳通量特征及其影响因素研究[J]. 生态环境学报, 2022, 31(5): 939-948. |
[15] | 徐梅华, 顾明华, 王骋臻, 雷静, 韦燕燕, 沈方科. 锰对土壤砷形态转化及水稻吸收砷的影响[J]. 生态环境学报, 2022, 31(4): 802-813. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||