生态环境学报 ›› 2023, Vol. 32 ›› Issue (8): 1478-1486.DOI: 10.16258/j.cnki.1674-5906.2023.08.013
李佳蔓1(), 王晓明1, 胡欣蕊1, 谢莹莹1,*(
), 文震2
收稿日期:
2023-06-04
出版日期:
2023-08-18
发布日期:
2023-11-08
通讯作者:
*谢莹莹。E-mail: xieyy@hstc.edu.cn作者简介:
李佳蔓(2001年生),女,学士,研究方向为水体污染修复。E-mail: 2020137132@stu.hstc.edu.cn
基金资助:
LI Jiaman1(), WANG Xiaoming1, HU Xinrui1, XIE Yingying1,*(
), WEN Zhen2
Received:
2023-06-04
Online:
2023-08-18
Published:
2023-11-08
摘要:
施氏矿物是酸性矿山废水(AMD)中常见的铁羟基硫酸盐次生矿物,可通过类质同象置换对AMD中重(类)金属起到固载作用,但不同Fe-S比率的施氏矿物可能会呈现不同的表面性质和特征,进而影响着其在环境治理与修复中的应用。采用快速化学法结合硫酸钠调控合成制备不同Fe-S比率的施氏矿物,并通过XRD、BET、FTIR、SEM和TEM等表征手段探究了Fe-S比率对施氏矿物微观结构的影响,在此基础上探索施氏矿物对六价铬吸附的差异性能,并初步阐明施氏矿物吸附铬的作用机理及其影响规律。结果表明:所合成的5种施氏矿物Fe-S比率范围为4.70-6.20,不同Fe-S比率的施氏矿物晶型无明显差异,但矿物中硫酸盐含量越高会导致矿物的结晶度增加,SEM和TEM表明矿物呈现堆叠的球状颗粒,表面有少量小颗粒毛刺,比表面积大小遵循Sch 1>Sch 5>Sch 2>Sch 4>Sch 3。批吸附实验结果表明在相同的实验条件下,Fe-S比率为5.32的施氏矿物对Cr(Ⅵ)的吸附效果最佳,当pH为5.00和Cr的初始质量浓度为5 mg?L-1时,其去除率为85.6%。XRD结果显示Sch 1的环境稳定性最差,反应后呈现向针铁矿转变的趋势,而其它施氏矿物反应后晶型基本不变。FTIR表征结果证明CrO42-的吸附与结构SO42-之间的相关性,揭示了施氏矿物对Cr(Ⅵ)的吸附过程涉及SO42-产生配位体交换的离子置换反应。因此,不同的Fe-S比率会影响施氏矿物的微观结构,适当的Fe-S比率(5.32)有利于施氏矿物对六价铬的吸附,另外应关注环境条件,防止施氏矿物失稳。研究结果可为环境中铬的治理及施氏矿物在环境修复领域中的应用提供理论依据和数据支撑。
中图分类号:
李佳蔓, 王晓明, 胡欣蕊, 谢莹莹, 文震. 铁硫比对施氏矿物微观结构及吸附铬性能的影响[J]. 生态环境学报, 2023, 32(8): 1478-1486.
LI Jiaman, WANG Xiaoming, HU Xinrui, XIE Yingying, WEN Zhen. Effects of Fe-S Ratio on the Microstructure and Cr Adsorption Properties of Schwertmannite[J]. Ecology and Environment, 2023, 32(8): 1478-1486.
样品 | 硫酸钠添加量/g | 质量比/% | Fe-S物质的量之比 | 化学式 | 晶胞参数 | |||
---|---|---|---|---|---|---|---|---|
Fe | S | a/Å | c/Å | V/Å3 | ||||
Sch 1 | 0.00 | 60.0 | 6.06 | 5.65 | Fe8O8(OH)5.16(SO4)1.42 | 10.7 | 6.07 | 695 |
Sch 2 | 8.70 | 54.6 | 5.86 | 5.32 | Fe8O8(OH)5.00(SO4)1.50 | 10.7 | 6.04 | 688 |
Sch 3 | 21.3 | 56.0 | 6.43 | 4.97 | Fe8O8(OH)4.78(SO4)1.61 | 10.7 | 6.03 | 686 |
Sch 4 | 42.7 | 54.6 | 6.61 | 4.72 | Fe8O8(OH)4.62(SO4)1.69 | 10.7 | 6.03 | 686 |
Sch 5 | 85.3 | 68.9 | 6.42 | 6.13 | Fe8O8(OH)5.38(SO4)1.31 | 10.7 | 6.04 | 686 |
表1 合成矿物的化学组成和晶胞参数
Table 1 The chemical composition and cell parameter of the synthetic mineral
样品 | 硫酸钠添加量/g | 质量比/% | Fe-S物质的量之比 | 化学式 | 晶胞参数 | |||
---|---|---|---|---|---|---|---|---|
Fe | S | a/Å | c/Å | V/Å3 | ||||
Sch 1 | 0.00 | 60.0 | 6.06 | 5.65 | Fe8O8(OH)5.16(SO4)1.42 | 10.7 | 6.07 | 695 |
Sch 2 | 8.70 | 54.6 | 5.86 | 5.32 | Fe8O8(OH)5.00(SO4)1.50 | 10.7 | 6.04 | 688 |
Sch 3 | 21.3 | 56.0 | 6.43 | 4.97 | Fe8O8(OH)4.78(SO4)1.61 | 10.7 | 6.03 | 686 |
Sch 4 | 42.7 | 54.6 | 6.61 | 4.72 | Fe8O8(OH)4.62(SO4)1.69 | 10.7 | 6.03 | 686 |
Sch 5 | 85.3 | 68.9 | 6.42 | 6.13 | Fe8O8(OH)5.38(SO4)1.31 | 10.7 | 6.04 | 686 |
样品 | BET比表面积/ (m2∙g-1) | BJH吸附累积孔容/ (m3∙g-1) | BJH吸附平均孔径/ nm |
---|---|---|---|
Sch 1 | 81.8 | 0.201 | 9.30 |
Sch 2 | 70.2 | 0.137 | 7.33 |
Sch 3 | 57.7 | 0.205 | 13.6 |
Sch 4 | 65.9 | 0.248 | 14.5 |
Sch 5 | 70.9 | 0.195 | 11.3 |
表2 矿物比表面积及平均孔径的变化
Table 2 The specific surface area and average pore size of minerals
样品 | BET比表面积/ (m2∙g-1) | BJH吸附累积孔容/ (m3∙g-1) | BJH吸附平均孔径/ nm |
---|---|---|---|
Sch 1 | 81.8 | 0.201 | 9.30 |
Sch 2 | 70.2 | 0.137 | 7.33 |
Sch 3 | 57.7 | 0.205 | 13.6 |
Sch 4 | 65.9 | 0.248 | 14.5 |
Sch 5 | 70.9 | 0.195 | 11.3 |
[1] |
ANTELO J, FIOL S, GONDAR D, et al., 2012. Comparison of arsenate, chromate and molybdate binding on schwertmannite: Surface adsorption vs anion-exchange[J]. Journal of Colloid and Interface Science, 386: 338-343.
DOI PMID |
[2] |
BIGHAM J M, SCHWERTMANN U, CARLSON L, et al., 1990. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters[J]. Geochimica Et Cosmochimica Acta, 54(10): 2743-2758.
DOI URL |
[3] |
BIGHAM J M, 1994. Schwertmannite, a new iron oxyhydroxysulphate from Pyh/isalmi, Finland, and other localities[J]. Mineralogical Magazine, 58(393): 641-648.
DOI URL |
[4] |
BIGHAM J M, SCHWERTMANN U, PFAB G, 1996. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage[J]. Applied Geochemistry, 11: 845-849.
DOI URL |
[5] |
BIGHAM J M, SCHWERTMANN U, TRAINA S J, et al., 1996. Schwertmannite and the chemical modeling of iron in acid sulfate waters[J]. Geochimica et Cosmochimica Acta, 60(12): 2111-2121.
DOI URL |
[6] |
CHEN M Q, LU G N, GUO C L, et al., 2015. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China[J]. Chemosphere, 119: 734-743.
DOI PMID |
[7] |
DING B, WANG X, FENG K, et al., 2022. Efficient adsorption of Cr(Ⅵ) in acidic environment by nano-scaled schwertmannite prepared through pH regulation: Characteristics, performances, and mechanism[J]. Environmental Science and Pollution Research, 29: 77344-77358.
DOI |
[8] | DZOMBAK D A, MOREL F M M, 1990. Surface Complexation Modeling-Hydrous Ferric Oxide[M]. New York: Wiley-Interscience. |
[9] |
ESKANDARPOUR A, ONYANGO M S, TANAHASHI M, et al., 2008. Magnetic fixed-bed column for Cr(Ⅵ) Removal from aqueous solution using schwertmannite[J]. Isij International, 48(2): 240-244.
DOI URL |
[10] |
GRAMP J P, JONES F S, BIGHAM J M, et al. 2008. Monovalent cation concentrations determine the types of Fe(Ⅲ) hydroxysulfate precipitates formed in bioleach solution[J]. Hydrometallurgy, 94(1-4): 29-33.
DOI URL |
[11] |
JAE-YOUNG Y U, PARK M, KIM J, 2002. Solubilities of synthetic schwertmannite and ferrihydrite[J]. Geochemical Journal, 36(2): 119-132.
DOI URL |
[12] |
JONSSON J, PERSSON P, SJOBERG S, et al., 2005. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties[J]. Applied Geochemistry, 20: 179-191.
DOI URL |
[13] | LIAO Y H, ZHOU L X, LIANG J R, et al., 2009. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition[J]. Materials Science & Engineering C, 29(1): 211-215. |
[14] |
LIAO Y H, LIANG J R, ZHOU L X, 2011. Adsorptive removal of As(Ⅲ) by biogenic schwertmarmite from simulated As-contaminated groundwater[J]. Chemosphere, 83: 295-301.
DOI URL |
[15] |
MENG X, WANG X, ZHANG C, et al., 2021 Co-adsorption of As(Ⅲ) and phenanthrene by schwertmannite and Fenton-like regeneration of spent schwertmannite to realize phenanthrene degradation and As(Ⅲ) oxidation[J]. Environmental Research, 195: 110855.
DOI URL |
[16] |
PAIKARAY S, GOTTLICHER J, PEIFFER S, 2011. Removal of As(Ⅲ) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway[J]. Chemical Geology, 283(3-4): 134-142.
DOI URL |
[17] | RAKHUNDE R, DESHPANDE L, JUNEJA H D, 2012. Chemical Speciation of Chromium in Water: A Review[J]. Critical Reviews in Environmental Science & Technology, 42(7): 776-810. |
[18] |
RAO R A K, REHMAN F, KASHIFUDDIN M, 2012. Removal of Cr(Ⅵ) from electroplating wastewater using fruit peel of Leechi (Litchi chinensis)[J]. Desalination and Water Treatment, 49: 136-146.
DOI URL |
[19] |
REGENSPURG S, BRAND A, PEIFFER S, 2004. Formation and stability of schwertmannite in acidic mining lake[J]. Geochimica et Cosmochimica Acta, 68(6): 1185-1197.
DOI URL |
[20] |
REGENSPURG S, PEIFFER S, 2005. Arsenate and chromate incorporation in schwertmannite[J]. Applied Geochemistry, 20(6): 1226-1239.
DOI URL |
[21] |
THOMMES M, KANEKO K, NEIMARK A V, et al., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 87(9-10): 1051-1069.
DOI URL |
[22] | WILKINSON G, GILLARD R D, MCCLEVERTY J A, 1987. Comprehensive Coordination Chemistry[M]. Oxford: Pergamon Print. |
[23] |
XIE Y Y, LU G N, YE H, et al., 2017. Fulvic acid induced the liberation of chromium from CrO42- -substituted schwertmannite[J]. Chemical Geology, 475: 52-61.
DOI URL |
[24] |
XIE Y Y, YE H, WEN Z, et al., 2022. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms[J]. Science of the Total Environment, 848: 157863.
DOI URL |
[25] |
XIE Y Y, LU G N, TAO X Q, et al., 2022. A collaborative strategy for elevated reduction and immobilization of Cr (Ⅵ) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism[J]. Journal of Hazardous Materials, 422: 126952.
DOI URL |
[26] |
YING H, FENG X H, ZHU M Q, et al., 2020. Formation and transformation of schwertmannite through direct Fe3+ hydrolysis under various geochemical conditions[J]. Environmental Science: Nano, 7(8): 2385-2398.
DOI URL |
[27] |
ZHOU J X, ZHOU Y J, ZHANG J, et al., 2022. Effect of pH regulation on the formation of biogenic schwertmannite driven by Acidithiobacillus ferrooxidans and its arsenic removal ability[J]. Environmental Technology, 43(24): 3706-3718.
DOI URL |
[28] | ZHANG Y L, GAO K, DANG Z, et al., 2021. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridie[J]. Science of the Total Environment, 764(1-2): 144279 |
[29] | 陈福星, 2006. 施氏矿物对污染水体中六价铬及三价砷的吸附去除研究[D]. 南京: 南京农业大学. |
CHEN F X, 2006. Removal of chromium(Ⅵ) and arsenite(Ⅲ) in polluted waters through adsorption onto biosynthetic schwertmannite[D]. Nanjing: Nanjing Agricultural University. | |
[30] | 梁剑茹, 李浙英, 刘奋武, 等, 2012. 预处理后生物成因施氏矿物的矿物学特征及对As(Ⅲ)吸附的影响[J]. 环境科学, 33(10): 3606-3612. |
LIANG J Y, LI Z Y, LIU F W, et al., 2012. Mineralogical characteristics of biogenic schwertmannite amended with different pretreatment methods and the effects on As(Ⅲ) absorption[J]. Environmental Science, 33(10): 3606-3612. | |
[31] | 李旭伟, 贺静, 张健, 等, 2020. 透析对施氏矿物微观结构及其砷吸附能力的影响[J]. 环境科学学报, 40(2): 546-553. |
LI X W, HE J, ZHANG J, et al., 2020. Effects of dialysis on the microstructure of schwertmannite and its arsenic removal ability[J]. Acta Scientiae Circum Stantiae, 40(2): 546-553. | |
[32] | 李浙英, 梁剑茹, 柏双友, 等, 2011. 生物成因与化学成因施氏矿物的合成、表征及其对As(Ⅲ)的吸附[J]. 环境科学学报, 31(3): 460-467. |
LI Z Y, LIANG J R, BAI S Y, et al., 2011. Characterization and As(Ⅲ) adsorption properties of schwertmannite synthesized by chemical or biological procedures[J]. Acta Scientiae Circumstantiae, 31(3): 460-467. | |
[33] | 刘奋武, 高诗颖, 王敏, 等, 2015. KOH对富铁富硫酸盐酸性环境中生物成因次生铁矿物合成的影响[J]. 环境科学学报, 35(2): 476-483. |
LIU F W, GAO S Y, WANG M, et al., 2015. Effect of KOH on the formation of biogenic secondary iron minerals in iron-and sulfate-rich acidic environment[J]. Acta Scientiae Circumstantiae, 35(2): 476-483 | |
[34] | 孙红福, 赵峰华, 从志远, 等, 2006. 在我国发现的Schwertmannite矿物及其特征[J]. 岩物学报, 26(1): 38-42. |
SUN H F, ZHAO F H, CONG Z Y, et al., 2006. The mineral schwertmannite found in China and its characteristics[J]. Acta Mineralogica Sinica, 26(1): 38-42. | |
[35] | 谢莹莹, 2018. 溶解性有机质介导下酸性矿山废水中施氏矿物的转化机制及对重金属环境行为的影响[D]. 广州: 华南理工大学. |
XIE Y Y, 2018. Phase transformation of schwertmannite mediated by dissolved organic matter in acid mine drainage and its effects on environmental behaviour of heavy metals[D]. Guangzhou: South China University of Technology. | |
[36] | 郑君里, 罗相萍, 陈凯伟, 等, 2022. 农林材料及其改性材料对水中重金属和染料吸附研究进展[J]. 水处理技术, 48(4): 6-10. |
ZHENG J L, LUO X P, CHEN K W, et al., 2022. Research progress on the adsorption of heavy metals and dyes in water by agroforestry materials and their modifications[J]. Technology of Water Treatment, 48(4): 6-10. | |
[37] | 郑妍婷, 谢莹莹, 赖鹤鋆, 等, 2023. 酸性矿山废水S(-II)对含铬和钼施氏矿物溶解与相转变的影响[J]. 土木与环境工程学报(中英文), 45(4): 201-210. |
ZHENG Y T, XIE Y Y, LAI H Y, et al., 2023. Effect of S(-II) on the dissolution and transformation of chromium and molybdenum-doped schwertmannite under acid mine drainage conditions[J]. Journal of Civil and Environmental Engineering, 45(4): 201-210. | |
[38] | 朱立超, 刘元元, 李伟民, 等, 2017. 施氏矿物的化学合成及其对含Cr(Ⅵ)地下水吸附修复[J]. 环境科学, 38(2): 629-639. |
ZHU L C, LIU Y Y, LI W M, et al., 2017. Adsorptive remediation of Cr(Ⅵ) contaminated groundwater with chemically synthesized schwertmannite[J]. Environmental Science, 38(2): 629-639. |
[1] | 王丽华, 王磊, 许端平, 薛杨. 煤胶体对重金属铜与镉的吸附特征研究[J]. 生态环境学报, 2023, 32(7): 1293-1300. |
[2] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[3] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
[4] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[5] | 刘沙沙, 陈诺, 杨晓茵. 微塑料对有机污染物的吸附-解吸特性及其复合毒性效应研究进展[J]. 生态环境学报, 2022, 31(3): 610-620. |
[6] | 丛鑫, 王宇, 李瑶, 何洋洋. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 2022, 31(2): 326-334. |
[7] | 汤家喜, 向彪, 李玉, 谭婷, 朱永乐, 甘建平. 硅藻土对水中氟化物的吸附特性研究[J]. 生态环境学报, 2022, 31(2): 335-343. |
[8] | 秦坤, 王志康, 王章鸿, 杨成, 刘杰刚, 沈德魁. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 2022, 31(2): 344-353. |
[9] | 秦秦, 段海芹, 宋科, 孙丽娟, 孙雅菲, 周斌, 薛永. 常规施肥对土壤水稳性团聚体镉吸附解吸特性及化学形态的影响研究[J]. 生态环境学报, 2022, 31(12): 2403-2413. |
[10] | 姜晶, 阮呈杰, 陈霄宇, 吴仪, 汪永创. 微塑料模拟老化及其对污染物吸附行为影响研究进展[J]. 生态环境学报, 2022, 31(11): 2263-2274. |
[11] | 雷雅杰, 李雪, 常春艳, 毛雪飞. 聚苯乙烯微塑料对水中汞离子的吸附研究[J]. 生态环境学报, 2022, 31(10): 2048-2057. |
[12] | 姜晶, 邓精灵, 盛光遥. 生物炭老化及其对重金属吸附影响研究进展[J]. 生态环境学报, 2022, 31(10): 2089-2100. |
[13] | 张苏明, 张建强, 周凯, 陈志良. 铁基改性椰壳生物炭对砷的吸附效果及机制研究[J]. 生态环境学报, 2021, 30(7): 1503-1512. |
[14] | 张兵兵, 杨照, 薛斌, 丁小艳, 娄金分, 王盛, 陈蔚洁, 徐国敏. 薏仁米秸秆生物炭对水中Hg2+的吸附特性及机制[J]. 生态环境学报, 2021, 30(5): 1051-1059. |
[15] | 王亚琢, 周翔, 修磊, 单锐, 袁浩然. 高铁酸钾改性生物炭的制备及其对水体中Cd(Ⅱ)的吸附特性[J]. 生态环境学报, 2021, 30(12): 2380-2386. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||