生态环境学报 ›› 2025, Vol. 34 ›› Issue (8): 1273-1281.DOI: 10.16258/j.cnki.1674-5906.2025.08.012
柳凤娟1(), 马超2, 黄玲涵3, 陈琪4, 罗绪强1,*(
)
收稿日期:
2024-11-11
出版日期:
2025-08-18
发布日期:
2025-08-01
通讯作者:
*E-mail: 作者简介:
柳凤娟(1984年生),女,副教授,博士,主要从事重金属环境行为及污染防治方面的研究。E-mail:361257961@qq.com
基金资助:
LIU Fengjuan1(), MA Chao2, HUANG Linghan3, CHEN Qi4, LUO Xuqiang1,*(
)
Received:
2024-11-11
Online:
2025-08-18
Published:
2025-08-01
摘要:
生物炭(BC)在(类)重金属污染土壤生态修复中的应用已成为生态环境领域的研究热点,但其对砷(As)和锑(Sb)的修复效果仍存在争议。为探究BC及其用量对污染土壤中As和Sb植物有效性的影响,设置了一系列BC添加量处理组(0、1.5%、3%、4.5%、6%、7.5%,分别记为BC0、BC1.5、BC3、BC4.5、BC6、BC7.5),并培植甜象草(Pennisetum purpureum)60 d。通过测定土壤和植物中As和Sb的含量,分析BC添加对As和Sb植物有效性的影响。结果表明,BC的添加显著提高了尾砂污染土壤的pH值、有机质和磷(P)含量,同时促进了水溶态As和Sb的释放。水溶态As和Sb含量分别从对照组的 (2.70±0.70) mg·kg−1和 (11.76±1.97) mg·kg−1增加至最高剂量组的 (10.24±1.19) mg·kg−1和 (16.58±1.04) mg·kg−1。然而,BC的添加并未显著影响甜象草对As和Sb的吸收和富集特性。尽管As含量有所降低,但各组间Sb含量差异不显著(13.64-23.94 mg·kg−1),且甜象草中As和Sb含量与BC用量之间未呈现明显的规律性。值得注意的是,评估As和Sb植物有效性的两个指标(水溶态浓度与植物实际吸收量)表现出不一致性。这一结果提示,研究者需关注BC添加的短期与长期效应,同时也表明利用BC和植物吸收修复尾砂污染土壤中的As和Sb仍面临诸多科学与技术挑战。
中图分类号:
柳凤娟, 马超, 黄玲涵, 陈琪, 罗绪强. 生物炭添加对尾砂污染土壤中As和Sb植物有效性的影响[J]. 生态环境学报, 2025, 34(8): 1273-1281.
LIU Fengjuan, MA Chao, HUANG Linghan, CHEN Qi, LUO Xuqiang. Effects of Biochar Addition on the Phytoavailability of As and Sb in Tailings-contaminated Soil[J]. Ecology and Environmental Sciences, 2025, 34(8): 1273-1281.
处理 (BC用量) | 林下土质量/ g | 尾砂质量/ g | BC质量/ g | 其他 (所有处理均加) |
---|---|---|---|---|
BC0(0) | 2500 | 500 | 0 | 0.11 g K2HPO4, 2.14 g NaH2PO4, 0.6 g CO(NH2)2, 1 g C8H4K2O12Sb2 |
BC1.5(1.5%) | 2455 | 500 | 45 | |
BC3(3%) | 2410 | 500 | 90 | |
BC4.5(4.5%) | 2365 | 500 | 135 | |
BC6(6%) | 2320 | 500 | 180 | |
BC7.5(7.5%) | 2275 | 500 | 225 |
表1 盆栽土壤成分
Table 1 Composition of soil in pot experiment
处理 (BC用量) | 林下土质量/ g | 尾砂质量/ g | BC质量/ g | 其他 (所有处理均加) |
---|---|---|---|---|
BC0(0) | 2500 | 500 | 0 | 0.11 g K2HPO4, 2.14 g NaH2PO4, 0.6 g CO(NH2)2, 1 g C8H4K2O12Sb2 |
BC1.5(1.5%) | 2455 | 500 | 45 | |
BC3(3%) | 2410 | 500 | 90 | |
BC4.5(4.5%) | 2365 | 500 | 135 | |
BC6(6%) | 2320 | 500 | 180 | |
BC7.5(7.5%) | 2275 | 500 | 225 |
评估指标 | pH | L0As | L0Sb | L0Fe | L0Mn | L1As | L1Sb | L1Fe | L1Mn | L3As | L3Sb | L3Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L0As | 0.903*** 0.000 | |||||||||||
L0Sb | 0.485* 0.041 | 0.517* 0.028 | ||||||||||
L0Fe | 0.815*** 0.000 | 0.815*** 0.000 | 0.465 0.052 | |||||||||
L0Mn | 0.591** 0.010 | 0.648** 0.004 | 0.274 0.270 | 0.794*** 0.000 | ||||||||
L1As | 0.806*** 0.000 | 0.801*** 0.000 | 0.305 0.219 | 0.520* 0.027 | 0.322 0.193 | |||||||
L1Sb | 0.457 0.056 | 0.488* 0.040 | 0.863*** 0.000 | 0.425 0.079 | 0.256 0.306 | 0.400 0.100 | ||||||
L1Fe | −0.913*** 0.000 | −0.768*** 0.000 | −0.384 0.116 | −0.643** 0.004 | −0.458 0.056 | −0.673** 0.002 | −0.277 0.265 | |||||
L1Mn | 0.107 0.674 | 0.321 0.194 | 0.029 0.908 | 0.017 0.945 | −0.050 0.843 | 0.454 0.058 | 0.241 0.335 | 0.147 0.562 | ||||
L3As | 0.873*** 0.000 | 0.903*** 0.000 | 0.644** 0.004 | 0.692*** 0.001 | 0.400 0.100 | 0.794*** 0.000 | 0.627** 0.005 | −0.717*** 0.001 | 0.402 0.098 | |||
L3Sb | −0.230 0.359 | −0.297 0.231 | 0.188 0.455 | −0.415 0.087 | −0.369 0.132 | −0.006 0.981 | 0.209 0.406 | 0.227 0.365 | 0.042 0.867 | -0.094 0.710 | ||
L3Fe | 0.879*** 0.000 | 0.916*** 0.000 | 0.649** 0.004 | 0.721*** 0.001 | 0.445 0.064 | 0.758*** 0.000 | 0.639** 0.004 | −0.726*** 0.001 | 0.355 0.148 | 0.990*** 0.000 | −0.112 0.657 | |
L3Mn | 0.812*** 0.000 | 0.909*** 0.000 | 0.549* 0.018 | 0.724*** 0.001 | 0.467 0.051 | 0.731*** 0.001 | 0.565* 0.015 | −0.619** 0.006 | 0.481* 0.043 | 0.944*** 0.000 | −0.260 0.297 | 0.948*** 0.000 |
表2 土壤pH与(类)金属形态的关联性分析
Table 2 Correlation analysis of soil pH with metal (loid) speciation
评估指标 | pH | L0As | L0Sb | L0Fe | L0Mn | L1As | L1Sb | L1Fe | L1Mn | L3As | L3Sb | L3Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L0As | 0.903*** 0.000 | |||||||||||
L0Sb | 0.485* 0.041 | 0.517* 0.028 | ||||||||||
L0Fe | 0.815*** 0.000 | 0.815*** 0.000 | 0.465 0.052 | |||||||||
L0Mn | 0.591** 0.010 | 0.648** 0.004 | 0.274 0.270 | 0.794*** 0.000 | ||||||||
L1As | 0.806*** 0.000 | 0.801*** 0.000 | 0.305 0.219 | 0.520* 0.027 | 0.322 0.193 | |||||||
L1Sb | 0.457 0.056 | 0.488* 0.040 | 0.863*** 0.000 | 0.425 0.079 | 0.256 0.306 | 0.400 0.100 | ||||||
L1Fe | −0.913*** 0.000 | −0.768*** 0.000 | −0.384 0.116 | −0.643** 0.004 | −0.458 0.056 | −0.673** 0.002 | −0.277 0.265 | |||||
L1Mn | 0.107 0.674 | 0.321 0.194 | 0.029 0.908 | 0.017 0.945 | −0.050 0.843 | 0.454 0.058 | 0.241 0.335 | 0.147 0.562 | ||||
L3As | 0.873*** 0.000 | 0.903*** 0.000 | 0.644** 0.004 | 0.692*** 0.001 | 0.400 0.100 | 0.794*** 0.000 | 0.627** 0.005 | −0.717*** 0.001 | 0.402 0.098 | |||
L3Sb | −0.230 0.359 | −0.297 0.231 | 0.188 0.455 | −0.415 0.087 | −0.369 0.132 | −0.006 0.981 | 0.209 0.406 | 0.227 0.365 | 0.042 0.867 | -0.094 0.710 | ||
L3Fe | 0.879*** 0.000 | 0.916*** 0.000 | 0.649** 0.004 | 0.721*** 0.001 | 0.445 0.064 | 0.758*** 0.000 | 0.639** 0.004 | −0.726*** 0.001 | 0.355 0.148 | 0.990*** 0.000 | −0.112 0.657 | |
L3Mn | 0.812*** 0.000 | 0.909*** 0.000 | 0.549* 0.018 | 0.724*** 0.001 | 0.467 0.051 | 0.731*** 0.001 | 0.565* 0.015 | −0.619** 0.006 | 0.481* 0.043 | 0.944*** 0.000 | −0.260 0.297 | 0.948*** 0.000 |
图5 不同处理下甜象草中As和Sb的富集系数(KB)和转运系数(KT)的变化 不同小写字母表示同一元素系数在不同生物炭用量下的显著性差异
Figure 5 Changes in bioconcentration and transport factors of As and Sb in sweet elephant grass under different treatments
[1] |
AHMAD M, LEE S S, LIM J E, et al., 2014. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions[J]. Chemosphere, 95: 433-441.
DOI PMID |
[2] | AHMAD M, OK Y S, KIM B Y, et al., 2016a. Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil[J]. Journal of Environmental Management, 166: 131-139. |
[3] | AHMAD M, OK Y S, RAJAPAKSHA A U, et al., 2016b. Lead and copper immobilization in a shooting range soil using soybean stover-and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments[J]. Journal of Hazardous Materials, 301: 179-186. |
[4] | ARABI Z, RINKLEBE J, EL-NAGGAR A, et al., 2021. (Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis[J]. Environmental Pollution, 286: 117199. |
[5] | BEESLEY L, MARMIROLI M, PAGANO L, et al., 2013. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicumL.)[J]. Science of the Total Environment, 454-455: 598-603. |
[6] | BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al., 2014. Remediation of heavy metal (loid) s contaminated soils-To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 266: 141-166. |
[7] | CAO J M, LIU Y Q, LIU Y Q, et al., 2025. Predicting the efficiency of arsenic immobilization in soils by biochar using machine learning[J]. Journal of Environmental Sciences, 147: 259-267. |
[8] |
CHOPPALA G, BOLAN N, KUNHIKRISHNAN A, et al., 2016. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere, 144: 374-381.
DOI PMID |
[9] | GREGORY S J, ANDERSON C W N, ARBESTAIN M C, et al., 2014. Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil[J]. Agriculture, Ecosystems & Environment, 191: 133-141. |
[10] | GU J H, YAO J, JORDAN G, et al., 2020. Arundo donax L. stem-derived biochar increases As and Sb toxicities from nonferrous metal mine tailings[J]. Environmental Science and Pollution Research, 27(3): 2433-2443. |
[11] |
HARTLEY W, DICKINSON N M, RIBY P, et al., 2009. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus[J]. Environmental Pollution, 157(10): 2654-2662.
DOI PMID |
[12] | HOSSAIN M Z, BAHAR M M, SARKAR B, et al., 2020. Biochar and its importance on nutrient dynamics in soil and plant[J]. Biochar, 2: 379-420. |
[13] | JIAO Y H, WANG T N, HE M C, et al., 2022. Simultaneous stabilization of Sb and as co-contaminated soil by FeMg modified biochar[J]. Science of The Total Environment, 830: 154831. |
[14] |
JOHNSON C A, MOENCH H, WERSIN P, et al., 2005. Solubility of antimony and other elements in samples taken from shooting ranges[J]. Journal of Environmental Quality, 34(1): 248-254.
PMID |
[15] |
LEI M, WAN X M, HUANG Z C, et al., 2012. First evidence on different transportation modes of arsenic and phosphorus in arsenic hyperaccumulator Pteris vittata[J]. Environmental Pollution, 161: 1-7.
DOI PMID |
[16] |
LI G, SUN G X G, WILLIAMS P N, et al., 2011. Inorganic arsenic in Chinese food and its cancer risk[J]. Environment International, 37(7): 1219-1225.
DOI PMID |
[17] | LOMAGLIO T, HATTAB-HAMBLI N, BRET A, et al., 2017. Effect of biochar amendments on the mobility and (bio) availability of As, Sb and Pb in a contaminated mine technosol[J]. Journal of Geochemical Exploration, 182(Part B): 138-148. |
[18] | MEHARG A A, MACNAIR M R, 1992. Suppression of the high affinity phosphate uptake system: A mechanism of arsenate tolerance in Holcus lanatus L.[J]. Journal of Experimental Botany, 43(4): 519-524. |
[19] | NIAZI N K, MURTAZA B, BIBI I, et al., 2016. Chapter 7-Removal and recovery of metals by biosorbents and biochars derived from biowastes[C]// Environmental Materials and Waste. San Diego: Academic Press: 149-177. |
[20] | PALANSOORIYA K N, SHAHEEN S M, CHEN S S, et al., 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review[J]. Environment International, 134: 105046. |
[21] | PIGNA M, COZZOLINO V, VIOLANTE A, et al., 2009. Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations[J]. Water, Air, and Soil Pollution, 197: 371-380. |
[22] | QIU J, DE SOUZA M F, WANG X L, et al., 2024. Influence of biochar addition and plant management (cutting and time) on ryegrass growth and migration of As and Pb during phytostabilization[J]. Science of the Total Environment, 913: 169771. |
[23] | RAVENSCROFT P, MCARTHUR J M, HOQUE B A, 2001. Geochemical and palaeohydrological controls on pollution of groundwater by arsenic[C]// CHAPPELL W R, ABERNATHY C O, CALDERON R. Arsenic Exposure and Health Effects. IV. Oxford: Elsevier Science Ltd.: 53-77. |
[24] | RIZWAN M S, IMTIAZ M, HUANG G, et al., 2016. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar[J]. Environmental Science and Pollution Research, 23(15): 15532-15543. |
[25] | SAFEER R, LIU G, YOUSAF B, et al., 2024. Insights into the biogeochemical transformation, environmental impacts and biochar- based soil decontamination of antimony[J]. Environmental Research, 251(Part 2): 118645. |
[26] |
STRAWN D G, 2018. Review of interactions between phosphorus and arsenic in soils from four case studies[J]. Geochemical Transactions, 19(1): 10.
DOI PMID |
[27] | SUN Y C, WANG TT, BAI L, et al., 2022. Application of biochar-based materials for remediation of arsenic contaminated soil and water: Preparation, modification, and mechanisms[J]. Journal of Environmental Chemical Engineering, 10(5): 108292. |
[28] | VIDYA C S N, SHETTY R, VACULÍKOVÁM, et al., 2022. Antimony toxicity in soils and plants, and mechanisms of its alleviation[J]. Environmental and Experimental Botany, 202: 104996. |
[29] |
WANG L, JI B, HU Y H, et al., 2017. A review on in situ phytoremediation of mine tailings[J]. Chemosphere, 184: 594-600.
DOI PMID |
[30] |
WANG Z D, TANG W Y, DING X D, et al., 2025. Different extractable pools of Cd and Pb in agricultural soil under amendments: Water-soluble concentration sensitively indicates metal availability[J]. Journal of Environmental Sciences, 150: 297-308.
DOI PMID |
[31] | WU C, SHI L Z, XUE S G, et al., 2019. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment, 647: 1158-1168. |
[32] | ZHANG W, CHO Y, VITHANAGE M, et al., 2022. Arsenic removal from water and soils using pristine and modified biochars[J]. Biochar, 4(1): 55. |
[33] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 39-97. |
BAO S D, 2000. Soil and agricultural chemical analysis[M]. 3rd Edition. Beijing: China Agriculture Press: 39-97. | |
[34] | 国家标准化管理委员会, 1989. 水质锰的测定高碘酸钾分光光度法: GB/T 11906—1989[S]. 北京: 中国标准出版社: 1-4. |
National Standardization Administration, 1989. Water quality-- Determination of manganese--Potassium periodate spectrophotometric method: GB/T 11906—1989[S]. Beijing: Standards Press of China: 1-4. | |
[35] | 国家标准化管理委员会, 2010. 硅酸盐岩石化学分析方法第1部分: 吸附水量测定: GB/T 14506.1—2010[S]. 北京: 中国标准出版社: 1-8. |
National Standardization Administration, 2010. Methods for chemical analysis of silicate rocks—Part1: Determination of hygroscopic water content: GB/T 14506.1—2010[S]. Beijing: Standards Press of China: 1-8. | |
[36] | 国家标准化管理委员会, 2010. 土壤和沉积物13个微量元素形态顺序提取程序: GB/T 25282—2010[S]. 北京: 中国标准出版社: 1-12. |
National Standardization Administration, 2010. Soil and sediment— Sequential extraction procedure of speciation of 13 trace elements: GB/T 25282—2010[S]. Beijing: Standards Press of China: 1-12. | |
[37] | 国家标准化管理委员会, 2013. 碳酸锂、单水氢氧化锂、氯化锂化学分析方法第7部分: 铁量的测定邻二氮杂菲分光光度法: GB/T 11064.7—2013[S]. 北京: 中国标准出版社:1-8. |
National Standardization Administration, 2013. Methods for chemical analysis of lithium carbonate,lithium hydroxide monohydrate and lithium chloride. Part 7: Determination of iron content. 1,10-Phenanthroline spectrophotometric method: GB/T 11064.7—2013[S]. Beijing: Standards Press of China: 1-8. | |
[38] | 侯新村, 范希峰, 武菊英, 等, 2012. 草本能源植物修复重金属污染土壤的潜力[J]. 中国草地学报, 34(1): 59-64, 76. |
HOU X C, FAN X F, WU J Y, et al., 2012. Potentiality of herbaceous bioenergy plants in remediation of soil contaminated by heavy metal[J]. Chinese Journal of Grassland, 34(1): 59-64, 76. | |
[39] | 李鸿博, 钟怡, 张昊楠, 等, 2020. 生物炭修复重金属污染农田土壤的机制及应用研究进展[J]. 农业工程学报, 36(13): 173-185. |
LI H B, ZHONG Y, ZHANG H N, et al., 2020. Mechanism for the application of biochar in remediation of heavy metal contaminatedfarmland and its research advances[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(13): 173-185. | |
[40] |
罗洋, 刘方, 任军, 等, 2020. 改良剂对电解锰渣上4种能源草种子萌发及幼苗生长的影响[J]. 草业学报, 29(11): 118-128.
DOI |
LUO Y, LIU F, REN J, et al., 2020. Effects of rooting media amendments on seed germination and seedling growth of four bioenergy grass species grown onelectrolytic manganese residue[J]. Acta Prataculturae Sinica, 29(11): 118-128. | |
[41] | 马志林, 冯长松, 2016. 能源草发展的比较优势和战略潜力研究[J]. 中国水土保持 (4): 22-25, 43. |
MA Z L, FENG C S, 2016. Comparative advantage and strategic potential of energygrass development[J]. Soil and Water Conservation in China (4): 22-25, 43. | |
[42] | 张欢, 花莉, 罗婷, 2019. 锑胁迫下生物炭对番茄锑积累及生化特性的影响[J]. 生态学杂志, 38(4): 983-994. |
ZHANG H, HUA L, LUO T, 2019. Effects of biochar on Sb accumulation and biochemical characteristics of Lycopersicum esculentum in Sb-contaminated soil[J]. Chinese Journal of Ecology, 38(4): 983-994. | |
[43] | 中国国家林业局, 1999. 森林土壤有机质的测定及碳氮比的计算: LY/T 1237—1999[S]. 北京: 中国林业出版社: 1-4. |
State Forestry Administration of the People’s Republic of China, 1999. Determination of organic matter in forest soil and calculation carbon-nitrogen ratio: LY/T 1237—1999[S]. Beijing: China Forestry Publishing House: 1-4. |
[1] | 贺环, 周丹丹, 马芷萱, 李芳芳, 秦珊珊, 豆思娴. 钙改性对生物炭中溶解性有机质与Cd(Ⅱ)结合的影响[J]. 生态环境学报, 2025, 34(7): 1121-1132. |
[2] | 林泳怡, 周燕飞, 邓金环, 田纪辉, 蔡昆争. 生物炭与磷添加促进赤红壤的硅形态转化和大豆植株硅吸收转运[J]. 生态环境学报, 2025, 34(5): 710-719. |
[3] | 黄邓铃尧, 唐炳然, 马媛媛, 何强, 李宏. 水稻土中砷对氮素转化的影响:以紫色土为例[J]. 生态环境学报, 2025, 34(5): 784-795. |
[4] | 崔雪丹, 段桂兰, 王向琴, 李志丰, 窦飞, 杜衍红, 袁雨珍, 刘传平, 李芳柏. 基于两地长期定位试验的铁改性木本泥炭修复中轻度镉砷污染稻田效果与土壤健康效应评价[J]. 生态环境学报, 2025, 34(4): 608-620. |
[5] | 卢聪. 生物炭负载纳米零价铁对沉积物中十溴二苯乙烷去除效果及机制[J]. 生态环境学报, 2024, 33(8): 1279-1288. |
[6] | 陈文哲, 黄秋香, 孟凡德, 高金妍, 李敏, 张恩俊, 袁国栋. 草酸和酒石酸对稻田土壤中砷解吸行为的影响研究[J]. 生态环境学报, 2024, 33(8): 1298-1305. |
[7] | 杜忠毓, 邢文黎, 党宁, 赵维彬, 谭许脉, 肖江, 盖旭, 陈光才. 甘肃西和锑矿生态破坏区优势物种生态位及种间联结性[J]. 生态环境学报, 2024, 33(7): 1036-1047. |
[8] | 王室苹, 李梅, 安娅, 秦好丽. 镁改性增强小麦秸秆生物炭对镉的吸附能力:表面络合模型研究[J]. 生态环境学报, 2024, 33(4): 617-625. |
[9] | 肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449. |
[10] | 李高帆, 徐文卓, 卫昊明, 晏再生, 尤佳, 江和龙, 黄娟. 三维多孔生物炭吸附剂的制备及其对菲的吸附行为[J]. 生态环境学报, 2024, 33(2): 261-271. |
[11] | 蓝浚, 陈冠虹, 张俊涛, Hemmat-Jou Mohammad Hossein, 舒小华, 方利平, 李芳柏. 电子穿梭体介导土壤锑还原成矿的微生物机制[J]. 生态环境学报, 2024, 33(2): 272-281. |
[12] | 丛鑫, 曹平, 王晓博. 生物炭负载纳米铁活化过硫酸盐去除土壤中的五氯联苯[J]. 生态环境学报, 2024, 33(2): 282-290. |
[13] | 李璞君, 唐丽, 赵博, 邸东柳, 陈岩, 肖江, 陈光才. 生物炭基土壤改良剂对锑矿区土壤质量及亮叶桦生长的影响[J]. 生态环境学报, 2024, 33(12): 1953-1963. |
[14] | 颜思瑶, 杨光, 白艳, 高一帆, 梁露予, 龚凤, 黄国勇, 潘丹丹, 李晓敏. 淹水条件下水稻对土壤砷转化的影响[J]. 生态环境学报, 2024, 33(11): 1756-1767. |
[15] | 李文章, 胡亚茹, 李法云, 王玮, 张继宁, 郭琴. 铁改性生物炭-凹凸棒石载体固定化菌剂制备及其对氯苯污染土壤修复作用[J]. 生态环境学报, 2024, 33(11): 1782-1791. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||