生态环境学报 ›› 2025, Vol. 34 ›› Issue (11): 1812-1826.DOI: 10.16258/j.cnki.1674-5906.2025.11.014
• 综述 •
上一篇
吉波1,2(
), 程红光2,*(
), 韩世明3, 邢丹4, 吴志兵5, 张金莲6, 刘芳7, 朱艺1, 邓丽蓉1,2, 张晓松2,8
收稿日期:2025-02-15
出版日期:2025-11-18
发布日期:2025-11-05
通讯作者:
E-mail: 作者简介:吉波(2000年生),男,硕士研究生,主要研究方向为地球化学研究。E-mail: jibo0719@foxmail.com
基金资助:
JI Bo1,2(
), CHENG Hongguang2,*(
), HAN Shiming3, XING Dan4, WU Zhibing5, ZHANG Jinlian6, LIU Fang7, ZHU Yi1, DENG Lirong1,2, ZHANG Xiaosong2,8
Received:2025-02-15
Online:2025-11-18
Published:2025-11-05
摘要:
磷是植物必需的营养元素,但土壤有效磷匮乏已限制农业绿色高效发展。传统补磷措施利用率低且易引发环境风险。近年研究表明,生物炭和丛枝菌根真菌(AMF)均可提升土壤磷有效性,但协同机理仍缺乏系统阐释。该文从3个角度探讨其协同解锁土壤磷库的机理。生物炭多级孔结构改善土壤孔隙度和通气性,为AMF菌丝延伸提供通道;AMF以胞外聚合物加固孔壁,扩大磷捕获范围并提高外源磷利用率。生物炭碱性组分提高土壤pH,削弱铁/铝/钙对磷的固定,促进磷向可溶态转化;AMF分泌有机酸与磷酸酶络合金属离子,释放磷位点,并氧化生物炭表面,增强其亲水性及阳离子交换能力,促进磷的解吸循环,实现磷活化。生物炭释放的信号分子诱导AMF的分枝与侵染;共生后AMF调控高亲和力磷转运蛋白及SPX-PHR模块、分泌酶矿化有机磷,并重塑根际微生物群落,富集溶磷菌和有机磷矿化真菌,构建“生物炭-AMF-植物-微生物”闭环磷循环。尽管机制日趋明晰,但其环境适应性、材料-微生物匹配度及长期效应仍有待探索。未来需基于系统框架,结合光谱显微与多组学研究,解析网络互作与动态反馈,为精准磷管理提供理论支撑,推动农业向循环养分经济转型。
中图分类号:
吉波, 程红光, 韩世明, 邢丹, 吴志兵, 张金莲, 刘芳, 朱艺, 邓丽蓉, 张晓松. 生物炭与丛枝菌根真菌对土壤中磷供应影响的研究进展[J]. 生态环境学报, 2025, 34(11): 1812-1826.
JI Bo, CHENG Hongguang, HAN Shiming, XING Dan, WU Zhibing, ZHANG Jinlian, LIU Fang, ZHU Yi, DENG Lirong, ZHANG Xiaosong. Research Advances in the Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Phosphorus Supply[J]. Ecology and Environmental Sciences, 2025, 34(11): 1812-1826.
图1 生物炭改良土壤-植物体系中磷素供应(参考Wang et al.,2023综合理解绘制)
Figure 1 Phosphorus supply dynamics in the biochar-amended soil-plant system (adapted from Wang et al., 2023)
图2 AMF接种条件下磷素在土壤?植物体系间的迁移与转化(参考Ferrol et al.,2019综合理解绘制)
Figure 2 Migration and transformation of phosphorus between soil and plant systems under AMF inoculation conditions (adapted from Ferrol et al., 2019)
图3 生物炭与AMF协同对土壤?植物系统中磷的影响(参考Wen et al.,2024综合理解绘制)
Figure 3 Synergistic effects of biochar and AMF on phosphorus in soil-plant systems (adapted from Wen et al., 2024)
| [1] | AN X X, LIU J Y, LIU X S, et al., 2022. Optimizing phosphorus application rate and the mixed inoculation of arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria can improve the phosphatase activity and organic acid content in alfalfa soil[J]. Sustainability, 14(18): 11342. |
| [2] |
ANDRINO A, GUGGENBERGER G, KERNSHEN S, et al., 2021. Production of organic acids by arbuscular mycorrhizal fungi and their contribution in the mobilization of phosphorus bound to iron oxides[J]. Frontiers in Plant Science, 12: 661842.
DOI URL |
| [3] |
ARCHANJO B S, MENDOZA M E, ALBU M, et al., 2017. Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy[J]. Geoderma, 294: 70-79.
DOI URL |
| [4] |
BALESTRINI R, SILLO F, KOHLER A, et al., 2012. Genome-wide analysis of cell wall-related genes in Tuber melanosporum[J]. Current Genetics, 58(3): 165-177.
DOI PMID |
| [5] | BARNA G, MAKÓ A, TAKÁCS T, et al., 2020. Biochar alters soil physical characteristics, arbuscular mycorrhizal fungi colonization, and glomalin production[J]. Agronomy, 10(12): 1933. |
| [6] | BATISTA E M C C, SHULTZ J, MATOS T T S, et al., 2018. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome[J]. Scientific Reports, 8(1): 10677. |
| [7] | BELANGER J, PILLING D, 2019. The state of the world's biodiversity for food and agriculture[M]. Rome: FAO: 142-150. |
| [8] | BESLEMES D, TIGKA E, ROUSSIS I, et al., 2023. Effect of arbuscular mycorrhizal fungi on nitrogen and phosphorus uptake efficiency and crop productivity of two-rowed barley under different crop production systems[J]. Plants, 12(9): 1908. |
| [9] |
BHALLA K, QU X, KRETSCHMER M, et al., 2022. The phosphate language of fungi[J]. Trends in Microbiology, 30(4): 338-349.
DOI URL |
| [10] | BITTERLICH M, FRANKEN P, GRAEFE J, 2018. Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion[J]. Frontiers in Plant Science, 9(1): 301. |
| [11] |
BRONICK C J, LAL R, 2005. Soil structure and management: A review[J]. Geoderma, 124(1-2): 3-22.
DOI URL |
| [12] |
CHARPENTIER M, SUN J, MARTINS T V, et al., 2016. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations[J]. Science, 352(6289): 1102-1105.
DOI PMID |
| [13] |
CORDELL D, DRANGERT J O, WHITE S, 2009. The story of the world's biodiversity for food and agriculture[J]. Global Environmental Change, 19(2): 292-305.
DOI URL |
| [14] | COZZOLINO V, MONDA H, SAVY D, et al., 2021. Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake[J]. Chemical and Biological Technologies in Agriculture, 8(1): 31. |
| [15] | CURAQUEO G, ROLDÁN A, MUTIS A, et al., 2021. Effects of biochar amendment on wheat production, mycorrhizal status, soil microbial community, and properties of an Andisol in Southern Chile[J]. Field Crops Research, 273(1): 108306. |
| [16] |
DARRAH P R, TLALKA M, ASHFORD A, et al., 2006. The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi[J]. Eukaryotic Cell, 5(7): 1111-1125.
DOI PMID |
| [17] |
DELLA MONICA I F, GODEAS A M, SCERVINO J M, 2020. In vivo modulation of arbuscular mycorrhizal symbiosis and soil quality by fungal P solubilizers[J]. Microbial Ecology, 79(1): 21-29.
DOI PMID |
| [18] |
DONG X, CHU Y, TONG Z, et al., 2024. Mechanisms of adsorption and functionalization of biochar for pesticides: A review[J]. Ecotoxicology and Environmental Safety, 272: 116019.
DOI URL |
| [19] |
DUAN M L, LIU G H, ZHOU B B, et al., 2021. Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil[J]. Journal of Soils and Sediments, 21(5): 2192-2202.
DOI |
| [20] |
EFTHYMIOU A, JENSEN B, JAKOBSEN I, 2018. The roles of mycorrhiza and Penicillium inoculants in phosphorus uptake by biochar-amended wheat[J]. Soil Biology and Biochemistry, 127: 168-177.
DOI URL |
| [21] | EIZENBERG H, PLAKHINE D, ZIADNE H, et al., 2017. Non-chemical control of root parasitic weeds with biochar[J]. Frontiers in Plant Science, 8(1): 939. |
| [22] | ELBASIOUNY H, MOSTAFA A A, ZEDAN A, et al., 2023. Potential effect of biochar on soil properties, microbial activity and Vicia faba properties affected by microplastics contamination[J]. Agronomy, 13(1): 149. |
| [23] |
FAHEY C, WINTER K, SLOT M, et al., 2016. Influence of arbuscular mycorrhizal colonization on whole‐plant respiration and thermal acclimation of tropical tree seedlings[J]. Ecology and Evolution, 6(3): 859-870.
DOI URL |
| [24] |
FAKHAR A, GALGO S J C, CANATOY R C, et al., 2025. Advancing modified biochar for sustainable agriculture: A comprehensive review on characterization, analysis, and soil performance[J]. Biochar, 7(1): 1-25.
DOI |
| [25] | FALL A F, NAKABONGE G, SSEKANDI J, et al., 2022. Roles of arbuscular mycorrhizal fungi on soil fertility: Contribution in the improvement of physical, chemical, and biological properties of the soil[J]. Frontiers in Fungal Biology, 3(1): 723892. |
| [26] |
FAN L, ZHANG P, CAO F Z, et al., 2024. Effects of AMF on maize yield and soil microbial community in sandy and saline soils[J]. Plants, 13(15): 2056.
DOI URL |
| [27] | FENG M H, LI M M, ZHANG L S, et al., 2022. Oyster shell modified tobacco straw biochar: Efficient phosphate adsorption at wide range of pH values[J]. International Journal of Environmental Research and Public Health, 19(12): 7227. |
| [28] |
FERROL N, AZCÓN-AGUILAR C, PÉREZ-TIENDA J, 2019. Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved[J]. Plant Science, 280: 441-447.
DOI URL |
| [29] |
FIGUEIRA-GALAN D, HEUPEL S, DUELLI G, et al., 2023. Exploring the synergistic effects of biochar and arbuscular mycorrhizal fungi on phosphorus acquisition in tomato plants by using gene expression analyses[J]. Science of The Total Environment, 884: 163506.
DOI URL |
| [30] |
FIORILLI V, LANFRANCO L, BONFANTE P, 2013. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability[J]. Planta, 237(5): 1267-1277.
DOI PMID |
| [31] |
FU H Y, WEI C H, QU X L, et al., 2018. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications[J]. Environmental Pollution, 232: 402-410.
DOI PMID |
| [32] |
GARLAND G, BÜNEMANN E K, OBERSON A, et al., 2018. Phosphorus cycling within soil aggregate fractions of a highly weathered tropical soil: A conceptual model[J]. Soil Biology and Biochemistry, 116: 91-98.
DOI URL |
| [33] | GENG Y Y, PAN S, ZHANG L, et al., 2022. Phosphorus biogeochemistry regulated by carbonates in soil[J]. Environmental Research, 214(Part A): 113894. |
| [34] |
GENRE A, BONFANTE P, 1998. Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots[J]. The New Phytologist, 140(4): 745-752.
DOI URL |
| [35] | GIOVANNETTI M, 2008. Structure, Extent and Functional Significance of Belowground Arbuscular Mycorrhizal Networks[M]. Berlin, Heidelberg: Springer Berlin Heidelberg:: 59-72. |
| [36] |
GUL S, WHALEN J K, 2016. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils[J]. Soil Biology and Biochemistry, 103: 1-15.
DOI URL |
| [37] | HAN G M, LAN J Y, CHEN Q Q, et al., 2017. Response of soil microbial community to application of biochar in cotton soils with different continuous cropping years[J]. Scientific Reports, 7(1): 10184. |
| [38] |
HE W, ZHANG J, GAO W C, et al., 2025. Enhancing phosphorus availability and dynamics in acidic soils through rice straw biochar application: A sustainable alternative to chemical fertilizers[J]. Frontiers in Sustainable Food Systems, 9: 1506609.
DOI URL |
| [39] | HOU L Y, ZHANG X F, FENG G, et al., 2021. Arbuscular mycorrhizal enhancement of phosphorus uptake and yields of maize under high planting density in the black soil region of China[J]. Scientific Reports, 11(1): 1100. |
| [40] |
HU W, ZHANG Y P, RONG X M, et al., 2023. Coupling amendment of biochar and organic fertilizers increases maize yield and phosphorus uptake by regulating soil phosphatase activity and phosphorus-acquiring microbiota[J]. Agriculture, Ecosystems & Environment, 355: 108582.
DOI URL |
| [41] |
HUANG G M, XU Y J, WU Q S, 2021. Mycorrhiza-improved P acquisition of host plants: A mini-review[J]. GSC Biological and Pharmaceutical Sciences, 14(3): 62-67.
DOI URL |
| [42] |
IŞIK M, ALDOĞAN S, SÖNMEZ M, et al., 2023. Effect of increasing phosphorus doses application on some physical, chemical and biological properties of soil, under long-term experiment conditions[J]. International Journal of Agricultural and Applied Sciences, 4(1): 143-149.
DOI URL |
| [43] |
JAVOT H, PENMETSA R V, TERZAGHI N, et al., 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 104(5): 1720-1725.
DOI URL |
| [44] |
JI Y N, ZHENG N, AN Q R, et al., 2024. Enhanced immobilization of cadmium and lead in contaminated soil using calcium alginate-modified HAP biochar: improvements in soil health and microbial diversity[J]. Environmental Pollution, 357: 124445.
DOI URL |
| [45] |
JIANG F Y, ZHANG L, ZHOU J C, et al., 2021. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae[J]. New Phytologist, 230(1): 304-315.
DOI PMID |
| [46] |
JOHAN P D, AHMED O H, OMAR L, et al., 2021. Phosphorus transformation in soils following co-application of charcoal and wood ash[J]. Agronomy, 11(10): 2010.
DOI URL |
| [47] | JONES D L, OBURGER E, 2011. Solubilization of phosphorus by soil microorganisms[C]// BÜNEMANN E K, OBERSON A, FROSSARD E. Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Berlin, Heidelberg: Springer Berlin Heidelberg: 169-198. |
| [48] |
KANGI E, BRZOSTEK E R, BILLS R J, et al., 2024. A multi-omic survey of black cottonwood tissues highlights coordinated transcriptomic and metabolomic mechanisms for plant adaptation to phosphorus deficiency[J]. Frontiers in Plant Science, 15: 1324608.
DOI URL |
| [49] | KHAN F, SIDDIQUE A B, SHABALA S, et al., 2023. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses[J]. Plants, 12(15): 2861. |
| [50] |
KHAN N, SIDDIQUI M H, AHMAD S, et al., 2024. New insights in enhancing the phosphorus use efficiency using phosphate-solubilizing microorganisms and their role in cropping system[J]. Geomicrobiology Journal, 41(5): 485-495.
DOI URL |
| [51] | KOBAE Y, 2019. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions[J]. Frontiers in Environmental Science, 6(1): 159. |
| [52] |
KOCA FINDIK B, JAFARI M, SONG L F, et al., 2024. Binding of phosphate species to Ca2+ and Mg2+ in aqueous solution[J]. Journal of Chemical Theory and Computation, 20(10): 4298-4307.
DOI URL |
| [53] |
LI C, SUN Y F, DONG D H, et al., 2021. Co-pyrolysis of cellulose/lignin and sawdust: influence of secondary condensation of the volatiles on characteristics of biochar[J]. Energy, 226: 120442.
DOI URL |
| [54] | LIAO Y Y, LI J L, PAN R L, et al., 2019. Structure-function analysis reveals amino acid residues of Arabidopsis phosphate transporter AtPHT1;1 crucial for its activity[J]. Frontiers in Plant Science, 10(1): 1158. |
| [55] | LIMA A M D, CHAVES L H G, FERNANDES J D, et al., 2024. Phosphorus adsorption after the incubation of clay soil with different doses of biochar[J]. Ciência e Agrotecnologia, 48(8): e016724. |
| [56] | LIU F, XIAO Z H, FANG J, et al., 2023b. Effect of pyrolysis treatment on phosphorus migration and transformation of pig, cow and sheep manure[J]. Sustainability, 15(12): 9215. |
| [57] | LIU J, ARONSSON H, BERGSTRÖM L, et al., 2012. Phosphorus leaching from loamy sand and clay loam topsoils after application of pig slurry[J]. SpringerPlus, 1(1): 53. |
| [58] |
LIU S Y, CAO D Y, HANG Y W, et al., 2023a. Biochar affects the distribution of phosphorus in the soil profile by changing the capacity of soil to adsorb phosphorus and its distribution within soil macroaggregates[J]. Land Degradation & Development, 34(8): 2189-2200.
DOI URL |
| [59] |
LIU Z W, WU Z S, TIAN F, et al., 2023c. Phosphate-solubilizing microorganisms regulate the release and transformation of phosphorus in biochar-based slow-release fertilizer[J]. Science of The Total Environment, 869: 161622.
DOI URL |
| [60] | LOGESH K K, KONDLE R, SHOWMIYAN U, et al., 2024. Enhancing fruit crop performance: The role of phosphate-solubilizing bacteria in growth, yield and quality improvement[J]. International Journal of Plant & Soil Science, 36(7): 670-684. |
| [61] |
LUO X Z, ELRYS A S, ZHANG L L, et al., 2024. The global fate of inorganic phosphorus fertilizers added to terrestrial ecosystems[J]. One Earth, 7(8): 1402-1413.
DOI URL |
| [62] | MAI N T, NGUYEN A M, PHAM N T, et al., 2020. Colloidal interactions of micro-sized biochar and a kaolinitic soil clay[J]. Science of The Total Environment, 48(8): e016724. |
| [63] | MAJEWSKA M, HANAKA A, 2025. Biochar in the bioremediation of metal-contaminated soils[J]. Agronomy, 15(2): 273. |
| [64] |
MAO J F, ZHANG K, CHEN B L, 2019. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil[J]. Environmental Pollution, 253: 779-789.
DOI PMID |
| [65] |
MENDONCA J C F, NAVES B T, SILVA L F V, et al., 2023. Efeito do biocarvão de serragem de eucalipto sobre a simbiose de fungos micorrízicos arbusculares nativos: Effect of eucalyptus sawdust biochar on the symbiosis of native arbuscular mycorrhizal fungi[J]. Brazilian Journal of Animal and Environmental Research, 6(2): 1585-1595.
DOI URL |
| [66] | MENG L B, CHENG Z Y, WANG Y M, et al., 2024. Arbuscular mycorrhizal fungal interacted with biochar and enhanced phosphate-solubilizing microorganism abundance and phosphorus uptake in maize[J]. Agronomy, 14(8): 1678. |
| [67] |
MIKKELSEN B L, ROSENDAHL S, JAKOBSEN I, 2008. Underground resource allocation between individual networks of mycorrhizal fungi[J]. New Phytologist, 180(4): 890-898.
DOI PMID |
| [68] | MOSHARROF M, UDDIN M K, MIA S, et al., 2022. Influence of rice husk biochar and lime in reducing phosphorus application rate in acid soil: A field trial with maize[J]. Sustainability, 14(12): 7418. |
| [69] | NEUMANN E, GEORGE E, 2010. Nutrient uptake: the arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy[C]// KOLTA H, KAPULNIK Y. Arbuscular Mycorrhizas: Physiology and Function. Dordrecht: Springer Netherlands: 137-167. |
| [70] |
NGUYEN C T, EZAWA T, SAITO K, 2022. Polyphosphate polymerizing and depolymerizing activity of VTC4 protein in an arbuscular mycorrhizal fungus[J]. Soil Science and Plant Nutrition, 68(2): 256-267.
DOI URL |
| [71] | PANG F, LI Q, SOLANKI M K, et al., 2024. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms[J]. Frontiers in Microbiology, 15(1): 1383813. |
| [72] | PAYMANEH Z, GRYNDLER M, KONVALINKOVÁ T, et al., 2018. Soil matrix determines the outcome of interaction between mycorrhizal symbiosis and biochar for Andropogon gerardii growth and nutrition[J]. Frontiers in Microbiology, 9(1): 2862. |
| [73] |
PEREIRA R C, ARBESTAIN M C, SUEIRO M V, et al., 2015. Assessment of the surface chemistry of wood-derived biochars using wet chemistry, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy[J]. Soil Research, 53(7): 753-762.
DOI URL |
| [74] |
PETERSON R L, MASSICOTTE H B, 2004. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces[J]. Canadian Journal of Botany, 82(8): 1074-1088.
DOI URL |
| [75] | PREISS L, HICKS D B, SUZUKI S, et al., 2015. Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis[J]. Frontiers in Bioengineering and Biotechnology, 3(1): 75. |
| [76] |
PUGA M I, MATEOS I, CHARUKESI R, et al., 2014. SPX1 is a phosphate-dependent inhibitor of phosphate starvation response 1 in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 111(41): 14947-14952.
DOI URL |
| [77] | PUMPLIN N, ZHANG X, NOAR R D, et al., 2012. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion[J]. Proceedings of the National Academy of Sciences, 109(11): E665-E672. |
| [78] |
QIN L Y, WU Y, HOU Z W, et al., 2020. Influence of biomass components, temperature and pressure on the pyrolysis behavior and biochar properties of pine nut shells[J]. Bioresource Technology, 313: 123682.
DOI URL |
| [79] |
QIN Z F, PENG Y, YANG G J, et al., 2022. Relationship between phosphorus uptake via indigenous arbuscular mycorrhizal fungi and crop response: A 32P-labeling study[J]. Applied Soil Ecology, 180: 104624.
DOI URL |
| [80] |
QIU Q, BENDER S F, MGELWA A S, et al., 2022. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: A meta-analysis[J]. Science of The Total Environment, 807(Part 1): 150857.
DOI URL |
| [81] |
ROBERTS T L, JOHNSTON A E, 2015. Phosphorus use efficiency and management in agriculture[J]. Resources, Conservation and Recycling, 105(Part B): 275-281.
DOI URL |
| [82] |
ROBLEDO BRIONES M, RUIZ HERRERA J, 2013. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism[J]. FEMS Yeast Research, 13(1): 74-84.
DOI URL |
| [83] | SA Y, NG H, 2017. Influence of biochar application and AMF inoculation on root colonization and selected soil chemical properties[J]. Annals of Biological Sciences, 5: 33-38. |
| [84] | SANTOS M G B D, COSTA C R, MENDES G D O, et al., 2024. Oxalic acid boosts phosphorus release from sewage sludge biochar: A key mechanism for biochar-based fertilizers[J]. Agriculture, 14(9): 1607. |
| [85] | SATHYASEELAN N, GOPAL M, GUPTA A, 2023. Understanding the dynamics of phosphorus sorption in acidic soil amended with cocoa pod husk biochar[J]. Journal of Plantation Crops, 51(3): 153-160. |
| [86] |
SATO T, HACHIYA S, INAMURA N, et al., 2019. Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability[J]. Mycorrhiza, 29(6): 599-605.
DOI PMID |
| [87] |
SAXENA J, MINAXI, JHA A, 2014. Impact of a phosphate solubilizing bacterium and an arbuscular mycorrhizal fungus (Glomus etunicatum) on growth, yield and P concentration in wheat plants[J]. CLEAN-Soil, Air, Water, 42(9): 1248-1252.
DOI URL |
| [88] | SCHÜTZE E, GYPSER S, FREESE D, 2020. Kinetics of phosphorus release from vivianite, hydroxyapatite, and bone char influenced by organic and inorganic compounds[J]. Soil Systems, 4(1): 15. |
| [89] | SHAW A, MUKHERJEE A, SAHA B, 2022. A review on the role of phosphate solubilizing microorganisms with a brief focus on its genetic aspects[J]. International Journal of Research Publication and Reviews, 3(10): 363-372. |
| [90] |
SHI Y X X, YU Y C, CHANG E, et al., 2022. Effect of biochar incorporation on phosphorus supplementation and availability in soil: A review[J]. Journal of Soils and Sediments, 23(2): 672-686.
DOI |
| [91] |
SUN B B, LIAN F, BAO Q L, et al., 2016. Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole[J]. Environmental Pollution, 214: 142-148.
DOI PMID |
| [92] |
SYAKUR S, ZAITUN Z, DARUSMAN D, et al., 2024. Improving the physical properties of ex-coal mining soil planted with sweet corn (Zea mays saccharata L.) using pine wood and sawdust biochar[J]. Media Konservasi, 29(4): 540-549.
DOI URL |
| [93] |
TAWARAYA K, NAITO M, WAGATSUMA T, 2006. Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi[J]. Journal of Plant Nutrition, 29(4): 657-665.
DOI URL |
| [94] |
THIRKELL T J, PASTOK D, FIELD K J, 2020. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration[J]. Global Change Biology, 26(3): 1725-1738.
DOI PMID |
| [95] | TIAN J, GE F, ZHANG D Y, et al., 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle[J]. Biology, 10(2): 158. |
| [96] |
TORRES M J, MOREIRA G, BHADHA J H, et al., 2024. Arbuscular mycorrhizal fungi as inspiration for sustainable technology[J]. Encyclopedia, 4(3): 1188-1200.
DOI URL |
| [97] |
TUNESI S, POGGI V, GESSA C, 1999. Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals[J]. Nutrient Cycling in Agroecosystems, 53(3): 219-227.
DOI |
| [98] |
WANG N, PAN S T, LI S C, et al., 2024. Combination of magnesium modified biochar and iron oxides down-regulates phosphates transport in porous media[J]. Chemical Engineering Journal, 498: 155151.
DOI URL |
| [99] | WANG W P, WANG Z H, YANG K, et al., 2020. Biochar application alleviated negative plant-soil feedback by modifying soil microbiome[J]. Frontiers in Microbiology, 11(1): 799. |
| [100] |
WANG Z Y, RUAN W Y, SHI J, et al., 2014. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner[J]. Proceedings of the National Academy of Sciences, 111(41): 14953-14958.
DOI URL |
| [101] |
WEN Y Q, WU R T, QI D D, et al., 2024. The effect of AMF combined with biochar on plant growth and soil quality under saline-alkali stress: insights from microbial community analysis[J]. Ecotoxicology and Environmental Safety, 281: 116592.
DOI URL |
| [102] | WIECZOREK D, ŻYSZKA-HABERECHT B, KAFKA A, et al., 2022. Determination of phosphorus compounds in plant tissues: From colourimetry to advanced instrumental analytical chemistry[J]. Plant Methods, 18(1): 22. |
| [103] | WOJEWODZKI P, LEMANOWICZ J, DEBSKA B, et al., 2022. The application of biochar from waste biomass to improve soil fertility and soil enzyme activity and increase carbon sequestration[J]. Energies, 16(1): 380. |
| [104] |
WONG J W C, OGBONNAYA U O, 2021. Biochar porosity: A nature-based dependent parameter to deliver microorganisms to soils for land restoration[J]. Environmental Science and Pollution Research, 28(34): 46894-46909.
DOI |
| [105] | WU Q S, CAO M Q, ZOU Y N, et al., 2014. Direct and indirect effects of glomalin, mycorrhizal hyphae and roots on aggregate stability in rhizosphere of trifoliate orange[J]. Scientific Reports, 4(1): 5823. |
| [106] |
WU Y C, ZOU Z W, HUANG C X, et al., 2022. Effect of biochar addition on phosphorus adsorption characteristics of red soil[J]. Frontiers in Environmental Science, 10: 893212.
DOI URL |
| [107] |
XING X G, LIU Y, MA X Y, 2019. A modified van-Genuchten model for soil-water retention modeling by considering plant additives[J]. Archives of Agronomy and Soil Science, 65(4): 435-449.
DOI URL |
| [108] | XIONG W M, LI Y J, YING J D, et al., 2022. Behaviors of organic ligands and phosphate during biochar-driven nitrate adsorption in the presence of low-molecular-weight organic acids[J]. Molecules, 27(18): 5811. |
| [109] |
YAN C R, LI Y, SHARMA P, et al., 2022. Influence of dissolved organic matter, kaolinite, and iron oxides on aggregation and transport of biochar colloids in aqueous and soil environments[J]. Chemosphere, 306: 135555.
DOI URL |
| [110] |
YANG F, ZHAO L, GAO B, et al., 2016. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science and Technology, 50(5): 2264-2271.
DOI PMID |
| [111] |
YU X L, LU S G, 2020. Double effects of biochar in affecting the macropore system of paddy soils identified by high-resolution X-ray tomography[J]. Science of The Total Environment, 720: 137690.
DOI URL |
| [112] |
ZENG Q X, PEÑUELAS J, SARDANS J, et al., 2024. Keystone bacterial functional module activates P-mineralizing genes to enhance enzymatic hydrolysis of organic P in a subtropical forest soil with 5-year N addition[J]. Soil Biology and Biochemistry, 192: 109383.
DOI URL |
| [113] | ZHANG H, WANG L, FU W G, et al., 2024a. Soil acidification can be improved under different long-term fertilization regimes in a sweetpotato-wheat rotation system[J]. Plants, 13(13): 1740. |
| [114] |
ZHANG L, FAN J Q, DING X D, et al., 2014. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biology and Biochemistry, 74: 177-183.
DOI URL |
| [115] |
ZHANG L, XU M G, LIU Y, et al., 2016. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J]. New Phytologist, 210(3): 1022-1032.
DOI PMID |
| [116] |
ZHANG S Y, NIE Y Y, FAN X N, et al., 2023. A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation[J]. Frontiers in Microbiology, 13: 1114089.
DOI URL |
| [117] |
ZHANG Z C, DING S L, DIAO F W, et al., 2024b. AMF symbiosis drives the rhizosphere microbiome to synergistically improve herbage growth in saline-alkaline soils[J]. Land Degradation & Development, 35(11): 3663-3674.
DOI URL |
| [118] |
ZHENG X M, WU J F, YAN X, et al., 2020. Biochar-induced soil phosphate sorption and availability depend on soil properties: A microcosm study[J]. Journal of Soils and Sediments, 20: 3846-3856.
DOI |
| [119] | ZHOU J, HU Q L, XIAO X L, et al., 2021. Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure[J]. Nature Communications, 12(1): 7040. |
| [120] | 曹庆芹, 冯永庆, 刘玉芬, 等, 2011. 菌根真菌促进植物磷吸收研究进展[J]. 生命科学, 23(4): 407-413. |
| CAO Q Q, FENG Y Q, LIU Y F, et al., 2011. Research progress on mycorrhizal fungi promoting plant phosphorus uptake[J]. Life Science, 23(4): 407-413. | |
| [121] | 代威, 王丹, 李黎, 等, 2015. 不同丛枝菌根真菌 (AMF) 对Co污染土壤下番茄生长和核素富集的影响[J]. 安徽农业科学, 43(9): 264-267. |
| DAI W, WANG D, LI L, et al., 2015. Effects of different arbuscular mycorrhizal fungi (AMF) on tomato growth and radionuclide enrichment in Co-contaminated soil[J]. Journal of Anhui Agricultural Sciences, 43(9): 264-267. | |
| [122] | 董旭, 王雪, 石磊, 等, 2017. 植物磷转运子PHT1家族研究进展[J]. 植物营养与肥料学报, 23(3): 799-810. |
| DONG X, WANG X, SHI L, et al., 2017. Research progress on the PHT1 family of plant phosphate transporters[J]. Journal of Plant Nutrition and Fertilizers, 23(3): 799-810. | |
| [123] | 高倩倩, 杨孜奕, 潘芳莹, et al.., 2023. 生物炭施用下亚热带红壤铁还原及磷形态转化关系研究[J]. 林业科学研究, 36(5): 149-159. |
| GAO Q Q, YANG Z Y, PAN F Y, et al,. 2023. Relationship between iron reduction and phosphorus speciation transformation in subtropical red soil under biochar application[J]. Forest Research, 36(5): 149-159. | |
| [124] | 李芳, 郝志鹏, 陈保冬, 等, 2019. 菌根植物适应低磷胁迫的分子机制[J]. 植物营养与肥料学报, 25(11): 1989-1997. |
| LI F, HAO Z P, CHEN B D, et al., 2019. Molecular mechanisms of mycorrhizal plants adapting to low-phosphorus stress[J]. Journal of Plant Nutrition and Fertilizers, 25(11): 1989-1997. | |
| [125] | 刘领, 马宜林, 悦飞雪, 等, 2021. 生物炭对褐土旱地玉米季氮转化功能基因、丛枝菌根真菌及N2O释放的影响[J]. 生态学报, 41(7): 2803-2815. |
| LIU L, MA Y L, YUE F X, et al., 2021. Effects of biochar on nitrogen transformation functional genes, arbuscular mycorrhizal fungi and N₂O emissions in maize season of cinnamon upland soil[J]. Acta Ecologica Sinica, 41(7): 2803-2815. | |
| [126] | 刘淼, 王志春, 杨福, 等, 2021. 生物炭在盐碱地改良中的应用进展[J]. 水土保持学报, 35(3): 1-8. |
| LIU M, WANG Z C, YANG F, et al., 2021. Research progress on the application of biochar in saline-alkali soil improvement[J]. Journal of Soil and Water Conservation, 35(3): 1-8. | |
| [127] | 刘玉学, 唐旭, 杨生茂, 等, 2016. 生物炭对土壤磷素转化的影响及其机理研究进展[J]. 植物营养与肥料学报, 22(6): 1690-1695. |
| LIU Y X, TANG X, YANG S M, et al., 2016. Research progress on the effects and mechanisms of biochar on soil phosphorus transformation[J]. Journal of Plant Nutrition and Fertilizers, 22(6): 1690-1695. | |
| [128] | 孟艳, 沈亚文, 孟维伟, 等, 2023. 生物炭施用对农田土壤团聚体及有机碳影响的整合分析[J]. 环境科学, 44(12): 6847-6856. |
| MENG Y, SHEN Y W, MENG W W, et al., 2023. Meta-analysis of the effects of biochar application on soil aggregates and organic carbon in farmland[J]. Environmental Science, 44(12): 6847-6856. | |
| [129] | 孙兴宇, 王庆贵, 2021. 砍伐干扰背景下的森林土壤球囊霉素动态研究进展[J]. 世界生态学, 10(3): 435-444. |
| SUN X Y, WANG Q G, 2021. Research progress on forest soil glomalin dynamics under logging disturbance[J]. World Ecology, 10(3): 435-444. | |
| [130] | 王萌萌, 周启星, 2013. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 32(5): 768-780. |
| WANG M M, ZHOU Q X, 2013. Environmental effects and mechanisms of biochar in soil[J]. Environmental Chemistry, 32(5): 768-780. | |
| [131] |
徐丽娇, 姜雪莲, 郝志鹏, 等, 2017. 丛枝菌根通过调节碳磷代谢相关基因的表达增强植物对低磷胁迫的适应性[J]. 植物生态学报, 41(8): 815-825.
DOI |
|
XU L J, JIANG X L, HAO Z P, et al., 2017. Arbuscular mycorrhiza enhances plant adaptation to low phosphorus stress by regulating the expression of genes related to carbon and phosphorus metabolism[J]. Chinese Journal of Plant Ecology, 41(8): 815-825.
DOI URL |
|
| [132] | 薛英龙, 李春越, 王苁蓉, 等, 2019. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报, 33(6): 10-20. |
| XUE Y L, LI C Y, WANG C R, et al., 2019. Mechanisms by which arbuscular mycorrhizal fungi enhance plant uptake of soil phosphorus[J]. Journal of Soil and Water Conservation, 33(6): 10-20. | |
| [133] | 悦飞雪, 李继伟, 王艳芳, 等, 2019. 生物炭和 AM 真菌提高矿区土壤养分有效性的机理[J]. 植物营养与肥料学报, 25(8): 1325-1334. |
| YUE F X, LI J W, WANG Y F, et al., 2019. Mechanisms by which biochar and arbuscular mycorrhizal fungi enhance soil nutrient availability in mining areas[J]. Journal of Plant Nutrition and Fertilizers, 25(8): 1325-1334. | |
| [134] | 张超, 翟付杰, 单保庆, 2019. Ca改性生物炭对土壤磷赋存形态影响及稳定化机制[J]. 环境科学, 40(2): 983-991. |
| ZHANG C, ZHAI F J, SHAN B Q, 2019. Effects of Ca-modified biochar on soil phosphorus fractions and its stabilization mechanism[J]. Environmental Science, 40(2): 983-991. | |
| [135] | 朱永官, 段桂兰, 陈保冬, 等, 2014. 土壤-微生物-植物系统中矿物风化与元素循环[J]. 中国科学: 地球科学, 44(6): 1107-1116. |
| ZHU Y G, DUAN G L, CHEN B D, et al., 2014. Mineral weathering and element cycling in soil-microbe-plant systems[J]. Science China Earth Sciences, 44(6): 1107-1116. |
| [1] | 柳凤娟, 马超, 黄玲涵, 陈琪, 罗绪强. 生物炭添加对尾砂污染土壤中As和Sb植物有效性的影响[J]. 生态环境学报, 2025, 34(8): 1273-1281. |
| [2] | 贺环, 周丹丹, 马芷萱, 李芳芳, 秦珊珊, 豆思娴. 钙改性对生物炭中溶解性有机质与Cd(Ⅱ)结合的影响[J]. 生态环境学报, 2025, 34(7): 1121-1132. |
| [3] | 林泳怡, 周燕飞, 邓金环, 田纪辉, 蔡昆争. 生物炭与磷添加促进赤红壤的硅形态转化和大豆植株硅吸收转运[J]. 生态环境学报, 2025, 34(5): 710-719. |
| [4] | 张淑娟, 陈昕龙, 亓静凡, 董月晓, 于佳正, 尤朝阳. 基于丛枝菌根的钒污染土壤修复[J]. 生态环境学报, 2025, 34(4): 631-641. |
| [5] | 陈文哲, 黄秋香, 孟凡德, 高金妍, 李敏, 张恩俊, 袁国栋. 草酸和酒石酸对稻田土壤中砷解吸行为的影响研究[J]. 生态环境学报, 2024, 33(8): 1298-1305. |
| [6] | 卢聪. 生物炭负载纳米零价铁对沉积物中十溴二苯乙烷去除效果及机制[J]. 生态环境学报, 2024, 33(8): 1279-1288. |
| [7] | 王室苹, 李梅, 安娅, 秦好丽. 镁改性增强小麦秸秆生物炭对镉的吸附能力:表面络合模型研究[J]. 生态环境学报, 2024, 33(4): 617-625. |
| [8] | 肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449. |
| [9] | 李高帆, 徐文卓, 卫昊明, 晏再生, 尤佳, 江和龙, 黄娟. 三维多孔生物炭吸附剂的制备及其对菲的吸附行为[J]. 生态环境学报, 2024, 33(2): 261-271. |
| [10] | 丛鑫, 曹平, 王晓博. 生物炭负载纳米铁活化过硫酸盐去除土壤中的五氯联苯[J]. 生态环境学报, 2024, 33(2): 282-290. |
| [11] | 李璞君, 唐丽, 赵博, 邸东柳, 陈岩, 肖江, 陈光才. 生物炭基土壤改良剂对锑矿区土壤质量及亮叶桦生长的影响[J]. 生态环境学报, 2024, 33(12): 1953-1963. |
| [12] | 李文章, 胡亚茹, 李法云, 王玮, 张继宁, 郭琴. 铁改性生物炭-凹凸棒石载体固定化菌剂制备及其对氯苯污染土壤修复作用[J]. 生态环境学报, 2024, 33(11): 1782-1791. |
| [13] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
| [14] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
| [15] | 李卓轩, 彭自然, 何文辉, 卫瑞璐, 高琳茜. 羊粪炭对水体氮磷吸附条件的响应面优化及吸附机理研究[J]. 生态环境学报, 2023, 32(12): 2216-2227. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||