生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 678-686.DOI: 10.16258/j.cnki.1674-5906.2023.04.005
赵维彬1,2(), 唐丽1, 王松3, 刘玲玲3, 王树凤2, 肖江2,*(
), 陈光才2
收稿日期:
2022-10-28
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*肖江(1987年生),男,副研究员,博士,主要从事土壤改良材料的研发,土壤重度重金属污染生态修复方向的研究。E-mail: jiangxiao0915@caf.ac.cn作者简介:
赵维彬(1998年生),男,硕士研究生,主要从事土壤改良材料研发和观赏植物生理方面的研究。E-mail: z3062322436@163.com
基金资助:
ZHAO Weibin1,2(), TANG Li1, WANG Song3, LIU Lingling3, WANG Shufeng2, XIAO Jiang2,*(
), CHEN Guangcai2
Received:
2022-10-28
Online:
2023-04-18
Published:
2023-07-12
摘要:
近年来,生物炭作为土壤改良剂在降低盐碱土壤盐分、养分流失和改善土壤性质方面具有良好表现。为更好发挥生物炭在盐碱土壤改良方面的应用潜力,选用骨炭(AB)和竹炭(PB)为改良材料,以浙江省台州市重度滨海盐碱土为研究对象,设置4种不同施用量(0、2%、5%、8%,w/w),通过室内土培实验,研究并分析骨炭和竹炭这两种生物炭在不同施用量下对滨海盐碱土壤的理化性质和养分含量的影响效果及可能规律,以筛选最佳处理,为生物炭应用于滨海盐碱土壤改良提供基础科学依据。结果表明,两种生物炭对盐碱土均具有一定的改良效果,(1)随骨炭施用量增加,盐碱土的土壤有机质(SOM)、总氮(TN)、总磷(TP)、碱解氮(AN)和有效磷(AP)含量呈现上升的趋势,添加2%—8%的骨炭,较对照(CK)相比分别提高了43.9%-125%、61.1%-238%、632%-1973%、49.3%-155%和42.9%-89.2%;(2)随竹炭施用量增加,土壤理化性质得到明显改善,添加8%的竹炭时,土壤含水量、孔隙度和阳离子交换量(CEC)较对照(CK)提高了8.37%、1.59%和179%,土壤容重和含盐量降低了6.03%和22.7%,土壤SOM含量显著提升了535%。综上,两种生物炭均能起到改善盐碱土壤结构和提高土壤持水能力、降低土壤盐碱程度并抑制土壤养分流失的作用,其中,骨炭适用于提高盐碱土壤的孔隙结构和养分含量,而竹炭有更强的提升盐碱土壤的理化性质的能力。考虑到经济成本和施用效果,5%施用量的骨炭是进行滨海盐碱土养分含量及有效性的改良的理想选择,5%施用量的竹炭是改良盐碱土壤理化性质的理想选择。
中图分类号:
赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686.
ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil[J]. Ecology and Environment, 2023, 32(4): 678-686.
土壤性质 | 试验地土壤 |
---|---|
容重/(g∙cm−3) | 1.47 |
含水量/% | 30.87 |
孔隙度/% | 41.89 |
pH | 8.89 |
w(盐分)/(g∙kg−1) | 8.23 |
CEC/(cmol∙kg−1) | 2.21 |
w(SOC)/(g∙kg−1) | 12.41 |
w(TN)/(g∙kg−1) w(TP)/(g∙kg−1) w(AN)/(mg∙kg−1) | 0.72 1.08 31.16 |
w(AP)/(mg∙kg−1) | 24.06 |
表1 试验土壤基本特征
Table 1 The basic properties of soil in present study
土壤性质 | 试验地土壤 |
---|---|
容重/(g∙cm−3) | 1.47 |
含水量/% | 30.87 |
孔隙度/% | 41.89 |
pH | 8.89 |
w(盐分)/(g∙kg−1) | 8.23 |
CEC/(cmol∙kg−1) | 2.21 |
w(SOC)/(g∙kg−1) | 12.41 |
w(TN)/(g∙kg−1) w(TP)/(g∙kg−1) w(AN)/(mg∙kg−1) | 0.72 1.08 31.16 |
w(AP)/(mg∙kg−1) | 24.06 |
理化性质 | 骨炭 (AB) | 竹炭 (PB) |
---|---|---|
比表面积/(m2∙g−1) | 57.17 | 760 |
孔隙大小/nm | 11.4 | 3.07 |
pH | 7.93 | 9.24 |
EC/(μS∙cm−1) CEC/(cmol∙kg−1) | 929 4.47 | 714 1.24 |
w(C)/(mg∙g−1) | 104 | 418 |
w(灰分)/% | 89.6 | 58.2 |
w(N)/(mg∙g−1) | 26 | 2.14 |
w(P)/(mg∙g−1) | 21.2 | 0.081 |
w(Na)/(mg∙g−1) | 1.03 | 0.287 |
w(Mg)/(mg∙g−1) | 0.66 | 0.085 |
w(Ca)/(mg∙g−1) | 38.85 | 0.43 |
w(K)/(mg∙g−1) | 0.129 | 0.765 |
表2 试验生物炭基本特征
Table 2 The basic properties of biochars
理化性质 | 骨炭 (AB) | 竹炭 (PB) |
---|---|---|
比表面积/(m2∙g−1) | 57.17 | 760 |
孔隙大小/nm | 11.4 | 3.07 |
pH | 7.93 | 9.24 |
EC/(μS∙cm−1) CEC/(cmol∙kg−1) | 929 4.47 | 714 1.24 |
w(C)/(mg∙g−1) | 104 | 418 |
w(灰分)/% | 89.6 | 58.2 |
w(N)/(mg∙g−1) | 26 | 2.14 |
w(P)/(mg∙g−1) | 21.2 | 0.081 |
w(Na)/(mg∙g−1) | 1.03 | 0.287 |
w(Mg)/(mg∙g−1) | 0.66 | 0.085 |
w(Ca)/(mg∙g−1) | 38.85 | 0.43 |
w(K)/(mg∙g−1) | 0.129 | 0.765 |
图4 不同生物炭处理对土壤理化性质和养分含量影响的相关性 图中***表示在P<0.001水平上显著相关,**表示在P<0.01水平上显著相关,*表示在P<0.05水平上显著相关
Figure 4 Correlation of soil physicochemical properties and nutrient contents of different biochar treatments
图5 不同生物炭处理对盐碱土理化性质和养分的影响的潜在规律
Figure 5 The potential law of different biochar treatments on physicochemical properties and nutrients of Saline-Alkaline soil
[1] |
AKHTAR S, ANDERSEN M N, LIU F, 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress[J]. Agricultural Water Management, 158: 61-68.
DOI URL |
[2] |
AMELOOT N, SLEUTEL S, DAS K, et al., 2015. Biochar amendment to soils with contrasting organic matter level: Effects on N mineralization and biological soil properties[J]. Global Change Biology Bioenergy, 7(1): 135-144.
DOI URL |
[3] |
AZEEM M, ALI A, JEYASUNDAR P, et al., 2021. Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil[J]. Chemosphere, 282: 131016.
DOI URL |
[4] |
AZEEM M, SHAHEEN S M, ALI A, et al., 2022. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review[J]. Journal of Hazardous Materials, 427: 128131.
DOI URL |
[5] | BHADORIA P B S, KASELOWSKY J, CLAASSEN N, et al., 2010. Impedance factor for chloride diffusion in soil as affected by bulk density and water content[J]. Journal of Plant Nutrition and Soil Science, 154(1): 69-72. |
[6] |
BLANCO-CANQUI H, 2017. Biochar and soil physical properties[J]. Soil Science Society of America Journal, 81(4): 687-711.
DOI URL |
[7] |
BORDOLOI S, KUMAR H, HUSSAIN R, et al., 2020. Assessment of hydro-mechanical properties of biochar-amended soil sourced from two contrasting feedstock[J]. Biomass Conversion and Biorefinery, 1: 1-16.
DOI URL |
[8] |
BRODOWSKI S, W AMELUNG, L HAUMAIER C, et al., 2005. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive x-ray spectroscopy[J]. Geoderma, 128(1-2): 116-129.
DOI URL |
[9] |
BURRELL L D, ZEHETNER F, RAMPAZZO N, et al., 2016. Long-term effects of biochar on soil physical properties[J]. Geoderma, 282: 96-102.
DOI URL |
[10] |
CHINTALA R, MOLLINEDO J, SCHUMACHER T E, et al., 2014. Effect of biochar on chemical properties of acidic soil[J]. Archives of Agronomy and Soil Science, 60(3): 393-404.
DOI URL |
[11] |
CLOUGH A, SKJEMSTAD J O, 2000. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate[J]. Soil Research, 38(5): 1005-1016.
DOI URL |
[12] |
CUI L Q, LIU Y M, YAN J L, et al., 2022. Revitalizing coastal saline-alkali soil with biochar application for improved crop growth[J]. Ecological Engineering, 179: 106594.
DOI URL |
[13] |
DELUCA T, MACKENZIE M, GUNDALE M, et al., 2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests[J]. Soil Science Society of America Journal, 70(2): 448-453.
DOI URL |
[14] |
DUAN M L, LIU G H, ZHOU B B, et al., 2021. Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil[J]. Journal of Soils and Sediments, 21(6): 2192-2202.
DOI |
[15] |
FAN R Q, ZHANG B H, LI J Y, et al., 2019. Straw-derived biochar mitigates CO2 emission through changes in soil pore structure in a wheat-rice rotation system[J]. Chemosphere, 243: 125329.
DOI URL |
[16] |
GUL S, WHALEN J K, THOMAS B W, et al., 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture Ecosystems and Environment, 206: 46-59.
DOI URL |
[17] |
HAILEGNAW N S, MERCL F, PRAČKE, et al., 2019. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment[J]. Journal of Soils and Sediments, 19(5): 2405-2416.
DOI |
[18] |
HE K, HE G, WANG C P, et al., 2020. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil[J]. Applied Soil Ecology, 155: 103674.
DOI URL |
[19] |
JING Y L, ZHANG Y H, HAN I, et al., 2020. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil[J]. Scientific Reports, 10: 8837.
DOI PMID |
[20] |
KARIMI A, MOEZZI A, CHOROM M, et al., 2020. Application of biochar changed the status of nutrients and biological activity in a calcareous soil[J]. Journal of Soil Science and Plant Nutrition, 20(2): 450-459.
DOI |
[21] |
LASHARI M S, YE Y X, JI H S, et al., 2015. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: A 2-year field experiment[J]. Journal of the Science of Food and Agriculture, 95(6): 1321-1327.
DOI PMID |
[22] |
LENG L J, HUANG H J, 2018. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 270: 627-642.
DOI PMID |
[23] |
LI S M, BARRETO V, LI R W, et al., 2018. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures[J]. Journal of analytical and applied pyrolysis, 133: 136-146.
DOI URL |
[24] |
LI S, YANG Y C, LI Y C, et al., 2020. Remediation of saline-sodic soil using organic and inorganic amendments: Physical, chemical, and enzyme activity properties[J]. Journal of soil and Sediments, 20(3): 1454-1467.
DOI |
[25] |
LUO S S, WANG S J, TIAN L, et al., 2018. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils[J]. Geoderma, 329: 108-117.
DOI URL |
[26] |
MIDDELBURG J J, NIEUWENHUIZE J, VAN BREUGEL P, 1999. Black carbon in marine sediments[J]. Marine Chemistry, 65(3): 245-252.
DOI URL |
[27] |
MUSTAFA K, HOSSAIN A, VLADIMIR S A, et al., 2010. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 92(1): 223-228.
DOI URL |
[28] |
OUYANG X K, JIN R N, YANG L P, et al., 2014. Bamboo derived porous bioadsorbents and their adsorption of Cd (II) from mixed aqueous solutions[J]. RSC Advances, 4(54): 28699-28706.
DOI URL |
[29] |
RAZZAGHI F, OBOUR P B, ARTHUR E, 2020. Does biochar improve soil water retention? A systematic review and meta-analysis[J]. Geoderma, 361: 114055.
DOI URL |
[30] | SARAN S, ELISA L C, EVELYN K, et al., 2009. Biochar, climate change and soil: A review to guide future research[R]. CSIRO Land and Water Science Report: 5-6. |
[31] | SHEPHERD M A, HARRISON R, WEBB J, 2002. Managing soil organic matter-implications for soil structure on organic farms[J]. Soil Use and Management, 18: 284-292 |
[32] | SOHI S P, KRULL E, LOPEZ-CAPEL E, et al., 2010. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 105: 47-82. |
[33] |
SONG D L, TANG J W, XI X Y, et al., 2018. Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil[J]. European Journal of Soil Biology, 84: 1-10.
DOI URL |
[34] |
SUN X Q, SHE D L, FEI Y H, et al., 2021. Three-dimensional fractal characteristics of soil pore structure and their relationships with hydraulic parameters in biochar-amended saline soil[J]. Soil and Tillage Research, 205: 104809.
DOI URL |
[35] | TOMCZYK A, SOKOOWSKA Z, BOGUTA P, 2020. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects[J]. Reviews in Environmental Science and Bio-Technology, 19(1): 191-215. |
[36] |
TRAKAL L, V ESELSKÁ V, ŠAFAŘÍK I, et al., 2016. Lead and cadmium sorption mechanisms on magnetically modified biochars[J]. Bioresource Technology, 203: 318-324.
DOI PMID |
[37] |
UM-E-LAILA, HUSSAIN A, NAZIR A, et al., 2021. Potential application of biochar composite derived from rice straw and animal bones to improve plant growth[J]. Sustainability, 13(19): 11104.
DOI URL |
[38] |
VACCARI F P, BARONTI S, LUGATO E, et al., 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat[J]. European Journal of Agronomy, 34(4): 231-238.
DOI URL |
[39] |
WANG S Y, TSAI M H, LO S F, et al., 2008. Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal[J]. Bioresource Technology, 99(15): 7027-7033.
DOI URL |
[40] |
XIAO Q, ZHU L X, SHEN Y F, et al., 2016. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment[J]. Field Crops Research, 196: 284-293.
DOI URL |
[41] |
YANG X, HINZMANN M, PAN H, et al., 2022. Pig carcass-derived biochar caused contradictory effects on arsenic mobilization in a contaminated paddy soil under fluctuating controlled redox conditions[J]. Journal of Hazardous Materials, 421: 126647.
DOI URL |
[42] |
YU X L, LU S G, 2019. Reconfiguration of macropore networks in a silty loam soil following biochar addition identified by X-ray microtomography and network analyses[J]. European Journal of Soil Science, 70(3): 591-603.
DOI URL |
[43] |
YUAN J H, XU R K, WANG N, et al., 2011. Amendment of acid soils with crop residues and biochars[J]. Pedosphere, 21(3): 302-308.
DOI URL |
[44] |
YUE Y, GUO W N, LIN Q M, et al., 2016. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunfower straw (Helianthus annuus), and cow manure[J]. Journal of Soil and Water Conservation, 71(6): 467-475.
DOI URL |
[45] |
ZAVALLONI C, G ALBERTI, S BIASIOL, et al., 2011. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study[J]. Applied Soil Ecology, 50: 45-51.
DOI URL |
[46] |
ZHANG A F, LIU Y M, PAN G X, et al., 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from central China Plain[J]. Plant and Soil, 351: 263-275.
DOI URL |
[47] |
ZHANG J, CHEN Q, YOU C F, 2016. Biochar effect on water evaporation and hydraulic conductivity in sandy soil[J]. Pedosphere, 26(2): 265-272.
DOI URL |
[48] |
ZHANG P, BING X, JIAO L, et al., 2022. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar[J]. Chemical Engineering Journal, 431(Part 1): 133904.
DOI URL |
[49] |
ZHENG H, WANG X, CHEN L, et al., 2018. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation[J]. Plant, Cell and Environment, 41(3): 517-532.
DOI URL |
[50] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 2002. Soil agro-chemical analysis[M]. Beijing: China Agriculture Press. | |
[51] |
卜晓莉, 汪浪浪, 马青林, 等, 2019. 稻壳炭施用对太湖滨岸灰潮土氮磷淋失及土壤性质的影响[J]. 生态环境学报, 28(11): 2216-2222.
DOI URL |
BU X L, WANG L, MA Q L, et al., 2019. Effects of rice husk biochar addition on nitrogen and phosphorus leaching and soil properties of gray fluvo-aquic soils in Taihu Lake shore[J]. Ecology and Environment Sciences, 28(11): 2216-2222.
DOI URL |
|
[52] | 陈义群, 董元华, 2008. 土壤改良剂的研究与应用进展[J]. 生态环境, 17(3): 1282-1289. |
CHEN Y Q, DONG Y H, 2008. Progress of research and utilization of soil amendments[J]. Ecology and Environment Sciences, 17(3): 1282-1289. | |
[53] |
邓晓, 武春媛, 杨桂生, 等, 2022. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 31(4): 723-731.
DOI URL |
DENG X, WU C Y, YANG G S, et al., 2022. Improvement effect of coconut-shell biochar on coastal soil in Hainan[J]. Ecology and Environment Sciences, 31(4): 723-731.
DOI URL |
|
[54] | 董合忠, 辛承松, 李维江, 2012. 滨海盐碱地棉田盐度等级划分[J]. 山东农业科学, 44(3): 36-39. |
DONG H Z, XIN C S, LI W J, 2012. Soil salinity grading of cotton field in coastal saline area[J]. Shandong Agricultural Sciences, 44(3): 36-39. | |
[55] |
葛晓改, 周本智, 肖文发, 等, 2016. 生物质炭输入对土壤碳排放的激发效应研究进展[J]. 生态环境学报, 25(2): 339-345.
DOI URL |
GE X G, ZHOU B Z, XIAO W F, et al., 2016. Priming effect of biochar addition on soil carbon emission: A review[J]. Ecology and Environment Sciences, 25(2): 339-345. | |
[56] |
韩剑宏, 刘泽霞, 张连科, 等, 2019. 生物炭和环保酵素对盐碱化土壤特性的影响[J]. 生态环境学报, 28(5): 1029-1036.
DOI URL |
HAN J H, LIU Z X, ZHANG L K, et al., 2019. Effects of biochar and environmental enzymes on the characteristics of salinized soil[J]. Ecology and Environment Sciences, 28(5): 1029-1036. | |
[57] | 李金彪, 陈金林, 刘广明, 等, 2014. 滨海盐碱地绿化理论技术研究进展[J]. 土壤通报, 45(1): 246-251. |
LI J B, CHEN J L, LIU G M, et al., 2014. Progress of greening theory and technology for coastal saline land[J]. Chinese Journal of Soil Science, 45(1): 246-251. | |
[58] | 毛庆莲, 王胜, 2020. 国内盐碱地治理趋势探究浅析[J]. 湖北农业科学, 59(S1): 302-306. |
MAO L Q, WANG S, 2020. Brief analysis on the trend of improve saline alkali soil in China[J]. Hubei Agricultural Sciences, 59(S1): 302-306. | |
[59] | 唐光木, 徐万里, 顾美英, 等, 2019. 棉秆炭特性及其对灰漠土土壤有机碳矿化的效应[J]. 生态学报, 39(05): 1795-1803. |
TANG G M, XU W L, GU Y M, et al., 2019. Characteristics of cotton stalk-char and its effect on organic carbon mineralization in grey desert soil[J]. Acta Ecologica Sinica, 39(05): 1795-1803. | |
[60] | 徐刚, 张友, 武玉, 等, 2016. 生物炭对土壤中氮磷有效性影响的研究进展[J]. 中国科学: 生命科学, 46(9): 1085-1090. |
XU G, ZHANG Y, WU Y, et al., 2016. Effects of biochar application on nitrogen and phosphorus availability in soils: A review[J]. Scientia Sinica (Vitae), 46(9): 1085-1090. | |
[61] | 杨劲松, 姚荣江, 王相平, 等, 2022. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 59(1): 10-27. |
YANG J S, YAO R J, WANG X P, et al., 2022. Research on salt-affected soils in China: History, status quo and prospect[J]. Acta Pedologica Sinica, 59(1): 10-27. | |
[62] | 袁帅, 赵立欣, 孟海波, 等, 2016. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 22(5): 1402-1417. |
YUAN S, ZHAO L X, MENG H B, et al., 2016. The main types of biochar and their properties and expectative researches[J]. Journal of Plant Nutrition and Fertilizers, 22(5): 1402-1417. | |
[63] |
赵英, 王丽, 赵惠丽, 等, 2022. 滨海盐碱地改良研究现状及展望[J]. 中国农学通报, 38(3): 67-74.
DOI |
ZHAO Y, WANG L, ZHAO H L, et al., 2019. Research status and prospects of saline-alkali land amelioration in the coastal region of China[J]. Chinese Agricultural Science Bulletin, 38(3): 67-74. |
[1] | 游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109. |
[2] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
[3] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[4] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[5] | 钱莲文, 余甜甜, 梁旭军, 王义祥, 陈永山. 茶园土壤酸化改良中生物炭应用5 a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. |
[6] | 张慧琦, 李子忠, 秦艳. 玉米秸秆生物炭用量对砂土孔隙和持水性的影响[J]. 生态环境学报, 2022, 31(6): 1272-1277. |
[7] | 邓晓, 武春媛, 杨桂生, 李怡, 李勤奋. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 2022, 31(4): 723-731. |
[8] | 魏岚, 黄连喜, 李翔, 王泽煌, 陈伟盛, 黄庆, 黄玉芬, 刘忠珍. 生物炭基质可显著地促进香蕉幼苗生长[J]. 生态环境学报, 2022, 31(4): 732-739. |
[9] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
[10] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[11] | 苏焱, 全妍红, 宦紫嫣, 姚佳, 苏小娟. 磷改性生物炭对云南某铅锌矿周边农田铅锌污染土壤修复效果的影响[J]. 生态环境学报, 2022, 31(3): 593-602. |
[12] | 丛鑫, 王宇, 李瑶, 何洋洋. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 2022, 31(2): 326-334. |
[13] | 秦坤, 王志康, 王章鸿, 杨成, 刘杰刚, 沈德魁. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 2022, 31(2): 344-353. |
[14] | 梅闯, 蔡昆争, 黎紫珊, 徐美丽, 黄飞. 稻秆生物炭对稻田土壤Cd形态转化和微生物群落的影响[J]. 生态环境学报, 2022, 31(2): 380-390. |
[15] | 姜晶, 邓精灵, 盛光遥. 生物炭老化及其对重金属吸附影响研究进展[J]. 生态环境学报, 2022, 31(10): 2089-2100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||