生态环境学报 ›› 2025, Vol. 34 ›› Issue (11): 1802-1811.DOI: 10.16258/j.cnki.1674-5906.2025.11.013
吴小令1(
), 周琪川2, 梁小佳2, 周燕敏2, 钟松雄2,*(
)
收稿日期:2025-05-20
出版日期:2025-11-18
发布日期:2025-11-05
通讯作者:
E-mail: 作者简介:吴小令(1973年生),女,高级工程师,主要从事生态环境管理论证与咨询、生态环境信息化管理等研究。E-mail: 1003405501@qq.com
基金资助:
WU Xiaoling1(
), ZHOU Qichuan2, LIANG Xiaojia2, ZHOU Yanmin2, ZHONG Songxiong2,*(
)
Received:2025-05-20
Online:2025-11-18
Published:2025-11-05
摘要:
土壤砷的迁移转化过程影响水稻砷累积,进而危害人体健康。该过程由土壤砷的赋存形态决定,与土壤的理化性质及土壤微生物等因素有关。开展定向土壤砷污染防控,需明晰砷在土壤中的物理化学和生物化学行为,包括砷的氧化还原和甲基化过程及其在矿物相中的吸附特性。该文系统探讨了水分管理措施、铁矿物成分、氮循环过程及有机质(主要以腐殖质为例)对砷迁移转化过程的制约效应及其关键调控机制:间歇灌溉可有效抑制厌氧条件下砷的释放,降低稻米籽粒中的砷含量;根表铁膜作为重要的“天然屏障”,其稳定性受矿物结晶度和微生物铁还原作用影响;铵态氮氧化促进砷的活化,而硝态氮则通过驱动As(Ⅲ)的厌氧氧化并与铁氧化作用耦合,从而实现对砷的钝化;腐殖质作为电子供体或电子穿梭体,可刺激微生物铁还原和砷还原过程,增加土壤溶液中活性砷的浓度,从而存在潜在风险。为有效降低砷积累、保障农产品的安全生产,提出应从单一因子提升至多因子作用影响研究,构建“土壤环境化学-微生物学-植物生理学”的多学科交叉研究链条,精准识别砷转化的物理化学机制及微生物分子机制,优化绿色调控技术,实现区域尺度砷污染风险预测与智慧管控。
中图分类号:
吴小令, 周琪川, 梁小佳, 周燕敏, 钟松雄. 稻田土壤中砷的生物地球化学行为研究进展及污染防控策略[J]. 生态环境学报, 2025, 34(11): 1802-1811.
WU Xiaoling, ZHOU Qichuan, LIANG Xiaojia, ZHOU Yanmin, ZHONG Songxiong. Research Progress on the Biogeochemical Behavior of Arsenic in Paddy Soils and Pollution Prevention and Control Strategies[J]. Ecology and Environmental Sciences, 2025, 34(11): 1802-1811.
| 不同铁矿物 | 物理化学性质 | 与砷的结合方式 | 与砷的氧化还原 |
|---|---|---|---|
| 水铁矿 | 比表面积达到248 m2∙g−1;非晶态,短程有序纳米颗粒 | 与表面OH−和OH2发生配位体交换,形成内圈螯合物;三价砷吸附,双齿单核配位吸附,形成内圈螯合物或外圈螯合物 | 氧化:表面的Fe(Ⅲ)可通过配位氧空位或羟基自由基缓慢氧化三价砷;还原:五价砷被Fe2+或微生物代谢产物还原(Liu et al., |
| 针铁矿 | 比表面积10-132 m2∙g−1;自然条件下稳定性强;表面结构存在两层吸附水与两种终止羟基(Huhmann et al., | 表面羟基用于配体交换;砷在针铁矿覆盖率较高时主要以双齿双核螯合方式;覆盖率较低时为单齿螯合;五价砷在针铁矿表面形成单齿螯合物而非双齿双核螯合物 | 氧化:表面Fe(Ⅲ)对三价砷的氧化需依赖共存的氧化剂;还原:针铁矿的Fe(Ⅲ)被还原,矿物部分溶解并释放吸附的砷 |
| 赤铁矿 | 比表面积为9.33 m2∙g−1;水铁矿或针铁矿脱水脱羟基时转换成赤铁矿 | 氢键与静电力稳定化表面的五价砷;通过单齿螯合、角落共享和边缘共享式双齿双核螯合,形成内圈和外圈螯合物;内部水结构稳定化五价砷,如五价砷可持续在赤铁矿上形成外圈螯合物(Catalano et al., | 氧化:在光照下产生活性氧物种,显著促进三价砷氧化;还原:强还原条件下可被部分还原为磁铁矿,释放结合态砷 |
| 纤铁矿 | 斜方晶系,层状结构,比表面积50-150 m2∙g−1;碱性或有机质存在的环境中易转化为针铁矿 | 五价砷通过双齿双核表面复合物与纤铁矿结合;三价砷在酸性条件(pH<6)下通过单齿单核配位吸附 | 氧化:通过表面吸附的Fe2+催化反应间接氧化三价砷;还原:还原条件下(如微生物作用)溶解,释放砷 |
| 磁铁矿 | 反尖晶石结构,具磁性,比表面积20-90 m2∙g−1 | 五价砷通过配体交换吸附在磁铁矿表面;三价砷在酸性条件(pH 4-6)下通过单齿单核配位吸附 | 氧化:在氧化条件下部分转化为赤铁矿;还原:表面的Fe2+可直接还原五价砷为三价砷(Gubler et al., |
| 绿锈 | 层状双氢氧化物,比表面积50-200 m2∙g−1 | 五价砷通过配体交换吸附在表面层间;三价砷在表面形成单齿单核复合物 | 氧化:暴露于氧气时分解为针铁矿/赤铁矿;还原:层间的Fe2+快速还原五价砷 |
表1 不同铁矿物对土壤砷的地球化学行为以及水稻砷累积效果的影响
Table 1 The effect of different iron mineral on arsenic’s geochemical behavior on paddy soil and rice accumulation efficiency
| 不同铁矿物 | 物理化学性质 | 与砷的结合方式 | 与砷的氧化还原 |
|---|---|---|---|
| 水铁矿 | 比表面积达到248 m2∙g−1;非晶态,短程有序纳米颗粒 | 与表面OH−和OH2发生配位体交换,形成内圈螯合物;三价砷吸附,双齿单核配位吸附,形成内圈螯合物或外圈螯合物 | 氧化:表面的Fe(Ⅲ)可通过配位氧空位或羟基自由基缓慢氧化三价砷;还原:五价砷被Fe2+或微生物代谢产物还原(Liu et al., |
| 针铁矿 | 比表面积10-132 m2∙g−1;自然条件下稳定性强;表面结构存在两层吸附水与两种终止羟基(Huhmann et al., | 表面羟基用于配体交换;砷在针铁矿覆盖率较高时主要以双齿双核螯合方式;覆盖率较低时为单齿螯合;五价砷在针铁矿表面形成单齿螯合物而非双齿双核螯合物 | 氧化:表面Fe(Ⅲ)对三价砷的氧化需依赖共存的氧化剂;还原:针铁矿的Fe(Ⅲ)被还原,矿物部分溶解并释放吸附的砷 |
| 赤铁矿 | 比表面积为9.33 m2∙g−1;水铁矿或针铁矿脱水脱羟基时转换成赤铁矿 | 氢键与静电力稳定化表面的五价砷;通过单齿螯合、角落共享和边缘共享式双齿双核螯合,形成内圈和外圈螯合物;内部水结构稳定化五价砷,如五价砷可持续在赤铁矿上形成外圈螯合物(Catalano et al., | 氧化:在光照下产生活性氧物种,显著促进三价砷氧化;还原:强还原条件下可被部分还原为磁铁矿,释放结合态砷 |
| 纤铁矿 | 斜方晶系,层状结构,比表面积50-150 m2∙g−1;碱性或有机质存在的环境中易转化为针铁矿 | 五价砷通过双齿双核表面复合物与纤铁矿结合;三价砷在酸性条件(pH<6)下通过单齿单核配位吸附 | 氧化:通过表面吸附的Fe2+催化反应间接氧化三价砷;还原:还原条件下(如微生物作用)溶解,释放砷 |
| 磁铁矿 | 反尖晶石结构,具磁性,比表面积20-90 m2∙g−1 | 五价砷通过配体交换吸附在磁铁矿表面;三价砷在酸性条件(pH 4-6)下通过单齿单核配位吸附 | 氧化:在氧化条件下部分转化为赤铁矿;还原:表面的Fe2+可直接还原五价砷为三价砷(Gubler et al., |
| 绿锈 | 层状双氢氧化物,比表面积50-200 m2∙g−1 | 五价砷通过配体交换吸附在表面层间;三价砷在表面形成单齿单核复合物 | 氧化:暴露于氧气时分解为针铁矿/赤铁矿;还原:层间的Fe2+快速还原五价砷 |
| 不同水管理措施 | 氧化还原电位 (Eh)和pH | 水稻产量 | 砷的累积效果 | 土壤-溶液界面砷的环境化学行为和微生物 |
|---|---|---|---|---|
| 长期淹水 | 低Eh,高pH | 淹水管理水稻产量均较高(Arao et al., | 籽粒对砷的 累积量最高 | 水稻根际土地杆菌属和厌氧粘细菌属具有较高的相对丰度(Das et al., |
| 间歇式淹水 | 低Eh和高Eh交替;高pH和低pH交替 | 比长期淹水和长期干旱处理高(Xu et al., | 显著降低水稻 对砷的吸收累积 | 水稻根际土地杆菌属和厌氧粘细菌属相对丰度较低(Das et al., |
| 点喷式水 灌溉管理 | 高Eh,低pH | 与长期淹水管理的水稻产量没有显著差异 | 极大程度地降低 籽粒砷累积 | 根部周边存在砷氧化基因(aioA)、砷还原基因(arsC)和砷甲基化基因(arsM);证实了砷存在五价砷的形式,以及相应地水稻籽粒无机砷和有机砷的存在(Jia et al., |
| 缺水式(有氧过程)灌溉管理 | 高Eh,低pH | 四种处理中产量最低 | 籽粒中砷的累积最低(Wang et al., | 稻根际土铁氧化菌相对丰度较高,促进了铁的氧化过程 |
表2 不同水管理措施对土壤砷的地球化学行为以及水稻砷累积效果的影响
Table 2 The effect of different water management on arsenic’s geochemical behavior on paddy soil and rice accumulation efficiency
| 不同水管理措施 | 氧化还原电位 (Eh)和pH | 水稻产量 | 砷的累积效果 | 土壤-溶液界面砷的环境化学行为和微生物 |
|---|---|---|---|---|
| 长期淹水 | 低Eh,高pH | 淹水管理水稻产量均较高(Arao et al., | 籽粒对砷的 累积量最高 | 水稻根际土地杆菌属和厌氧粘细菌属具有较高的相对丰度(Das et al., |
| 间歇式淹水 | 低Eh和高Eh交替;高pH和低pH交替 | 比长期淹水和长期干旱处理高(Xu et al., | 显著降低水稻 对砷的吸收累积 | 水稻根际土地杆菌属和厌氧粘细菌属相对丰度较低(Das et al., |
| 点喷式水 灌溉管理 | 高Eh,低pH | 与长期淹水管理的水稻产量没有显著差异 | 极大程度地降低 籽粒砷累积 | 根部周边存在砷氧化基因(aioA)、砷还原基因(arsC)和砷甲基化基因(arsM);证实了砷存在五价砷的形式,以及相应地水稻籽粒无机砷和有机砷的存在(Jia et al., |
| 缺水式(有氧过程)灌溉管理 | 高Eh,低pH | 四种处理中产量最低 | 籽粒中砷的累积最低(Wang et al., | 稻根际土铁氧化菌相对丰度较高,促进了铁的氧化过程 |
| [1] |
ANAMIKA S, ANIL B, ARNAB M, et al., 2020. Arsenic mitigation in rice grain loading via alternative irrigation by proposed water management practices[J]. Chemosphere, 238: 124988.
DOI URL |
| [2] |
ARAO T, KAWASAKI A, BABA K, et al., 2009. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science & Technology, 43(24): 9361-9367.
DOI URL |
| [3] |
BENNETT W W, TEASDALE P R, PANTHER J G, et al., 2012. Investigating arsenic speciation and mobilization in sediments with DGT and DET: A mesocosm evaluation of oxic-anoxic transitions[J]. Environmental Science & Technology, 46(7): 3981-3989.
DOI URL |
| [4] |
BESOLD J, BISWAS A, SUESS E, et al., 2018. Monothioarsenate transformation kinetics determining arsenic sequestration by sulfhydryl groups of peat[J]. Environmental Science & Technology, 52(13): 7317-7326.
DOI URL |
| [5] | BISWAS R, VIVEKANAND V, SAHA A, et al., 2019. Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation[J]. International Biodeterioration & Biodegradation, 136: 55-62. |
| [6] |
BOLANZ R M, WIERZBICKA-WIECZOREK M, ČAPLOVIČOVÁ M, et al., 2013. Structural incorporation of As5+ into hematite[J]. Environmental Science & Technology, 47(16): 9140-9147.
DOI URL |
| [7] |
CAO Y, FENG H Y, SUN D, et al., 2019. Heterologous expression of Pteris vittata phosphate transporter PvPht1;3 enhances arsenic translocation to and accumulation in Tobacco shoots[J]. Environmental Science & Technology, 53(18): 10636-10644.
DOI URL |
| [8] |
CARRIJO D R, AKBAR N, REIS A F, et al., 2018. Impacts of variable soil drying in alternate wetting and drying rice systems on yields, grain arsenic concentration and soil moisture dynamics[J]. Field Crops Research, 222: 101-110.
DOI URL |
| [9] |
CATALANO J G, ZHANG Z, PARK C, et al., 2007. Bridging arsenate surface complexes on the hematite (0 1 2) surface[J]. Geochimica et Cosmochimica Acta, 71(8): 1883-1897.
DOI URL |
| [10] | CHAI L Y, LI Q Z, WANG Q W, et al., 2019. Arsenic Behaviors and Pollution Control Technologies in Aqueous Solution[M]//CHAI L Y. Arsenic pollution control in nonferrous metallurgy. Singapore: Springer. |
| [11] |
CHEN J, SUN G X, WANG X X, et al., 2014. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(Ⅲ) S-adenosine methyltransferase gene[J]. Environmental Science & Technology, 48(17): 10337-10344.
DOI URL |
| [12] |
DAS S, CHOU M L, JEAN J S, et al., 2016. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem[J]. Science of the Total Environment, 542(Part A): 642-652.
DOI URL |
| [13] |
DITTMAR J, VOEGELIN A, MAURER F, et al., 2010. Arsenic in soil and irrigation water affects arsenic uptake by rice: Complementary insights from field and pot studies[J]. Environmental Science & Technology, 44(23): 8842-8848.
DOI URL |
| [14] |
DITTMAR J, VOEGELIN A, ROBERTS L C, et al., 2007. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil[J]. Environmental Science & Technology, 41(17): 5967-5972.
DOI URL |
| [15] |
FENG M, DU Y H, LI X M, et al., 2023. Insight into universality and characteristics of nitrate reduction coupled with arsenic oxidation in different paddy soils[J]. Science of The Total Environment, 866: 161342.
DOI URL |
| [16] | GANIE S Y; JAVAID D; HAJAM Y A, et al., 2023. Arsenic toxicity: sources, pathophysiology and mechanism[J]. Toxicology Research, 13(1): 1-20. |
| [17] |
GLODOWSKA M, STOPELLI E, SCHNEIDER M, et al., 2020. Role of in situ natural organic matter in mobilizing As during microbial reduction of FeⅢ-mineral-bearing aquifer sediments from Hanoi (Vietnam)[J]. Environmental Science & Technology, 54(7): 4149-4159.
DOI URL |
| [18] |
GUBLER R, THOMASARRIGO L K, 2021. Ferrous iron enhances arsenic sorption and oxidation by non - stoichiometric magnetite and maghemite[J]. Journal of Hazardous Materials, 402: 123425.
DOI URL |
| [19] |
HERATH I, VITHANAGE M, SENEWEERA S, et al., 2018. Thio-lated arsenic in natural systems: What is current, what is new and what needs to be known[J]. Environment International, 115: 370-386.
DOI URL |
| [20] |
HONMA T, OHBA H, KANEKO-KADOKURA A, et al., 2016. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology, 50(8): 4178-4185.
DOI URL |
| [21] |
HUANG J-H, VOEGELIN A, POMBO S A, et al., 2011. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32[J]. Environmental Science & Technology, 45(18): 7701-7709.
DOI URL |
| [22] |
HUHMANN B L, HARVEY C F, UDDIN A, et al., 2017. Field study of rice yield diminished by soil arsenic in Bangladesh[J]. Environmental Science & Technology, 51(20): 11553-11560.
DOI URL |
| [23] |
ISLAM S, RAHMAN M M, ISLAM M, et al., 2017. Effect of irrigation and genotypes towards reduction in arsenic load in rice[J]. Science of the Total Environment, 609: 311-318.
DOI URL |
| [24] |
JIA Y, HUANG H, CHEN Z, et al., 2014. Arsenic uptake by rice is influenced by microbe - mediated arsenic redox changes in the rhizosphere[J]. Environmental Science & Technology, 48(2): 1001-1007.
DOI URL |
| [25] |
JIA Y, HUANG H, MIN Z, et al., 2013. Microbial arsenic methylation in soil and rice rhizosphere[J]. Environmental Science & Technology, 47(7): 3141-3148.
DOI URL |
| [26] |
JIANG Q Y, CHEN Y, CHAO L, et al., 2024. Loss of microbial diversity increases methane emissions and arsenic release in paddy soils[J]. Science of The Total Environment, 948: 174656.
DOI URL |
| [27] |
JIANG X L, PENG C J, FU D, et al., 2015. Removal of arsenate by ferrihydrite via surface complexation and surface precipitation[J]. Applied Surface Science, 353: 1087-1094.
DOI URL |
| [28] |
KERL C F, SCHINDELE R A, BRUGGENWIRTH L, et al., 2019. Methylated thioarsenates and monothioarsenate differ in uptake, transformation, and contribution to total Arsenic translocation in rice plants[J]. Environmental Science & Technology, 53(10): 5787-5796.
DOI URL |
| [29] |
KOMAREK M, VANEK A, ETTLER V, 2013. Chemical stabilization of metals and arsenic in contaminated soils using oxides: A review[J]. Environment Pollution, 172: 9-22.
DOI URL |
| [30] |
LEE J S, LEE S W, CHON H T, et al., 2008. Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au-Ag mine site, Korea[J]. Journal of Geochemical Exploration, 96(2-3): 231-235.
DOI URL |
| [31] |
LI X M, QIAO J T, LI S, et al., 2019. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil[J]. Environmental Science & Technology, 54(4): 2172-2181.
DOI URL |
| [32] |
LIANG Y, JIN J Z, XIANG Y J, et al., 2021. Insights into the improving mechanism of defect-mediated As(Ⅴ) adsorption on hematite nanoplates[J]. Chemosphere, 280: 130597.
DOI URL |
| [33] |
LIU E Y, XIE Z M, FANG J H, et al., 2022. Nitrate - mediated biomigration and transformation of As/Fe in arsenic - bearing ferrihydrite[J]. Applied Geochemistry, 138: 105204.
DOI URL |
| [34] |
MEUNIER L, WALKER S R, WRAGG J, et al., 2010. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia[J]. Environmental Science & Technology, 44(7): 2667-2674.
DOI URL |
| [35] |
MIN D, CHENG L, LIU D F, et al., 2022. Single strain-triggered biogeochemical cycle of arsenic[J]. Environmental Science & Technology, 56(22): 16410-16418.
DOI URL |
| [36] |
MUKHERJEE A, KUNDU M, BASU B, et al., 2017. Arsenic load in rice ecosystem and its mitigation through deficit irrigation[J]. Journal of Environmental Management, 197: 89-95.
DOI PMID |
| [37] |
MUZAFFAR S, KHAN J, SRIVASTAVA R, et al., 2022. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment[J]. Cell Biology and Toxicology, 39: 85-110.
DOI PMID |
| [38] |
OKKENHAUG G, ZHU Y G, HE J, et al., 2012. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: Differences in mechanisms controlling soil sequestration and uptake in rice[J]. Environmental Science & Technology, 46(6): 3155-3162.
DOI URL |
| [39] |
ONA-NGUEMA G, MORIN G, JUILLOT F, et al., 2005. EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite[J]. Environmental Science & Technology, 39(23): 9147-9155.
DOI URL |
| [40] |
PATTERSON T J, NGO M, ARONOY P A, et al., 2003. Biological activity of inorganic arsenic and antimony reflects oxidation state in cultured human keratinocytes[J]. Chemical Research in Toxicology, 16(12): 1624-1631.
PMID |
| [41] |
QIAO J T, LI X M, HU M, et al., 2018. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil[J]. Environmental Science & Technology, 52(1): 61-70.
DOI URL |
| [42] |
QIAO J T, LI X M, LI F B, et al., 2019. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 53(9): 5034-5042.
DOI URL |
| [43] |
RAML R, GOESSLER W, FRANCESCONI K A, 2006. Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 1128(1-2): 164-170.
PMID |
| [44] |
RAWSON J, PROMMER H, SIADE A, et al., 2016. Numerical modeling of arsenic mobility during reductive iron-mineral transformations[J]. Environmental Science & Technology, 50(5): 2459-2467.
DOI URL |
| [45] |
ROBERTS L C, HUG S J, VOEGELIN A, et al., 2011. Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh[J]. Environmental Science & Technology, 45(3): 971-976.
DOI URL |
| [46] |
SARKAR S, BASU B, KUNDU C, et al., 2012. Deficit irrigation: An option to mitigate arsenic load of rice grain in West Bengal, India[J]. Agriculture, Ecosystems & Environment, 146(1): 147-152.
DOI URL |
| [47] |
SHI W, MA J X, GAO F, et al., 2023. Metal-organic framework with a redox-active bridge enables electrochemically highly selective removal of arsenic from water[J]. Environmental Science & Technology, 57(15): 6342-6352.
DOI URL |
| [48] |
SLYEMI D, BONNEFOY V, 2012. How prokaryotes deal with arsenic[J]. Environmental Microbiology Reports, 4(6): 571-586.
DOI URL |
| [49] |
SOMENAHALLY A C, HOLLISTER E B, LOEPPERT R H, et al., 2011b. Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application[J]. Soil Biology & Biochemistry, 43(6): 1220-1228.
DOI URL |
| [50] |
SOMENAHALLY A C, HOLLISTER E B, YAN W, et al., 2011a. Water management impacts on arsenic speciation and iron - reducing bacteria in contrasting rice - rhizosphere compartments[J]. Environmental Science & Technology, 45(19): 8328-8335.
DOI URL |
| [51] |
SPANU A, DAGA L, ORLANDONI A M, et al., 2012. The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.)[J]. Environmental Science & Technology, 46(15): 8333-8340.
DOI URL |
| [52] |
STROUD J L, NORTON G J, ISLAM M R, et al., 2011. The dynamics of arsenic in four paddy fields in the Bengal delta[J]. Environment Pollution, 159(4): 947-953.
DOI URL |
| [53] |
SUN W, SIERRA-ALVAREZ R, MILNER L, et al., 2009. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments[J]. Environmental Science & Technology, 43(17): 6585-6591.
DOI URL |
| [54] |
TAKAHASHI Y, MINAMIKAWA R, HATTORI K H, et al., 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environmental Science & Technology, 38(4): 1038-1044.
DOI URL |
| [55] | TALUKDER A, MEISNER C, SARKAR M, et al., 2012. Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil-water system: Ⅱ. Arsenic uptake[J]. Ecotoxicology & Environmental Safety, 80: 145-151. |
| [56] |
TANG X J, ZOU L, SU S M, et al., 2021. Long-term manure application changes bacterial communities in rice rhizosphere and arsenic speciation in rice grains[J]. Environmental Science & Technology, 55(3): 1555-1565.
DOI URL |
| [57] |
WANG L X, GUO Q H, WU G, et al., 2023. Methanogens-driven arsenic methylation preceding formation of methylated thioarsenates in sulfide-rich hot springs[J]. Environmental Science & Technology, 57(19): 7410-7420.
DOI URL |
| [58] |
WANG X Q, YU Y H, LI F B, et al., 2019. Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3: Possible mechanisms and environmental implications[J]. Science of the Total Environment, 649: 535-543.
DOI URL |
| [59] |
WIELINSKI J, JIMENEZ-MARTINEZ J, GÖTTLICHER J, et al., 2022. Spatiotemporal mineral phase evolution and arsenic retention in microfluidic models of zerovalent iron-based water treatment[J]. Environmental Science & Technology, 56(19): 13696-13708.
DOI URL |
| [60] |
WILLIAMS P N, VILLADA A, DEACON C, et al., 2007. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science & Technology, 41(19): 6854-6859.
DOI URL |
| [61] |
XU X Y, MCGRATH S, MEHARG A, et al., 2008. Growing rice aerobically markedly decreases arsenic accumulation[J]. Environmental Science & Technology, 42(15): 5574-5579.
DOI URL |
| [62] |
XUE S G, JIANG X X, WU C, et al., 2020. Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system[J]. Environmental Pollution, 260: 114010.
DOI URL |
| [63] |
YAMAGUCHI N, NAKAMURA T, DONG D, et al., 2011. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution[J]. Chemosphere, 83(7): 925-932.
DOI PMID |
| [64] |
YAMAGUCHI N, OHKURA T, TAKAHASHI Y, et al., 2014. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix[J]. Environmental Science & Technology, 48(3): 1549-1556.
DOI URL |
| [65] |
YAMAMURA S, SUDO T, WATANABE M, et al., 2018. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities[J]. Journal of Hazardous Materials, 342: 571-578.
DOI PMID |
| [66] | YAN B, ZHANG X, 2021. Current status, causes and harm of soil arsenic pollution[J]. IOP Conference Series Earth & Environmental Science, 769(2): 022034. |
| [67] | YANG J M, CHEN H L, WANG X, et al., 2025. Toward safe rice production in As-Cd co-contaminated paddy soils: Biogeochemical mechanisms and remediation strategies[J]. Critical Reviews in Environmental Science & Technology, 55(1): 1-24. |
| [68] |
ZECCHIN S, CORSINI A, MARTIN M, et al., 2017. Rhizospheric iron and arsenic bacteria affected by water regime: Implications for metalloid uptake by rice[J]. Soil Biology & Biochemistry, 106: 129-137.
DOI URL |
| [69] |
ZHANG J, CHAI C W, THOMASARRIGO L K, et al., 2020. Nitrite accumulation is required for microbial anaerobic iron oxidation, but not for arsenite oxidation, in two heterotrophic denitrifiers[J]. Environmental Science & Technology, 54(7): 4036-4045.
DOI URL |
| [70] |
ZHANG J, ZHAO S C, XU Y, et al., 2017. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils[J]. Environmental Science & Technology, 51(8): 4377-4386.
DOI URL |
| [71] |
ZHANG J, ZHOU W, LIU B, et al., 2015. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology, 49(10): 5956-5964.
DOI URL |
| [72] |
ZHANG S Y, ZHAO F J, SUN G X, et al., 2015. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China[J]. Environmental Science & Technology, 49(7): 4138-4146.
DOI URL |
| [73] |
ZHANG X, ZHANG P L, WEI X, et al., 2024. Migration, transformation of arsenic, and pollution controlling strategies in paddy soil-rice system: A comprehensive review[J]. Science of The Total Environment, 951: 175500.
DOI URL |
| [74] | 管冬兴, 魏天娇, 袁召锋, 等, 2021. 基于被动采样技术的砷有效性和界面过程研究: 进展与展望[J]. 土壤学报, 58(2): 344-356. |
| GUAN D X, WEI T J, YUAN Z F, et al., 2021. A Review of researches on bioavailability and interfacial processes of arsenic based on passive sampling techniques: Progress and prospect[J]. Acta Pedologica Sinica, 58(2): 344-356. | |
| [75] | 韩永和, 王珊珊, 2016. 微生物耐砷机理及其在砷地球化学循环中的作用[J]. 微生物学报, 56(6): 901-910. |
| HAN Y H, WANG S S, 2016. Mechanisms of arsenic resistance in microorganisms and their roles in the arsenic geochemical cycle[J]. Acta Microbiologica Sinica, 56(6): 901-910. | |
| [76] | 强震宇, 江逸帆, 李刚, 等, 2024. 巯基砷在土水环境-植物体系中迁移转化与健康风险的研究进展[J]. 浙江大学学报(农业与生命科学版), 50(5): 689-702. |
| QIANG Z Y, JIANG Y F, LI G, et al., 2024. Advances in migration and transformation of thiolated arsenic and its health risks in soil-water environment and plant system[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 50(5): 689-702. | |
| [77] | 钟松雄, 何宏飞, 陈志良, 等, 2018. 水淹条件下水稻土中砷的生物化学行为研究进展[J]. 土壤学报, 55(1): 1-17. |
| ZHONG S X, HE H F, CHEN Z L, et al., 2018. Advancement in study on biochemical behavior of arsenic in flooded paddy soil[J]. Acta Pedologica Sinica, 55(1): 1-17. | |
| [78] | 钟松雄, 尹光彩, 何宏飞, 等, 2017. 不同铁矿物对水稻土砷的稳定化效果及机制[J]. 环境科学学报, 37(5): 1931-1938. |
| ZHONG S X, YIN G C, HE H F, et al., 2017. Stabilization effect of arsenic by different iron minerals in paddy soils and the related mechanism[J]. Acta Scientiae Circumstantiae, 37(5): 1931-1938. |
| [1] | 蒋凯, 柯常栋, 王丽萍, 李朋辉, 赖迪智, 张杨, 吴永洁, 吴仁人, 肖利平. 珠江广州河段粪便污染和溶解有机质的来源解析及分布特征[J]. 生态环境学报, 2025, 34(9): 1452-1462. |
| [2] | 林嘉茵, 侯玉婷, 曾海岑, 李伟志, 李冬琴, 叶挺进, 陈火君. 硅钙基材料的制备及其对镉污染土壤钝化效果研究[J]. 生态环境学报, 2025, 34(8): 1282-1292. |
| [3] | 柳凤娟, 马超, 黄玲涵, 陈琪, 罗绪强. 生物炭添加对尾砂污染土壤中As和Sb植物有效性的影响[J]. 生态环境学报, 2025, 34(8): 1273-1281. |
| [4] | 贺环, 周丹丹, 马芷萱, 李芳芳, 秦珊珊, 豆思娴. 钙改性对生物炭中溶解性有机质与Cd(Ⅱ)结合的影响[J]. 生态环境学报, 2025, 34(7): 1121-1132. |
| [5] | 黄邓铃尧, 唐炳然, 马媛媛, 何强, 李宏. 水稻土中砷对氮素转化的影响:以紫色土为例[J]. 生态环境学报, 2025, 34(5): 784-795. |
| [6] | 崔雪丹, 段桂兰, 王向琴, 李志丰, 窦飞, 杜衍红, 袁雨珍, 刘传平, 李芳柏. 基于两地长期定位试验的铁改性木本泥炭修复中轻度镉砷污染稻田效果与土壤健康效应评价[J]. 生态环境学报, 2025, 34(4): 608-620. |
| [7] | 杜明慧, 李伯欣, 余英德, 陶琳, 范世献, 余敏男, 于晓雯, 邹淑君, 黄德银. 保护性耕作对南方双季稻田土壤性质及产量的影响[J]. 生态环境学报, 2025, 34(4): 521-533. |
| [8] | 陈文哲, 黄秋香, 孟凡德, 高金妍, 李敏, 张恩俊, 袁国栋. 草酸和酒石酸对稻田土壤中砷解吸行为的影响研究[J]. 生态环境学报, 2024, 33(8): 1298-1305. |
| [9] | 马志伟, 张丛志, 赵占辉, 吴其聪, 赵金花, 陈卓, 李敬王, 张楠, 薛雅, 王娅茹, 陆芸萱, 张佳宝. 基于木本泥炭的土壤健康培育研究进展[J]. 生态环境学报, 2024, 33(12): 1964-1977. |
| [10] | 罗小玲, 刘军, 王琦, 刘同旭, 梁耀杰, 谢志宜, 王中伟, 陈多宏. 2016年以来广东省不同土地利用类型土壤pH和有机质时空变化及其影响因素分析[J]. 生态环境学报, 2024, 33(12): 1849-1861. |
| [11] | 颜思瑶, 杨光, 白艳, 高一帆, 梁露予, 龚凤, 黄国勇, 潘丹丹, 李晓敏. 淹水条件下水稻对土壤砷转化的影响[J]. 生态环境学报, 2024, 33(11): 1756-1767. |
| [12] | 李强, 汤秦, 吴锐. 抗生素添加对不同演替阶段岩溶生态系统土壤有机质激发效应的影响[J]. 生态环境学报, 2024, 33(11): 1717-1726. |
| [13] | 刘苏杰, 刘传平, 方利平, 陈冠虹, 李芳柏. 水稻土丁酸互营产甲烷菌群的砷甲基化特征及机制解析[J]. 生态环境学报, 2024, 33(10): 1580-1589. |
| [14] | 周宏光, 甘艳平, 伍德权, 杨延梅, 张扬, 王璐瑶. 淹水-落干条件下FeMnMg-LDH对污染底泥中砷迁移转化的调控研究[J]. 生态环境学报, 2023, 32(7): 1249-1262. |
| [15] | 朱忆雯, 尹丹, 胡敏, 杜衍红, 洪泽彬, 程宽, 于焕云. 稻田土壤氮循环与砷形态转化耦合的研究进展[J]. 生态环境学报, 2023, 32(7): 1344-1354. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||