生态环境学报 ›› 2022, Vol. 31 ›› Issue (8): 1521-1529.DOI: 10.16258/j.cnki.1674-5906.2022.08.003
齐月1,2(), 张强1,2,*(
), 胡淑娟1, 蔡迪花2, 赵福年2, 陈斐2, 张凯2, 王鹤龄2, 王润元2
收稿日期:
2021-09-06
出版日期:
2022-08-18
发布日期:
2022-10-10
通讯作者:
* 张强(1965年生),男,研究员,研究方向为干旱气候变化及陆面过程研究。E-mail: zhangqiang@cma.gov.cn作者简介:
齐月(1988年生),女,助理研究员,主要从事气候变化及其对农业的影响研究。E-mail: goodqiyue@163.com
基金资助:
QI Yue1,2(), ZHANG Qiang1,2,*(
), HU Shujuan1, CAI Dihua2, ZHAO Funian2, ZHANG Kai2, WANG Heling2, WANG Runyuan2
Received:
2021-09-06
Online:
2022-08-18
Published:
2022-10-10
摘要:
气候变化对冬小麦生长发育的影响一直是热点问题。为了探讨黄土高原地区气候变化对冬小麦生产潜力的影响,以甘肃省9个冬小麦种植区为研究区,利用农业气象观测站1961—2017年逐日气象资料和冬小麦农业气象观测资料,运用线性倾向估计方法分析了近57 a黄土高原地区气候变化特征;利用农业生态区法AEZ模型计算9个站点1961—2017年57 a冬小麦光温生产潜力和气候生产潜力,研究近57 a黄土高原地区冬小麦光温生产潜力和气候生产潜力的变化趋势,分析影响冬小麦光温生产潜力和气候生产潜力变化的主要气象因素。结果表明,(1)近57 a,黄土高原地区气温表现为显著升高趋势,而降水量和太阳辐射则表现为减少趋势。(2)冬小麦生育期内气温和≥10 ℃积温均表现为升高趋势,气候倾向率为0.29 ℃∙(10 a)-1(P<0.01);降水量呈增加趋势,但太阳辐射呈减少趋势。(3)伴随气温的升高和≥10℃积温的增加,冬小麦光温生产潜力和气候生产潜力均表现为增加趋势,气候倾向率分别为663.05 kg∙hm-2∙(10 a)-1和517.57 kg∙hm-2∙(10 a)-1。冬小麦生产潜力主要受气温的影响,气温的升高是黄土高原地区冬小麦生产潜力增加的主要原因。黄土高原地区冬小麦生育期内气温和≥10 ℃积温的升高,有利于冬小麦光合作用,是冬小麦光温生产潜力和气候生产潜力提高的主要因素。该研究可为气候变化背景下黄土高原半干旱区冬小麦应对气候变化提供理论依据。
中图分类号:
齐月, 张强, 胡淑娟, 蔡迪花, 赵福年, 陈斐, 张凯, 王鹤龄, 王润元. 黄土高原地区气候变化及其对冬小麦生产潜力的影响[J]. 生态环境学报, 2022, 31(8): 1521-1529.
QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China[J]. Ecology and Environment, 2022, 31(8): 1521-1529.
图2 1961—2017年研究区平均气温、降水量和太阳辐射变化特征 (a)气温变化特征图;(b)降水量变化特征图;(c)太阳辐射变化特征图
Figure 2 Change characteristics of average temperature, precipitation and solar radiation in the studied area from 1961 to 2017 (a) Change characteristics of temperature; (b) Change characteristics of precipitation; (c) Change characteristics of solar radiation
要素 Factor | 20世纪60年代1960S | 20世纪70年代 1970S | 20世纪80年代 1980S | 20世纪90年代 1990S | 21世纪10年代 2000S | 21世纪20年代 2020S | |
---|---|---|---|---|---|---|---|
降水量 Precipitation | 距平百分率Anomaly percent/% | 10.22 | -3.64 | 4.79 | -10.96 | -2.90 | 3.58 |
变异系数 Coefficient of variability/% | 18.50 | 12.61 | 22.22 | 14.68 | 14.92 | 16.31 | |
气温 Temperature | 距平Departure/℃ | -0.50 | 10.12 | 10.54 | 0.47 | 0.53 | 10.79 |
变异系数 Coefficient of variability/% | 4.05 | 3.56 | 4.05 | 4.94 | 2.82 | 4.84 | |
太阳辐射 Solar radiation | 距平百分率Anomaly percent/% | 2.01 | 2.43 | -3.03 | 0.24 | -0.39 | -1.81 |
表1 研究区各年代际降水距平百分率、太阳辐射距平百分率和气温距平
Table 1 Interdecadal precipitation anomaly percentage, solar radiation anomaly percentage and temperature anomaly in studied area
要素 Factor | 20世纪60年代1960S | 20世纪70年代 1970S | 20世纪80年代 1980S | 20世纪90年代 1990S | 21世纪10年代 2000S | 21世纪20年代 2020S | |
---|---|---|---|---|---|---|---|
降水量 Precipitation | 距平百分率Anomaly percent/% | 10.22 | -3.64 | 4.79 | -10.96 | -2.90 | 3.58 |
变异系数 Coefficient of variability/% | 18.50 | 12.61 | 22.22 | 14.68 | 14.92 | 16.31 | |
气温 Temperature | 距平Departure/℃ | -0.50 | 10.12 | 10.54 | 0.47 | 0.53 | 10.79 |
变异系数 Coefficient of variability/% | 4.05 | 3.56 | 4.05 | 4.94 | 2.82 | 4.84 | |
太阳辐射 Solar radiation | 距平百分率Anomaly percent/% | 2.01 | 2.43 | -3.03 | 0.24 | -0.39 | -1.81 |
图3 1961—2017年冬小麦生育期平均气温和≥10 ℃积温年际变化 (a)气温年际变化;(b)≥10 ℃积温年际变化
Figure 3 Interannual variation of mean temperature and accumulated temperature ≥10 ℃ during winter wheat growth period from 1961 to 2017 (a) Interannual variation of temperature; (b) Interannual variation of accumulated temperature ≥10 ℃
图4 1961—2017年冬小麦生育期降水量和太阳辐射年际变化 (a)降水量年际变化;(b)太阳辐射年际变化
Figure 4Inte rannual variation of precipitation and solar radiation during winter wheat growth period from 1961 to 2017 (a) Interannual variation of precipitation;(b) Interannual variation of solar radiation
要素 Factor | 20世纪60年代1960S | 20世纪70年代1970S | 20世纪80年代1980S | 20世纪90年代 1990S | 21世纪10年代2000S | 21世纪20年代2020S | |
---|---|---|---|---|---|---|---|
气温 Temperature | 距平Departure/℃ | -0.51 | -0.42 | -0.45 | 0.10 | 0.70 | 0.81 |
变异系数Coefficient of variability/% | 8.29 | 6.99 | 7.19 | 8.31 | 4.78 | 6.29 | |
≥10 ℃积温 Accumulated temperature | 距平Departure/℃ | -55.41 | -62.67 | -104.19 | -22.96 | 124.76 | 172.08 |
变异系数Coefficient of variability/% | 7.77 | 8.69 | 9.07 | 5.24 | 9.10 | 11.40 | |
降水量 Precipitation | 距平百分率Anomaly percent/% | 3.67 | -6.29 | 5.66 | -4.68 | -6.59 | 11.76 |
变异系数Coefficient of variability/% | 19.83 | 15.64 | 21.24 | 14.45 | 14.54 | 17.17 | |
太阳辐射 Solar radiation | 距平百分率Anomaly percent/% | 1.77 | -3.09 | -28.95 | 0.67 | -1.25 | 48.03 |
表2 冬小麦生育期各年代际气温、≥10 ℃积温、降水量和太阳辐射距平
Table 2 Temperature, accumulated temperature ≥10℃, precipitation and solar radiation anomaly in each decadal growth period of winter wheat
要素 Factor | 20世纪60年代1960S | 20世纪70年代1970S | 20世纪80年代1980S | 20世纪90年代 1990S | 21世纪10年代2000S | 21世纪20年代2020S | |
---|---|---|---|---|---|---|---|
气温 Temperature | 距平Departure/℃ | -0.51 | -0.42 | -0.45 | 0.10 | 0.70 | 0.81 |
变异系数Coefficient of variability/% | 8.29 | 6.99 | 7.19 | 8.31 | 4.78 | 6.29 | |
≥10 ℃积温 Accumulated temperature | 距平Departure/℃ | -55.41 | -62.67 | -104.19 | -22.96 | 124.76 | 172.08 |
变异系数Coefficient of variability/% | 7.77 | 8.69 | 9.07 | 5.24 | 9.10 | 11.40 | |
降水量 Precipitation | 距平百分率Anomaly percent/% | 3.67 | -6.29 | 5.66 | -4.68 | -6.59 | 11.76 |
变异系数Coefficient of variability/% | 19.83 | 15.64 | 21.24 | 14.45 | 14.54 | 17.17 | |
太阳辐射 Solar radiation | 距平百分率Anomaly percent/% | 1.77 | -3.09 | -28.95 | 0.67 | -1.25 | 48.03 |
图5 1961—2017年黄土高原地区冬小麦光温生产潜力和气候生产潜力变化趋势 (a)光温生产潜力变化趋势;(b)气候生产潜力变化趋势
Figure 5 Trends of light and temperature productivity potential and climate productivity potential of winter wheat in the Loess Plateau from 1961 to 2017 (a) Trends of light and temperature productivity potential;(b) Trends of climate productivity potential
要素 Factor | 气温 Temperature | ≥10 ℃积温 Accumulated temperature | 太阳辐射 Solar radiation | 降水量 Precipitation |
---|---|---|---|---|
光温生产潜力 Light- temperature potential productivity | 0.74** | 0.86** | 0.18 | -0.06 |
气候生产潜力 Climatic productivity potential | 0.66** | 0.73** | 0.15 | -0.03 |
表3 冬小麦生育期光温生产潜力、气候生产潜力与气象要素相关性
Table 3 Correlation between light-temperature productivity potential, climatic productivity potential and meteorological factors in winter wheat growth period
要素 Factor | 气温 Temperature | ≥10 ℃积温 Accumulated temperature | 太阳辐射 Solar radiation | 降水量 Precipitation |
---|---|---|---|---|
光温生产潜力 Light- temperature potential productivity | 0.74** | 0.86** | 0.18 | -0.06 |
气候生产潜力 Climatic productivity potential | 0.66** | 0.73** | 0.15 | -0.03 |
[1] | ALLEN R G, PEREIRA L S, RAES D, et al., 1998. Crop evapotranspiration guidelines for computing crop requirements[M]. Rome: United Nations Food and Agriculture Organization. |
[2] |
BETTS A, PALKENDO J A, 2018. Teaching undergraduates LC-MS/MS theory and operation via multiple reaction monitoring (MRM) method development[J]. Journal of chemical education, 95(6): 1035-1039.
DOI URL |
[3] |
CHEN C Q, LU W T, SUN X S, et al., 2018. Regional differences of Winter Wheat phenophase and grain yields response to global warming in the Huang-huai-hai Plain in China Since 1980s[J]. International Journal of Plant Production, 12(1): 33-41.
DOI URL |
[4] | IPCC, 2007. Climate Change 2007:Impacts, adaptation and vulnerability. Working group Ⅱ contribution to the intergovernmental panel on climate change fourth assessment report[M]. Cambridge, UK and New York, USA: Cambridge University Press. |
[5] |
SONG S, LI F D, LU Y L, et al., 2018. Spatio-temporal characteristics of the extreme climate events and their potential effects on crop yield in Ethiopia[J]. Journal of Resources and Ecology, 9(3): 290-301.
DOI |
[6] |
TUBIELLO F N, DONATELLI M, ROSENZWEIG C, et al., 2000. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations[J]. European Journal of Agronomy, 13(2-3): 179-189.
DOI URL |
[7] |
WANG X C, QADIR M, RASUL F, et al., 2018. Response of soil water and Wheat yield to rainfall and temperature change on the Loess Plateau, China[J]. Agronomy, 8(7):101.
DOI URL |
[8] | 安彬, 肖薇薇, 张淑兰, 等, 2020. 近58年江西省气候及其生产潜力时空变化特征[J]. 水土保持研究, 141(4): 126-131. |
AN B, XIAO W W, ZHANG S L, et al., 2020. Spatial and temporal features of climate and its potential productivity in Jiangxi Province during the period 1960-2017 [J]. Research of Soil and Water Conservation, 141(4): 126-131. | |
[9] | 陈超, 庞艳梅, 潘学标, 等, 2011. 气候变化背景下四川省气候资源变化趋势分析[J]. 资源科学, 33(7): 1310-1316. |
CHEN C, PANG Y M, PAN X B, et al., 2011. Characteristics of climate resources under global climate change in Sichuan province[J]. Resources Science, 33(7): 1310-1316. | |
[10] | 孔凡磊, 谢孟林, 查丽, 等, 2015. 川中丘陵区气候变化及其对春玉米生产潜力的影响--以遂宁为例[J]. 干旱地区农业研究, 33(6): 203-209. |
KONG F L, XIE M L, ZHA L, et al., 2015. Climate variation and its impact on potential productivity of spring maize in Hilly Area of Central Sichuan: A case study of Suining County[J]. Agricultural Research in the Arid Areas, 33(6): 203-209. | |
[11] | 赖荣生, 余海龙, 黄菊莹, 2014. 宁夏中部干旱带气候变化及其对春玉米气候生产潜力的影响[J]. 中国农业大学学报, 19(3): 108-114. |
LAI R S, YU H L, HUANG J Y, 2014. Effects of climate changes on spring maize’s climate potential productivity in middle arid region of Ningxia[J]. Journal of China Agricultural University, 19(3): 108-114. | |
[12] | 李少昆, 王崇桃, 2010. 玉米高产潜力∙途径[M]. 北京: 科学出版社. |
LI S K, WANG C T, 2010. Potential and ways to high yield in Maize[M]. Beijing: Science Press. | |
[13] | 李军, 王立祥, 邵明安, 等, 2001. 黄土高原地区小麦生产潜力模拟研究[J]. 自然资源学报, 16(2): 161-165. |
LI J, WANG L X, SHAO M A, et al., 2001. Simulation of wheat potential productivity on Loess Plateau region of China[J]. Journal of natural resources, 16(2): 161-165. | |
[14] | 李三爱, 居辉, 池宝亮, 2005. 作物生产潜力研究进展[J]. 中国农业气象, 26(2):106-111. |
LI S A, JU H, CHI B L, 2005. Reviews on crop potential productivity researches[J]. Chinese Journal of Agrometeorology, 26(2): 106-111. | |
[15] | 刘勤, 严昌荣, 何文清, 等, 2009. 山西寿阳旱作农业土地生产潜力[J]. 农业工程学报, 25(1): 55-59. |
LIU Q, YAN C R, HE W Q, et al., 2009. Land potential productivity of dryland farming in Shouyang county, Shanxi province[J]. Transactions of the Chinese Society of Agricultural Engineering, 25(1): 55-59. | |
[16] | 刘保花, 陈新平, 崔振岭, 等, 2015. 三大粮食作物产量潜力与产量差研究进展[J]. 中国生态农业学报, 23(5): 5-14. |
LIU B H, CHEN X P, CUI Z L, et al., 2015. Research advance in yield potential and yield gap of three major cereal crops[J]. Chinese Journal of Eco-Agriculture, 23(5): 5-14. | |
[17] | 卢燕宇, 孙维, 唐为安, 等, 2020. 气候变化背景下安徽省冬小麦气候生产潜力和胁迫风险研究[J]. 中国生态农业学报, 28(1): 21-34. |
LU Y Y, SUN W, TANG W A, et al., 2020. Climatic potential productivity and stress risk of winter wheat under the background of climate change in Anhui Province[J]. Chinese Journal of Eco-Agriculture, 28(1): 21-34. | |
[18] | 陆魁东, 帅细强, 刘富来, 等, 2016. 双季超级稻栽培与气象保障技术[M]. 北京: 气象出版社: 85-106. |
LU K D, SHUAI X Q, LIU F L, et al., 2016. Cultivation and meteorological security technology of double season rice[M]. Beijing: China Meteorological Press: 85-106. | |
[19] | 茆长宝, 陈勇, 2010. 南京市近60年气候变化及其对冬小麦产量影响[J]. 资源科学, 32(10): 1955-1962. |
MAO C B, CHEN Y, 2010. Climate change and its impact on Winter Wheat output in Nanjing during recent 60 Years[J]. Resources science, 32(10): 1955-1962. | |
[20] | 庞艳梅, 陈超, 徐富贤, 等, 2020. 气候变化对四川盆地主要粮食作物生产潜力的影响[J]. 中国生态农业学报(中英文), 28(11): 1661-1672. |
PANG C Y, CHEN C, XU F X, et al., 2020. Impact of climate change on potential productivities of main grain crops in the Sichuan Basin[J]. Chinese Journal of Eco-Agriculture, 28(11): 1661-1672. | |
[21] | 齐月, 王鹤龄, 张凯, 等, 2019. 气候变化对黄土高原半干旱区春小麦生长和产量的影响--以定西市为例[J]. 生态环境学报, 28(7): 1313-1321. |
QI Y, WANG H L, ZHANG K, et al., 2019. Effects of climate change on growth and yield of spring wheat in semi-arid region of the Loess Plateau: A case study of Dingxi city[J]. Ecology and Environmental Sciences, 28(7): 1313-1321. | |
[22] | 王宏, 陈阜, 石全红, 等, 2010. 近30a黄淮海农作区冬小麦单产潜力的影响因素分析[J]. 农业工程学报, 26(13): 90-95. |
WANG H, CHEN F, SHI Q H, et al., 2010. Analysis of factors on impacting potential productivity of winter wheat in Huang-Huai-Hai agricultural area over 30 years[J]. Transactions of the Chinese Society of Agricultural Engineering, 26(13): 90-95. | |
[23] | 王学强, 贾志宽, 李轶冰, 2008. 基于AEZ 的河南小麦生产潜力的研究[J]. 西北农林大学学报, 36(7): 85-90. |
WANG X Q, JIA Z K, LI Y B, 2008. Evaluations on the productive potential of wheat based on AEZ model in Henan Province[J]. Journal of Northwest Agricultural and Forestry University, 36(7): 85-90. | |
[24] | 王晓煜, 杨晓光, 孙爽, 等, 2015. 气候变化背景下东北三省主要粮食作物产量潜力及资源利用效率比较[J]. 应用生态学报, 26(10): 3091-3102. |
WANG X Y, YANG X G, SUN S, et al., 2015. Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change[J]. Chinese Journal of Applied Ecology, 26(10): 3091-3102. | |
[25] | 杨重一, 庞士力, 孙彦坤, 2008. 作物生产潜力研究现状与趋势[J]. 东北农业大学学报, 39(7): 140-144. |
YANG C Y, PANG S L, SUN Y K, 2008. Current status and trend of crop potential productivity[J]. Journal of Northeast Agricultural University, 39(7): 140-144. | |
[26] | 姚玉璧, 王润元, 杨金虎, 等, 2012. 黄土高原半湿润区气候变化对冬小麦生长发育及产量的影响[J]. 生态学报, 32(16): 5154-5163. |
YAO Y B, WANG R Y, YANG J H, et al., 2012. Impacts of climate change on growth and yield of winter wheat in the semi-humid region of the Loess Plateau[J]. ActaEcologicaSinica, 32(16): 5154-5163. | |
[27] | 尹海霞, 张勃, 张建香, 等, 2013. 甘肃省河东地区春玉米气候因子及气候生产潜力时空变化[J]. 生态学杂志, 32(6): 1504-1510. |
YIN H X, ZHANG B, ZHANG J X, et al., 2013. Spatiotemporal variation patterns of climatic factors and climatic potential productivity of spring maize in eastern Gansu of Northwest China[J]. Chinese Journal of Ecology, 32(6): 1504-1510. | |
[28] | 袁彬, 郭建平, 冶明珠, 等, 2012. 气候变化下东北春玉米品种熟型分布格局及其气候生产潜力[J]. 科学通报, 57(14): 1252-1262. |
YUAN B, GUO J P, YE M Z, et al., 2012. Variety distribution pattern and climatic potential productivity of spring maize in Northeast China under climate change[J]. Chinese Science Bulletin, 57(14): 1252-1262. | |
[29] | 张强, 杨贤为, 1995. 近30年气候变化对黄土高原地区玉米生产潜力的影响[J]. 中国农业气象, 16(6): 19-23. |
ZHANG Q, YANG X W, 1995. Impact of climate variation in Maize productive capacity in the Loess Plateau area in recent 30 years[J]. Chinese Journal of Agrometeorology, 16(6): 19-23. | |
[30] | 赵俊芳, 郭建平, 邬定荣, 等, 2011. 2011-2050年黄淮海冬小麦、夏玉米气候生产潜力评价[J]. 应用生态学报, 22(12): 3189-3195. |
ZHAO J F, GUO J P, WU D R, et al., 2011. Climatic potential productivity of winter wheat and summer maize in Huang-Huai-Hai Plain in 2011-2050 [J]. Chinese Journal of Applied Ecology, 22(12): 3189-3195. | |
[31] | 赵金忠, 赵年武, 赵恒和, 等, 2012. 贵德县近50年气候变化及对冬小麦生产潜力的影响[J]. 水土保持研究, 19(4): 260-264. |
ZHAO J Z, ZHAO N W, ZHAO H H, et al., 2012. Climatic changes in the past 50 years in Guide county, Qinghai province, and their influences on potential productivity of winter wheat[J]. Research of Soil and Water Conservation, 19(4): 260-264. | |
[32] | 中国气象局气候变化中心, 2021. 中国气候变化蓝皮书(2021)[M]. 北京: 科学出版社. |
Climate Change Center of China Meteorological Administration, 2021. China Climate Change Blue Book (2021)[M]. Beijing: Science Press. | |
[33] | 钟新科, 刘洛, 徐新良, 等, 2012. 近30年中国玉米气候生产潜力时空变化特征[J]. 农业工程学报, 28(15): 94-101. |
ZHONG X K, LIU L, XU X L, et al., 2012. Characteristics of spatial-temporal variation of maize climate productivity during last 30 years in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 28(15): 94-101. | |
[34] | 周美君, 李飞, 邵佳琪, 等, 2020. 气候变化背景下中国玉米生产潜力变化特征[J]. 地理科学进展, 39(3): 91-101. |
ZHOU M J, LI F, SHAO J Q, et al., 2020. Change characteristics of maize production potential under the background of climate change in China[J]. Progress in Geography, 39(3): 91-101. |
[1] | 郝蕾, 翟涌光, 戚文超, 兰穹穹. 2001-2020年内蒙古植被碳源/碳汇时空动态及对气候因子的响应[J]. 生态环境学报, 2023, 32(5): 825-834. |
[2] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[3] | 李晖, 李必龙, 葛黎黎, 韩琛惠, 杨倩, 张岳军. 2000-2021年汾河流域植被时空演变特征及地形效应[J]. 生态环境学报, 2023, 32(3): 439-449. |
[4] | 贾志峰, 刘鹏程, 刘宇, 吴博博, 陈丹姿, 张向飞. 气候变化和人类活动对松辽流域植被覆盖的影响[J]. 生态环境学报, 2023, 32(1): 1-10. |
[5] | 邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572. |
[6] | 卢燕宇, 孙维, 方砚秋, 唐为安, 邓汗青, 何冬燕. 基于种植结构的安徽省气候生产潜力估算及粮食安全气候承载力分析[J]. 生态环境学报, 2022, 31(7): 1293-1305. |
[7] | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079. |
[8] | 曹晓云, 祝存兄, 陈国茜, 孙树娇, 赵慧芳, 朱文彬, 周秉荣. 2000—2021年柴达木盆地地表绿度变化及地形分异研究[J]. 生态环境学报, 2022, 31(6): 1080-1090. |
[9] | 石智宇, 王雅婷, 赵清, 张连蓬, 朱长明. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 2022, 31(11): 2111-2123. |
[10] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
[11] | 周丹, 张娟, 罗静, 郭广, 李宝华. 青海湖水位变化成因分析及其未来趋势预估研究[J]. 生态环境学报, 2021, 30(7): 1482-1491. |
[12] | 张静, 杜加强, 盛芝露, 张杨成思, 吴金华, 刘博. 1982—2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(5): 929-937. |
[13] | 黄栋, 李鹏, 董南. 近20 a环渤海地区GS_NDVI时空分异及其对气候变化和LUCC的响应[J]. 生态环境学报, 2021, 30(12): 2275-2284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||